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Abstract

Anticipatory thinking is a complex cognitive process for as-
sessing and managing risk in many contexts. Humans use
anticipatory thinking to identify potential future issues and
proactively take actions to manage their risks. In this paper we
define a cognitive systems approach to anticipatory thinking
as a metacognitive goal reasoning mechanism. The contribu-
tions of this paper include (1) defining anticipatory thinking
in the MIDCA cognitive architecture, (2) operationalizing an-
ticipatory thinking as a three step process for managing risk
in plans, and (3) a numeric risk assessment calculating an ex-
pected cost-benefit ratio for modifying a plan with anticipa-
tory actions.

Introduction
Anticipatory Thinking (AT) is the deliberate and divergent
analysis of relevant future states that is a critical skill in med-
ical, military, and intelligence analysis (Geden et al. 2018).
It differs from predicting a single correct outcome in that its
goal is to identify key indicators or threatening conditions
so one might proactively mitigate and intervene at critical
points to avoid catastrophic failure. This uniquely human
ability allows us to learn, and act, without actually experi-
encing. AI systems with this robust capability would sup-
port the autonomy and contextual reasoning needed for next
generation AI.

However, AI systems have yet to adopt this capability.
While agents with a metacognitive architecture can formu-
late their own goals or adapt their plans in response to
their environment (Burns and Ruml 2012; Cox 2016) and
learning-driven goal generation anticipates new goals from
past examples (Pozanco, Fernández, and Borrajo 2018), they
do not reason prospectively about how their current goals
could potentially fail or become attainable. Expectations
have a similar limitation, they represent an agent’s mental
view of future states and are useful for diagnosing plan fail-
ure and discrepancies in execution (Muñoz et al. 2019) but
do not critically examine a plan or goal for potential weak-
nesses or opportunities in advance. Duff et al. 2006 use an
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explicit knowledge representation in the domain to ensure
that maintenance goals do not fail while proactively achiev-
ing maintenance goals when they do not conflict with ex-
isting achievement goals. This is a similar goal to anticipa-
tory thinking, but its computation of goals is more akin to
prediction than anticipation. At present, agents do not ana-
lyze plans and goals to reveal their unnamed risks (e.g. such
as actions of another agent) and how they might be proac-
tively mitigated to avoid execution failures. Calls to the AI
community to investigate imagination machines (Mahade-
van 2018) highlight the limitations between current data-
driven advances in AI and matching human performance in
the long term.

To address this limitation, we take a step towards imagi-
nation machines with a contribution that operationalizes the
concept of anticipatory thinking, a cognitive process reliant
on an ample supply of imagination, as a metacognitive ca-
pability. We propose this capability as a kind of solution for-
mulation method, a post-planning step that analyzes a so-
lution plan for potential weaknesses and modifies the solu-
tion plan to account for them. This approach is in contrast
to problem formulation, a pre-planning step that analyzes a
problem for efficient search strategies, as well as online risk-
aware planning processes (Huang et al. 2019). Our first step
of AT identifies properties of a plan that are prone to fail-
ure. These include concepts such as atoms needed through-
out a plan but are only achieved in the initial state. As a
second step, we extend goal-reasoning agent expectations to
include anticipatory expectations, a kind of expectation de-
rived from a plan’s relevant states that identifies exogenous
sources that could potentially introduce failures. Finally, we
define anticipatory reasoning to proactively mitigate the po-
tential failures. An agent reasons over the conditions in the
anticipatory expectations, generating anticipatory actions to
be executed at specific times, foiling an exogenous source
of failure. To exercise this new capability we use a simple
example and define metrics for evaluating an agent’s antici-
patory thinking.

Previous Work
Our contributions are based on three related areas of work.
Prospective cognition is a fledgling field in cognitive psy-



chology the goal of which is to understand human ability
to reason about and imagine the future. We discuss some
prospection modalities. The second area, goal-reasoning
agents, is a type of agent that adapts to and formulates their
own goals in response to their environment. We highlight
some of the overlap between prospection modalities and the
agent’s methods for formulating and achieving goals. Fi-
nally, investigations into metacognition’s role in decision
making and behavior draws a close tie with autonomy. We
detail some of the existing capability to frame anticipatory
thinking’s role.

Anticipatory Thinking
Anticipatory thinking is an emerging concept in psychol-
ogy (Geden et al. 2018) that captures the cognitive processes
in use when preparing for the future. The deliberate con-
sideration of a diverse set of possible futures which aggre-
gates imaginative, divergent, and prospective processes and
is more than any of the individual processes alone. Imagina-
tion is a mechanism to reason about what is outside our im-
mediate sensory inputs. More than an artist’s creative reser-
voir, imagination drives the creativity in complex sciences
from engineering to finance. Imagination is used to rea-
son about details in problem-solving, such as what might
have happened in a mystery novel, as well as generating
novel ideas through methods such as counterfactual reason-
ing. Calls to the AI community to investigate imagination
machines (Mahadevan 2018) highlight the gap between cur-
rent data-driven advances in AI and matching human perfor-
mance in the long term.

Divergent thinking is often used to assess individual dif-
ferences in creativity and has been part of scientific studies
on creativity since the 1960’s (Guilford 1967). Assessing di-
vergent thinking asks subjects to perform divergent thinking
tasks, the scores and measures of which are still the focus
of numerous studies (Silvia et al. 2008). Physical limita-
tions such as working memory and recall from long-term
memory have been the source of inspiration for developing
methodologies to counteract them (e.g. structured analytic
techniques (Heuer 2008).

Lastly, the emerging field of prospection is the ability
to reason about what may happen in the future. Szpunar
et al. 2014 provide a taxonomy of prospection that covers
four modalities (planning, intention, simulation, prediction)
in both syntactic and semantic spaces. Several AI research
communities have investigated the methods that, at least in
name, overlap with the modalities but have lacked the unify-
ing taxonomy to characterize them in prospective cognition.

Goal Reasoning
One approach to mitigate risks is to encode mappings from
states to goals, such that when an agent is in a state, it
should pursue the corresponding goal. Thus, if risks are
known at design time, an agent can be given mappings from
risky states to mitigating goals. MADBot (Coddington et al.
2005) investigated goal formulation via motivator strategies
within, and external to, the planning process. An example of
a motivator function is the following: a rover robot may have

the motivator function that when its battery level drops be-
low a threshold, the agent will generate a goal to have a fully
charged battery. This would then be achieved by a plan for
the rover to navigate to the power source and plug itself in.
As shown in Coddington (2005) these motivator functions
can be either (1) encoded into the plan operators as con-
straints (i.e. every action has a precondition that the battery
level is above a threshold) or (2) a separate goal formulation
process which runs outside the planner and generates a new
goal when motivator functions trigger.

Other approaches to mitigating risk with planning systems
include rationale-based monitors (Veloso, Pollack, and Cox
1998), perceptual-based plan monitors (Dannenhauer and
Cox 2018), and contingency planning (Hoffmann and Braf-
man 2005). Prior work on mitigating risk during plan execu-
tion has considered monitoring rationales for goals (Dannen-
hauer 2019). In MADBot and other work on goal motivator
strategies (Muñoz-Avila, Wilson, and Aha 2015), goal mo-
tivator functions are known at the design time of the agent.
The primary difference of the approach presented here is that
goal formulation strategies are identified automatically at
runtime by anticipatory thinking approaches using the plan
solution as a source of information.

Metacognition
Metacognition refers to processes that reason about cogni-
tion in some form or another (Cox, Raja, and others 2011).
We use the Metacognitive Integrated Dual-Cycle Architec-
ture (MIDCA) to discuss anticipatory thinking processes. A
primary benefit of MIDCA is its explicit separation of cog-
nitive and metacognitive processes. Cognitive processes (see
Figure 1) are those that are more directly concerned with the
world (goals are world states, plans are sequences of actions
that act on world states, etc). Metacognitive processes (see
Figure 2) are those that are more directly concerned with
cognitive processes and states (identifying and resolving is-
sues such as impasses that arise in various cognitive pro-
cesses). One of the core assumptions here is that the agent’s
mental state is separate from the world state (otherwise rea-
soning about world states would also be reasoning about
cognitive states).

At a general level it seems that AT could be considered
a cognitive process since the objective of AT is to prevent
risk that arises from various world states in order to achieve
some goal that is a world state. When considering specific
AT processes (presented in the next section) we argue that
AT is truly a metacognitive process since it is concerned with
meta goals such as achieved(g’) where g’ is a cognitive level
goal. AT is also concerned with decision making on resource
trade-offs (a type of metareasoning) for risk mitigation (i.e.
spending X extra actions to mitigate Y potential risks). Addi-
tionally, if AT processes were to take into account an agent’s
likelihood of succeeding at a task, than AT processes are
making use metacognition self-prediction mechanisms.

MIDCA is currently under active development, and un-
til recently most work has consisted of implementation at
the cognitive level. Prior work on the metacognitive level
includes monitoring capabilities that maintain a cognitive
trace and control actions capable of switching planning al-



Figure 1: MIDCA cognitive level.

gorithms at runtime (Cox, Dannenhauer, and Kondrakunta
2017) and domain independent expectations1 of cognitive
processes (Dannenhauer, Cox, and Muñoz-Avila 2018). The
primary contributions from these works have mostly fo-
cused on the Monitor, Interpret2, and Control phases of the
metacognitive layer. The AT process we describe in this pa-
per proposes additional new methods to the Intrepret, Plan,
and Control phases of the metacognitive level.

Anticipatory Thinking as Metacognition
Our approach to operationalizing anticipatory thinking be-
gins with the concept as explained in (Geden et al. 2018)
as ”deliberate, divergent exploration and analysis of relevant
futures to avoid surprise”. We define three steps that oper-
ationalize the (i) deliberate, (ii) divergent, and (iii) relevant
components of the above AT concept.

First, in Section 3.1 we identify goal vulnerabilities as an
example method in the deliberation step. This step reasons
over a plan’s structure to identify properties that would be
particularly costly were they not to go according to plan. A
second step, failure anticipation, identifies sources of failure
for the vulnerabilities in Section 3.2. Sources of failure can
range from unknown environment states to other agent’s in-
terfering goals. Finally, in Section 3.3 we detail a failure mit-
igation step that modifies an existing plan, reducing the ex-
posure to the sources of failure and creating an anticipatory
expectation. We capture these steps as a process in Table 1

1It is worth noting that while expectations at the cognitive and
metacognitive levels have analogous roles, their definitions at each
level are different.

2The Interpret phase generally includes discrepancy detection,
explanation/diagnosis, and goal formulation. Of these, discrepancy
detection is the only one with prior work at the metacognitive layer
of MIDCA.

and demonstrate these steps through an NBeacons running
example from (Dannenhauer, Cox, and Muñoz-Avila 2018).

Table 1: This method takes as input a plan and returns a mod-
ified plan that includes anticipatory actions.

METHOD: Anticipatory Thinking
INPUT: A plan π
OUTPUT: A modified plan π′

1 identify goal vulnerabilities in π
2 identify failure anticipation in π
3 edit π with failure mitigations to get π′
4 return π′

To illustrate these ideas, it is useful to consider follow-
ing example. An agent must generate plans to reach bea-
cons and activate them. If the agent ever passes through a
sandpit square, they must take three actions to dig out. The
wind may blow in a known direction at a known speed after
every agent action. The wind pushes an agent a number of
squares further (equivalent to the speed) in the wind’s direc-
tion and can result in an agent passing over a sandpit and
getting stuck. In our example, the wind is blowing West at a
speed of five making an agent’s plan vulnerable to any sand-
pit that lies within five squares West of their location.

We use the Partial Order Causal Link (POCL) represen-
tation (Penberthy and Weld 1992) for an agent’s plans. The
main advantage to using POCL over other plan representa-
tions is that causal link threats can explicitly represent po-
tential failures from external events. We use the typical def-
initions for the POCL representation from (Penberthy and
Weld 1992) where a POCL plan consists of steps (S) that
are ground actions from the domain model, bindings (B) that
map free variables to literals, step orderings (O) that con-



Figure 2: MIDCA metacognitive level.

strain when steps must execute relative to one another, and
causal links (L) that connect steps to one another when an
effect of one step instantiates a precondition for a follow-
ing step. While the above plain English definitions of the
individual aspects of the POCL representation will suffice
for those who are familiar with planning, we provide a for-
mal definitions for causal link threats as they are key to our
choice of POCL.
Definition 1 (Causal link threat) A causal link threat oc-
curs when a causal link s

p→ u between steps s and u for
literal p, and some other step w has effect ¬p and could be
executed after s but before u. Executing w in this interval
establishes ¬pmaking the precondition p of u no longer sat-
isfied by the effect p of s and thus u will not execute.

Goal Vulnerabilities
Identifying a plan’s vulnerable structural properties is the
first step in proactively mitigating its failure. We define a
single vulnerability, precondition strength, of what could
be numerous vulnerable properties of a plan. Precondition
strength, is a measure of how many times a precondition is
established and used in plan. The fewer times a precondition
is established and the more it is used increases the vulnera-
bility of a plan to failure. It is useful in AT to identify literals
that have a weak precondition strength, as their failure can
require many repairs to a plan or eliminating an area of the
solution space entirely.
Definition 2 (Precondition Strength) Precondition
strength of a plan π, PRESTRENGTH(π), is a set of tuples
〈a, k, e〉 where a is a literal, k is the number of steps in π
that use a as a precondition, and e the number of times a is
an effect before it is first used as precondition.

Our example in Figure 3, A is the agent’s location, ˜ are
the sandpits, and 1 is the beacon location, and the optimal
path from the agent’s location to the beacon is in orange. The

optimal path comprises of eight move actions all of which
have the (canMove) precondition. This precondition is only
established once in the initial state and so its entry in PRE-
STRENGTH(π) is 〈canMove(agent), 8, 1〉.

Failure Anticipation

Vulnerabilities are not by themselves indicative that a plan is
at risk of failure. Risk of failure requires some means to ex-
ploit the vulnerability, what we will call conditioning events.
We approach identifying these events as a kind of prefactual
reasoning (future-oriented counterfactual reasoning), where
we take the negation of the most vulnerable preconditions
(identified in Section ) and identify actions with them as ef-
fects.

Definition 3 (Conditioning Event) The conditioning
events CE(π) of a plan π are actions in the domain model
such that one or more effects of each action is the negation
of a precondition of a step in π, introducing a causal link
threat.

In our NBeacons example, wind may blow after each
agent action and gives rise to a conditioning event. If the
wind blows at any point where a sandpit is within five
squares West of the agent, a causal link threat is introduced
by the effect ¬canMove(agent). This results in four poten-
tial conditioning events, one after each of the agent’s first
four moves, indicated by the red CE notation in Figure 3.
After finding themselves in a sandpit, an agent must spend
three actions digging out of the sand pit in order make can-
Move(agent) true and be able move again. We term these
three dig actions as the impact of a conditioning event.

Definition 4 (Impact) The impact of a conditioning event,
impact(CE), is the cost of the actions needed to remove the
causal link threat introduced by the conditioning event.



Figure 3: An NBeacons example where A is the agent’s location, ˜ are the sandpits, and 1 is the beacon location, and the optimal
path from the agent’s location to the beacon is in orange. Wind may blow after each of the agent’s actions and gives rise to the
four conditioning events that could take place and are indicated by CE1−4.

Failure Mitigation
The final step to operationalizing anticipatory thinking is to
define what the relevant property means for a goal-reasoning
agent. We term this step failure mitigation where the agent
reasons over conditioning events to identify actions that re-
duce a plan’s risk exposure to these conditioning events.
These actions are anticipatory actions.

Definition 5 (Anticipatory Actions) The anticipatory ac-
tions ANT(π) of a plan π is a set of tuples 〈AANT,CE〉
where AANT is an action sequence, ai, a2, ...an added to π
such that at least one effect reduces the impact of the condi-
tioning events CE in CE(π).

To mitigate the unpleasantness of being blown about by
the wind and getting trapped in a sandpit, our agent has the
option to outfit itself with a grappling hook. A grappling
hook allows an agent to move out of a sandpit in a single ac-
tion. However, adding the grappling hook adds action costs
of one for the buy and pack steps that need to be executed.
We add these two anticipatory actions to the agent’s plan
before the journey begins, see π′ in Figure 4.

Adding the grappling hook to the plan creates an expec-
tation within an agent that risk exposure to the wind condi-
tioning event has been reduced. We refer to this new type of
expectation as an anticipatory expectation and define it as:

Definition 6 (Anticipatory Expectations) An Anticipa-
tory Expectation is the action cost reductions expected from
introducing anticipatory actions to mitigate conditioning
events.

Anticipatory Thinking in MIDCA
We now put forth an anticipatory thinking approach as a
metacognitive process in MIDCA, highlighting the role of
each phase of the metacognitive layer:

Monitor: Obtain observations of the cognitive level com-
ponents, including the current plan π and the current goal
g.

Interpret (as composed of the following three steps):
Discrepancy Detection: Flag the current plan π from

the cognitive level Plan phase (see Figure 1, cogni-
tive layer, left side) as potentially risky, risk level(π,
HIGH).

Explanation / Diagnosis: Assess the risks associated
with the plan π using anticipatory thinking approaches,
such as those described in Section using the notions of
prestrength. The results of the analysis would be vul-
nerabilities V of the plan π.

Goal Formulation: Formulate the goal to transform π
into a new plan π′ with a safer risk level, while
maintaining that the current goal of π is achieved.
The new goal would then be {risk level(π′, LOW) ∧
achieves(π′, g)}.

Evaluate: Drop any meta goals if they have been achieved.
Intend: Commit to achieving the newly formulated meta

goal {risk level(π′, LOW) ∧ achieves(π′, g)}.
Plan: Take current mental state containing

risk level(π,HIGH) and vulnerabilities V and search
for a set of new actions, meta plan mp, consisting of add
or delete edits from plan π in order to achieve π′ such
that {risk level(π′, LOW) ∧ achieves(π′, g)}.

Control: Carry out the sequence of plan edits in mp result-
ing in a new π′ such that risk level(π′,LOW) and π′ |= g
where g is the original goal of π.
The primary effort occurs in the Plan phase which we

speculate could be modeled as a search process such that
nodes are plans and their associated risk levels and edges
between nodes are anticipatory actions that are added to (or
possibly removed from) the plan. The search process would
terminate when a goal node is reached that meets a low
risk level for the plan inside the node. This example through
the metacognitive phases serves as one possible realization
of AT in MIDCA. We leave more concrete implementation
details for future work.



Figure 4: The original plan (π) on the top with conditioning events and modified plan (π′) with two anticipatory actions (blue)
on the bottom

Evaluation Framework
Anticipatory thinking is concerned with identifying possi-
ble worlds that affect desirable outcomes and taking action
to mitigate them. This differs from typical future-oriented
analysis centered around prediction that is focused on iden-
tifying a single likely outcome. As such, to appropriately
evaluate anticipatory thinking we require alternative mea-
sures than those used in prediction.

Successful Anticipatory Thinking
Conceptually, anticipatory thinking’s goal is to have a high
recall rate. More specifically, it is to ensure that the events
that ultimately occur are accounted for in a set of possible fu-
tures. However, calculating recall does not capture the cost
of adding anticipatory actions or the cost of identifying con-

ditioning events. To address this limitation we develop an as-
sessment of anticipatory thinking that accounts for the cost
in relation to the potential benefits.

An additional challenge is to avoid coupling anticipated
outcomes to the actual outcomes. AT mitigates, rather than
predicts, failure. Therefore AT assessment should only as-
sess the potential payoff from mitigating, not whether any
individual future comes to pass.

In Figure 5, we represent anticipatory thinking as a
plan’s identified conditioning events in the green cir-
cle. Before anticipatory thinking, conditioning events
are unknown to our agent and reside in the blue area.
Successful anticipatory thinking is the set of identi-
fied conditioning events where anticipatory actions are
taken to mitigate their impact and reside in the yel-
low area. We assess successful anticipatory thinking as

AT assess(π) =
|CE(ANT )|
|CE|

×

1− |AANT(ANT)|
|ANT|∑

i

(
|CE(ANTi)|∑

j

impact(CEj)

)
 , (1)

where |CE| is the number of conditioning events identi-
fied and |CE(ANT )| are the mitigated conditioning events.
Their ratio represents how many conditioning events were
mitigated. A second ratio calculates the potential benefit of
mitigation. In the numerator, we calculate the cost of all an-
ticipatory actions with AANT(ANT) where we assume an
action cost to one. For each anticipatory action set, ANT,
we sum the impact of each mitigated conditioning event mit-
igated, impact(CEj).

Example
Applying equation 1 to our NBeacons conditioning events,
we have four wind conditioning events, |CE| = 4, and each
one is mitigated, |CE(ANT )| = 4. This ratio of 1.0 (4/4) is
best possible case in that every identified conditioning event
was mitigated. Conversely, plans where many identified con-
ditioning events that have few mitigations would have a ratio
closer to zero and may benefit from the use of robust search
algorithms. Our next ratio assesses the potential mitigation



Figure 5: Successful anticipatory thinking identifies conditioning events that can be mitigated with anticipatory actions. In our
NBeacons example, before the agent has done any anticipatory thinking, the wind conditioning events are unidentified and are
in the blue area. After the the goal vulnerability and failure anticipation steps (Sections , ), wind conditioning events are now
in the green area. Once anticipatory actions have been added to the plan (Section ), the wind conditioning events are mitigated
and in the yellow area.

benefit. Mitigating the wind event requires buying and pack-
ing the grappling hook, each with an action cost of one for a
total of two, |AA(ANTi)| = 2. The sole anticipatory action
sequence, i = 1, is expected to save the agent three dig ac-
tions for each of the four wind events, j = 4, resulting in a
potential mitigation of twelve actions, and a resulting miti-
gation ratio of 0.83 (1−0.17). Again, plans with not so favor-
able benefits from mitigations would have a lower expected
payoff from their actions and would have a ratio closer to
zero. Together these two ratios result in an AT assess(π′) of
0.83 (1.0×−0.83), this calculation is reflected in Equation 2.

AT assess(π′) =
4

4
×

1− 2
1∑
i

(3 + 3 + 3 + 3)

 , (2)

Conclusion and Future Work
Anticipatory thinking is a complex cognitive process for as-
sessing and managing risk in many contexts. It allows hu-
mans to identify potential future issues and proactively take
actions in the present that will manage their risks. We have
defined how an artificial agent may perform anticipatory
thinking at a goal reasoning level, so they may receive the
same benefits and enable further autonomous capability.

Our approach made three contributions. First we defined
anticipatory thinking in the MIDCA cognitive architecture

as a goal reasoning process at the metacognitive layer.
Specifically, Section highlights the role of AT in each phase
of the metacognitive layer of MIDCA shown in Figure 2.
Second, we operationalized the anticipatory thinking con-
cept as a three step process for managing risk in plans. Goal
vulnerabilities, failure anticipations and failure mitigation
identify weakness of a plan, their potential failure sources
(conditioning events), and failure mitigations (anticipatory
actions) to reduce the impact of the failure sources. Finally,
we proposed a numeric assessment for successful anticipa-
tory thinking. Key to the assessment are a ratio of identified
conditioning events to mitigated ones and an expected cost-
benefit ratio for the anticipatory actions.

We expect two immediate areas of future work. First, we
are planning to integrate our anticipatory thinking defini-
tions into an existing MIDCA implementation. From there,
we will be able to perform experiments on existing domains.
A second area is to develop more methodologies for each
of the three anticipatory thinking steps. Expanding the fail-
ure sources beyond the failure inducing step (e.g. an ac-
tion sequence) to identify the most parsimonious mitigation
and extracting some benefit from unmitigated conditioning
events are promising avenues of investigation.
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