
Performance Evaluation of Transaction Handling Policies on

Real-Time DBMS Prototype

© Alexander Zharkov

Penza State University

zharkov@sura.ru

Abstract

We have implemented Soft Real-Time DBMS

prototype called ZDBMS. Using this prototype

we have investigated performance for

commonly used policies EDF, LSF and for

new transaction handling policy SPF oriented

for using in cases when transactions have

different static priorities. The results represent

these policies performance for equal sets of

experiments.

1 Preface

At present more and more industrial applications

interacts in real time. Some of them are manipulating

with large amounts of information. So they need in real-

time databases and appropriate transaction handling.

There is a wide area of industrial applications

concerned with process control and SCADA systems

which need in specialized real-time database servers.

These systems have some distinctive features such as:

- lifecycle is divided into two parts — design-time

and work time;

- database clients have limited subset of SQL query

templates, and these templates are constant in work-

time part;

- sensor and system transactions have different static

priorities which reflects subsequent transaction

semantics;

- user transactions usually takes much longer time

then sensor and system ones;

These features exert influence on transaction

handling of Real-Time Database Management System

(RT DBMS) used with SCADA system. Traditional

works on RT DBMS scheduling policies considers

transaction and data consistency taking into account

only transaction deadlines and data deadlines. We

propose new transaction handling policy which takes

into account transaction flow irregularity represented by

different static transactions priorities.

Another problem is that some critical (high-priority)

sensor or system transactions fails due-to long user

query transactions are executed on database server. We

decided to use the mechanism of precompiled

materialized views for remote database clients.

Although influence of materialized views on system

performance is not investigated in this paper

materialized views management subsystem is the part of

client system architecture.

In this paper we describe Soft Real-Time DBMS

prototype architecture which implements model for

investigating transaction handling policies. In

performance evaluation distributed system is used to

minimize influence clients (transaction generators) on

database server performance.

Related Works

There are a lot of works concerned with transaction

handling policies so we will mention only papers which

results have influenced on this work. Common

transaction handling aspects in Real-Time DBMS were

considered in [1, 2, 4]. Issues with Timing constraints

were described in [3]. Works [5] and [6] are concerns

with practical implementation of real-time transaction

handling. Real-Time DBMS peculiarity is that research

in this area tightly correlated with investigations in area

of temporal and active database management systems.

Survey on active databases represented in [7] while

temporal DBMS is fully described in [8]. During

developing query subsystem we investigated commonly

used query optimization techniques (represented in [9]).

Modern line of investigations in multi-query

optimizations which used in materialized views support

subsystem represented in [10].

2 Supported transaction model

Supported transaction model is based on composite

transactions which can be divided into subset of micro-

transactions (atomic transactions such as add row,

modify row, etc.). If atomic transaction fails all

composite transaction is being revoked.

Transaction taxonomy represented in Figure 1. It

describes transactions RT transactions which can appear

in typical SCADA system and respectively in

appropriate Real-Time DBMS. ♣ Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, Moscow, Russia, 2007

Figure 1. RT DBMS Transactions taxonomy

Formally each atomic transaction can be represented

as follows:

endexecrviamicro ttttmpdxw ,,,,,,,= , (1)

where x — db object which corresponds to given

transaction;

d — data associated with atomic transaction;

p — static transaction priority;

m — atomic transaction type, Mm ∈ , M={Add,

GroupAdd, Insert, GroupInsert, Modify, GroupModify,

ScanModify, Delete, GroupDelete, ScanDelete,

ScanSelect, ScanSelectID, ScanIndex, ScanSort,

NestedLoopsJoin, NestedLoopsIndexJoin, HashJoin}

— set of possible atomic transaction types;

at — timestamp represents arrival time;

rvit — relative validity interval — time interval

when data associated with transaction keeps its validity;

exect — timestamp represents execution beginning;

endt — timestamp represents transaction end time

(failure or success);

3 Real-Time DBMS prototype architecture

Implemented experiment system contains two types of

RT DBMS prototype applications:

- dedicated server — RT DBMS server which

handles clients requests

- transaction generator — this application emulates

clients activity and combines pure transaction generator

with RT DBMS server to handle queries to materialized

views (materialized views influence is not evaluated in

this paper).

Both application types are based on common system

architecture represented in illustration below (Figure 2).

Main components are: Network Manager, Transaction

Decomposer, Query Manager, Priority Manager,

Transaction Scheduler, Transaction Pool and DB-

objects Manager

Network Manager

Network Manager handles all communication between

current server and over applications. Communication is

based on own protocol, which supports control packets

and transaction packets. This protocol is datagram

protocol based upon UDP protocol. Network Manager

stores its own settings (clients/servers map, datagram

resend policy etc) in XML configuration file which can

be loaded from the disk or sent throw the LAN by using

special control packet.

Transaction Decomposer

Transaction decomposer receives waiting transaction

from the Network Manager queue, decomposes

transaction into atomic transactions and passes micro-

transactions subset either to Query Manager (for user

queries) or to Transaction Scheduler queue.

Figure 2. Real-Time DBMS prototype architecture

Query Manager

Query manager handles composite correlated

transactions which represents compiled SQL queries.

The main purpose of query manager is to reconstruct

logical query plan represented as DAG (Directed

Acyclic Graph) and to transform it to appropriate

physical DAG based on db-objects or materialized

views.

Priority Manager

Priority Manager is a class which implements all

necessary methods for building dynamic transaction

priority. By changing special tuning parameters it can

handle priorities using one of scheduling policies.

Transaction Scheduler

Transaction scheduler is component which handles all

atomic transactions sets and assigns them into

unoccupied threads from transaction thread pool.

Transaction Scheduler has special thread used for

synchronization — all scheduling actions are performed

within this thread to avoid resource management

deadlocks.

All atomic transaction sets are waiting for their

assignment in queue. In each scheduling step

Transaction Scheduler checks this queue for failed

transactions to return failed transaction back to the

client.

When assigning transaction to the thread

Transaction scheduler uses priority returned by Priority

Manager in compliance with current transaction

handling policy.

Transaction Pool

Transaction Pool is a set of threads capable of

transaction executing. When transaction is assigned to

the subsequent thread this thread locks object need for

the first atomic transaction in the set. For locking Db

object two-phase locking method used. First Lock is

made by synchronization thread of Transaction

Scheduler and second phase is performed by transaction

executing thread. In execution step transaction is

checked for data consistency and is aborted if deadline

or data-deadline achieved. So all the transaction

scheduling policies has data consistency check, but –

DC suffix is omitted.

DB-objects Manager

Objects Manager is the component which represents In-

Memory database. It supports the following object

types: tables; indexes (B-tree index); hashes;

materialized views;

All objects represented in block-list (or paged)

structure. Access to each object can be locked on page-

level. Each object has a set of temporal attributes used

in priority handling. Let X is object in RT DBMS then

it has the following attributes:

LUT(X) — last update time of the X object — this

time is calculated automatically by system;

RVI(X) — relative validity interval — this value is

set to each object at the design time. It represents time

interval in which object keeps its validity;

)(XAVI — Absolute Validity Interval is the time

interval which can be calculated as follows:

[])()(),()(XRVIXLUTXLUTXAVI += (2)

4 Transaction handling policies

All transaction handling (scheduling) policies are based

on transaction model represented in (1), temporal object

properties LUT(X), RVI(X), AVI(X) and a subset of

dynamic transaction properties described below.

Dynamic transaction properties

)(TDL — transaction deadline is defined as

follows:

)),(min()(rvia tdRVItTDL += , (3)

)(TDDL —data deadline depends on temporal

object properties:

)()()()(xRVIxLUTxAVITDDL +== (4)

),,()(mdxfTEET = — estimated execution

time is the function which depends on transaction type,

transaction data and object statistics.

)(TETT — execution transaction time is defined

as follows::

exectnowTETT −= ())(, (5)

where ()now — special temporal function which

returns current system time.

)(TSF — slack factor is a parameter which takes

into account estimated amount of time to transaction

deadline. Slack factor is defined as follows:

())(())()(TEETnowTDLTSF +−= . (6)

)(TPR — proposed function which combines

traditional priority handling policies (EDF, EDDF,

LSF). We define this function as :

() ()
1)(

1)(
−

+−×=
TSF

TPRTPR EDF

µ
µ , (7)

where ()TPREDF (8) — priority handling function

which combines EDF and EDDF policies is defined as:

() ()())(1)(TDLTDDLTPREDF ×−+×= αα (8)

Parameters α and µ are tuning parameters and

used to handle which policy should be used at current

moment.

To include semantic priority to this policy

combining functions we introduce priority comparison

function cPR defined as:

() ()()
() () ()()21

2121

1

),(

TPRTPRSIGN

TpTpSIGNTTPRc

−×−

+−×=

β

β
, (9)

where []1,0∈β — tuning parameter which helps to

combine static priority)(Tp with dynamic priority

)(TPR defined in (7);

()




<

>=
=

0 ,0

0 vif1,

vif
vSIGN — sign function.

As result we have a set of functions which can be

used to combine different transaction handling policies

at the same time by using tuning parameters µβα ,, .

Transaction handling policies supported by RT

DBMS prototype

EDF — Earliest Deadline First — this scheduling

policy is historically first. It takes into account only

transaction deadlines. Tuning parameters for it

according to (7-9) are 0,5.0,0 =<= µβα .

EDDF — Earliest Data Deadline First — transactions

with earliest data deadline served first. This strategy

does not takes into account transaction deadline. Tuning

parameters for it are 0,5.0,1 =<= µβα .

Hybrid — Hybrid approach — takes into account both

transaction and data deadline. Here tuning parameter

α is defined as:









>

≤
=

)()(,1

)()(,
)(

)(

TEETTETT

TEETTETT
TEET

TETT

α (10).

Other tuning parameters are 0,5.0 =< µβ .

HH — Half-Half approach — another way to

compromise between transaction and data deadline.

Here α is defined as:













>

≤

=

5.0
)(

)(
,1

5.0
)(

)(
,

)(

)(

TEET

TETT

TEET

TETT

TEET

TETT

α (11)

LSF — Least Slack First — highest priority is assigned

to transactions with least positive slack factor. Tuning

parameters are 1,5.0 =< µβ , parameter α does not

influence on transation priority for this policy.

EDF-DC and LSF-DC — policies are similar to EDF

and LSF except in each execution step they have data

consistency check (fails if data deadline detected).

SPF — Static Priority First — newly proposed strategy

which takes into account transaction semantics through

its static priority. In this strategy static priority is more

valuable then dynamic temporal priorities. Tuning

parameters for this policy is 5.0>β , parameters α

and µ , depends on secondary temporal policy. This

policy could be used in systems which have a variety of

transaction types with different semantic priorities.

5 Performance evaluation results

Performance evaluation in this paper is devoted to

comparison of proposed SPF policy with EDF and LSF

policies. All policies are used with data consistency

check, so we omit –DC suffix.

Experiment system has two PC connected through

100 Mbit Ethernet. One PC was used for dedicated

server and another one for transaction generator.

Dedicated server had test database with 20 tables (each

table with 10000 rows, RVI(X)=100ms). Server had

transaction pool with 10 threads. Transaction generator

had 10 generation threads each generates 2 transactions

(with static priority 100 and 500) per time. Generation

period varies from 10 to 300 ms. Generated transactions

are uniformly distributed within generation period.

Relative validity interval for transaction data is

rvit =40ms. Each generated transaction contains 1000

atomic transactions of ModifyRow type.

For each generation period there was 10 test with

1000 transactions generated. After each test application

was reloaded. For each test average miss ratio was

calculated (miss ration = failed count / total count) and

average miss ratio for high-priority (500) and low-

priority (100) transactions. Tables 1 and 2 contain

performance evaluation results for each policy

represented with total miss ratio (Table 1) and miss

ratio for high-priority transactions (Table 2). Figure 3

contains appropriate diagram.

From the results we can see that total SPF miss ratio

is higher then total miss ratio for EDF and LSF, but

miss ratio for high-priority transactions is much better

in comparison with EDF and LSF. So SPF policy can

be used to minimize high-priority transactions miss-

ratio. To decrease low-priority transactions miss ratio in

distributed environment client-side materialized views

could be used. This approach was approved in SQL

manager implementation (with earlier SPF policy

version [12]) for SCADA KRUG-2000 DB Server [11].

Table 1. Total Miss Ratio

Period, ms SPF EDF LSF

10 0.961 0.906 0.913

20 0.853 0.823 0.936

30 0.806 0.746 0.7

40 0.608 0.69 0.61

50 0.575 0.619 0.499

60 0.369 0.576 0.409

70 0.337 0.543373 0.344

80 0.32 0.315 0.293

90 0.314 0.262 0.219

100 0.232 0.259 0.215

110 0.178 0.243 0.181

120 0.199 0.208 0.236

130 0.152 0.13 0.143

140 0.109 0.091 0.167

150 0.119 0.189 0.144

160 0.145 0.071 0.125

170 0.098 0.058 0.059

180 0.053 0.05 0.124

190 0.047 0.15 0.104

200 0.033 0.129 0.036

Table 2. Miss Ratio of High-Priority Transactions

Period, ms SPF-High EDF-High LSF-High

10 0.922 0.896 0.902

20 0.706 0.82 0.912

30 0.612 0.742 0.696

40 0.22 0.686 0.604

50 0.17 0.616 0.5

60 0 0.564 0.402

70 0 0.518072 0.336

80 0.006 0.296 0.282

90 0.01 0.248 0.208

100 0 0.254 0.21

110 0 0.222 0.16

120 0.002 0.202 0.214

130 0 0.11 0.116

140 0 0.084 0.146

150 0 0.17 0.11

160 0 0.068 0.114

170 0 0.054 0.052

180 0 0.046 0.092

190 0 0.14 0.06

200 0 0.102 0.034

Figure 3. Results diagram for SPF, EDF and LSF performance evaluation

6 Further work

As further work we consider more experiments with

scheduling policies with evaluating SPF policy

performance in dependence of β tuning parameters.

Another direction of further experiments is

investigating of materialized views using influence on

common system performance. This work is concerned

with tuning parameters and scheduling policy for client-

side server, which handles materialized views. And as

final part we propose the experiments on computational

system which simulates real SCADA system with

appropriate database structure and hosts configuration.

References

[1] Patrick E. O’Neil, K. Ramamritham, Calton Pu.

Towards Predictable Transaction Execution in

Real-Time Database Systems. Dept. of Computer

Sc., Univ. of Massachusetts, 1995

[2] Shuoqi Li, Ying Lin, Sang H. Son, John A.

Stankovic, Yuan Wei. Event Detection Services

Using Data Service Middleware in Distributed

Sensor Networks. Department of Computer

Science, University of Virginia. Kluwer Academic

Publishers. Printed in the Netherlands, 2003

[3] K. Ramamritham. Time for Real-Time Temporal

Databases. Dept. of Computer Sc., Univ. of

Massachusetts, 1995

[4] J. R. Haritsa, K. Ramamritham. Real-Time

Database Systems in the New Millennium. Dept. of

Computer Sc., Univ. of Massachusetts, 1999

[5] Chanjung Park, Seog Park, Sang H. Son.

Multiversion Locking Protocol with Freezing for

Secure Real-Time Database Systems. IEEE

transactions on knowledge and data engineering,

vol. 14, no. 5, september/october 2002

[6] John A Stankovic, Marco Spuri, Marco Di Natale,

Giorgio Buttazzoy. Implications of Classical

Scheduling Results For Real-Time Systems. June

23 1994

[7] Norman W. Paton, Oscar Di´az, Active Database

Systems. // ACM Computing Surveys, Vol. 31, No.

1, March 1999, p 63-103

[8] Christian S. Jensen. Temporal Database

Management. Dr. techn. Thesis, defended April

2000, http://www.cs.auc.dk/~csj/Thesis/

[9] Joseph M. Hellerstein. Optimization and Execution

Techniques for Queries with Expensive Methods.

Doctor of Philosophy dissertation. University of

Wisconsin-Madison, 1995

[10] Prasan Roy. Multy-Query Optimization and

Applications. Doctor Of Philosophy degree thesis,

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay, 2000

[11] A. V. Zharkov. Using SQL to Access Data of

SCADA KRUG-2000. In Proceedings of

international scientific and technical conference

"Automation and Management Problems in

Engineering Systems". Penza, 2004.

[12] B. D. Shashkov, A. V. Zharkov. Microtransaction

Handling in Real-Time Database Management

Systems. In Proceedings of Computer-Based

Conference "Contemporary information

technologies - 2005". Penza, 2005

[13] A. V. Zharkov. Distributed Real-Time Database

Management System Prototype for Transaction

Handling Methods Simulation. In Proceedings of

scientific and technical conference "Microsoft

Technologies in Programming Theory and

Practice". N. Novgorod, 2007

