XML Support in PostgreSQL *

(© Nikolay Samokhvalov

Moscow Institute of Physics and Technology
nikolay @samokhvalov.com
Ph.D. Advisor S. D. Kuznetsov

Abstract

This paper presents the roadmap for the devel-
opment of native XML type support in open
source relational database system PostgreSQL
[15]. Started five years ago as a “contrib” mod-
ule (“contrib/xml2”) by John Gray, implement-
ing a set of basic XML-oriented features, it is
now in the process of complete reworking and
integration into the DBMS core, in accordance
with SQL/XML standard [17, 4]. Initial XML
type support will be included into the next re-
lease of PostgreSQL v.8.3.

We describe the current accomplishments illus-
trated by usage examples, overview new XLA-
BEL contrib module developed to increase per-
formance of XPath expressions evaluation us-
ing GiST-based structures, and discuss other as-
pects of XML support such as full-text indexes.
Finally, we present a brief description of our
plans for futher development of PostgreSQL
XML type.

1 Introduction

Today XML becomes fullfledged, mature technology
based upon the group of specifications including XML

1T1TTI111T XDath 20 I121T Y Ouiore 10 1121 Y¥Dath 20
1.1 [11], Ardul .U [14], A\ully 1.U [1J], Ardul z.vu

and XQuery 1.0 Data Model [14]. It is a recognized stan-
dard for information representation and exchange on the
Internet. On the other hand, relational database man-
agement systems (RDBMS) remain to be mainstream
technology to store, process and work with data. Na-
tive XML database systems are rapidly developed, but it
does not eliminate the needs in capabilities for working
with XML data in relational databases. Since relational
database systems are widely used it appears attractive to
extend them with XML storing and manipulation facili-
ties.

What are the reasons for keeping XML data in
databases? In some cases it is necessary to store orig-
inal XML documents without any changes of the for-
mat. Typical examples are legal documents, financial re-
ports, and book sources in DocBook XML format. In
other cases the data structures are very sophisticated and

* This work is partially supported by Google Inc. (Google Sum-
mer of Code 20006).

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Moscow, Russia, 2007

may change frequently, making too expensive to main-
tain database schema if only relational data model is used
(good example for such data sets is metadata in astro-
nomical heterogeneous data archives [9]).

In this paper we present an overview of the XML sup-
port in the upcoming version (8.3) of the open source
RDBMS PostgreSQL [15] and describe some key imple-
mentation concepts like using Generalized Search Tree
(GiST [5]) to increase the performance of queries to
XML data. Also we provide usage examples of dealing
with the new XML data type and describe the roadmap
of the XML support in PostgreSQL.

The rest of this paper is organized as follows. Af-
ter pointing to related work in section 2, we provide an
overview of new capabilities for dealing with XML data
in PostgreSQL version 8.3 and then describe which parts
of the system have been changed to provide XML sup-
port, in section 3. In section 4 we present several usage
examples of dealing with XML and relational data by
means of XPath functions and standard SQL/XML rou-
tines. In section 5 we discuss performance issues and de-
scribe different types of XML indexes. Then we briefly
overview current and future work in section 6 and, fi-
nally, conclude with a summary in section 7.

2 Related Work

Nowadays every major commercial database system pro-
vides more or less powerful XML support, allowing to
store, manipulate, search and retrieve XML data. There
are three basic approaches to implement such support.
The first, LOB-based, usually allows fast insert and re-
trieval of entire XML documents but often demonstrates
poor performance in tasks of searching and manipula-
tion with fragments of documents. These problems can
be partially solved by indexes of different types (includ-
ing additional structures, redundantly representing en-
tire documents). Nevertheless, this approach is a priori
limited with characteristic features of relational physical
storage.

The second approach is shredding XML to relational
tables. Though it needs additional overhead during inser-
tion time, this method promises high performance since
queries can be transformed to plain SQL over relational
data. However, high performance can be achieved only
under certain circumstances. For example, one of draw-
backs of the method is the fact that more complex XML
schema is, more tables must be created in correspond-
ing relational schema. High number of tables leads to at
least two problems. First, even simple queries to XML

data might require very complex and expensive SQL
queries to the corresponding relational data (in other
words, these queries might involve a lot of joins to re-
construct original XML data; therefore, it might turn out
so that simple retrieval of entire document is very expen-
sive). Second, after relational schema is built and the
data is inserted it might be unfeasible to introduce even
simple changes to XML schema.

The third approach is the most promising one, but it
needs affecting almost all the subsystems of DBMS so its
implementation becomes very difficult. This approach is
known as “native XML storage”: XML data is stored in a
special format (optimized for operations on trees) and the
database manages both relational and XML native stor-
age in an integrated manner. This allows fast processing
of structural queries; XML value indexes and full text in-
dexes help to increase performance of queries with value
predicates. XML support in the new IBM’s DB2 Univer-
sal Database [7] implements this approach.

Microsoft SQL Server 2005 stores XML data as byte
sequences in BLOB columns. So called primary index
can be defined to avoid parsing at the query time. It is
based on the prefix numbering scheme known as ORD-
PATH [8]. In addition, secondary indexes of different
types can be defined to increase query performance.

Nowadays open source relational database systems
are lacking powerful XML support. For example,
MySQL 5.1 has only a couple of simple functions,
ExtractValue() and UpdateXML(), dealing with VAR-
CHAR values. Weakness of open source software in this
area could be explained by the fact that implementation
of XML support belongs to the class of integration is-
sues, where commercial development companies seem
to be stronger. However, needs in capabilities of dealing
with XML data in existing open source database systems
are obvious. This motivates our work on implementation
of the XML type support in one of the most popular and
most advanced open source RDBMS, PostgreSQL [15].
Our approach to index XML data described in section 5
is similar to ORDPATHs in general, but uses more ef-
ficient numbering scheme to define special GiST-based
data type.

Finally, Oracle 10g, Microsoft SQL Server 2005 and
DB2 Universal Database provide advanced capabilities
to deal with XML data. Some of these features (e.g., full
text index for XML data, XML to the relational mapping
with annotated schemes) are subject to our future work
as described in section 6.

3 The Development of XML Support for
PostgreSQL

Since 2001, PostgreSQL provides a set of basic XPath
and XSLT functions for VARCHAR data type via contrib
module “xml2” by John Gray. With release of the new
version of the SQL standard (SQL/XML [10, 3]) it be-
came clear that PostgreSQL lacks of support of a special
data type to deal with XML data, XML type. On Spring
2006 work on the implementation of native XML type
was started. First task was to create XML type at the log-
ical level, taking VARCHAR/TEXT type as a basis, and
then to integrate the reworked XPath and XSLT functions
with that data type. One of the major requirements to the

new data type was conformance to the SQL/XML stan-
dard. This allows to develop unified XML type imple-
mentation (and simplifies migrations from and to other
database systems) and, moreover, helps to achieve high
level of integration of XML and relational types to pro-
vide ability to work with both types of data in an inte-
grated manner.

Before describing some aspects of the XML type im-
plementation in PostgreSQL we briefly discuss a set of
database features representing the concept of what is
called “XML support”.

3.1 What Is XML Support in RDBMS?

XML does not conform to the relational model. To en-
able operations on XML documents, database system has
to be extended with special abilities. Usually, needs in
XML support appear in the processes of integration of
several systems, e.g. during development of B2B rela-
tionships between two or more companies. Therefore,
the primary goal for XML support is implementation of
data export and import facilities.

XML type defined in the new SQL/XML standard
[10] is considered as integrated to the system of rela-
tional types. The standard defines the concepts of data
models integration, where XQuery data model plays key
role. Additionally, so called SQL/XML functions pro-
vide facilities to publish existing relational data in XML
format. The same functions can be used for working with
XML data inside the relational database — one can use
them to create XML values from relational data.

Also, mapping from XML to relational tables might
be useful under certain circumstances. In some cases
there is no need in storing entire XML documents. In
others, mapping to relations might be required to make
already developed system work.

3.2 Integrating XML Support to PostgreSQL Sys-
tem

During our work, most SQL/XML publishing functions
have been implemented, that required to introduce mul-
tiple changes to PostgreSQL’s internals (such as parser
and executor) due to several reasons (e.g., static key-
word NAME in the XMLELEMENT function). The system
parts that have been changed to support XML type and
SQL/XML functions are marked with the asterisk (“*’")
mark in Figure 1. PostgreSQL internals are described in
[6] and [16].

XML type based on VARCHAR was defined. The
value being inserted is parsed with the XML parser and
checked for well-formedness. PostgreSQL XML type
allows not only entire XML documents but also frag-
ments of them, providing subset of possible values de-
fined in the XQuery Data Model (XDM) [14]. Special
technique for variable length values (known as TOAST
— The Oversized-Attribute Storage Technique [16]) pro-
vides efficient storage method for XML data due to its
flexibility and high compression rate. The maximum size
of the XML value is 1 GB.

Besides SQL/XML publishing functions, Post-
greSQL’s XML manipulation capabilities include XPath
expression evaluation and XSLT support. Several exam-
ples demonstrating how to manipulate XML values are

L ¥

Traffic Cop
Rewrite &
Generate Paths
Choose Path &
Generate Plan

L J

! ! !
(utiities®)] (catalog *) : (s)
[pocess] [NodesIListzi

Figure 1: PostgreSQL internals. The system parts that
have been changed to support XML are marked with the
asterisk mark.

Utility
Commands

*

provided in the following section.

4 Working with XML Type

Being a part of SQL:200x standard, SQL/XML paper
[10] provides comprehensive description of the XML
type integrated into relational type system. PostgreSQL’s
XML support has been developed in accordance with the
statements from the standard.

4.1 SQL/XML

PostgreSQL 8.3 supports standard SQL/XML rou-
tines to work with date of XML type (XMLPARSE,
XMLSERIALIZE) as long as publishing functions
(XMLELEMENT with XMLATTRIBUTES, XMLFOREST,
XMLAGG, XMLCONCAT, XMLCOMMENT, XMLPI, XMLROOT).
SQL/XML publishing functions transform relational
data into XML format, producing values of XML type.
Then, these values can be published (one of examples
is simple creation of RSS channel) or used as other
values of XML type (e.g., be stored in a table with XML
column). This integration is possible because XML type
in PostgreSQL partially implements XQuery data model
[13].

The following example demonstrates how an RSS
channel representing PostgreSQL database activity can
be easily created, just with one SELECT statement:

SELECT
XMLROOT(
XMLCONCAT(
XMLCOMMENT (’Database activity’),
XMLELEMENT (
NAME "rss",
XMLATTRIBUTES (
’2.0” AS "version",
*http://purl.org/dc/elements/1.1/’
AS "xmlns:dc"
)’
XMLELEMENT (
NAME "channel",
XMLFOREST(
’Sample Database Activity’
AS "title",
’Generated by SQL/XML funcs’
AS "description",
’http://example.com’
AS "link"
),
XMLELEMENT (
NAME "item",
XMLAGG (
XMLFOREST(
usename || ’ at ’ || datname ||
> (procpid:’ || procpid || ?)’
AS "title",
’http://example.com’
AS "link",
query_start
AS "pubDate",
current_query
AS "description"

),
VERSION ’1.0°
)
FROM
pg_stat_activity
GROUP BY
procpid;

4.2 XPath

Following examples are based upon this simple table:

xmltest=# CREATE TABLE tablei(
id INTEGER PRIMARY KEY,
created TIMESTAMP NOT NULL
DEFAULT CURRENT_TIMESTAMP,
xdata XML
);
CREATE TABLE

xmltest=# INSERT INTO
tablel(id, xdata)
VALUES (
1,
’<dept

xmlns:smpl="http://example.com"
smpl:did="DPTO11-IT">
<name>IT</name>
<persons>
<person smpl:pid="111">
<name>John Smith</name>
<age>24</age>
</person>
<person smpl:pid="112">
<name>Michael Black</name>
<age>28</age>
</person>
</persons>
</dept>’
)
INSERT O 1

PostgreSQL 8.3 provides xpath_array function,
which allows XPath expressions evaluation with names-
paces bindings. The type of returned data is XML array
(xm1[1). Here is a primitive example:

xmltest=#

SELECT xpath_array(
’//person/name/text()’,
xdata
)

FROM tablel;

xpath_array
{"John Smith","Michael Black"}
(1 row)

The same function is extended with capabilities to de-
fine namespace mappings for XPath expression:

xmltest=#

SELECT xpath_array(
’//person/@smpl:pid’,
xdata,

ARRAY [ARRAY[’smpl’],
ARRAY [’http://example.com’]]

)

FROM tablel;
xpath_array
{111,112}
(1 row)

5 XML Type and Performance

Since PostgreSQL stores XML in its text representa-
tion, selecting entire documents is extremely fast, while
search and work with document parts are not. To increase
the performance we introduce several types of indexes
and additional structures.

First, the most simple type of indexes is functional B-
tree index defined over XPath functions:

CREATE INDEX i_tablel_xdata
ON tablel
USING btree(
xpath_array(xdata, ’//person/@name’)

)J

It allows to avoid XML parsing and XPath expression
evaluation at query time. This is the best choice for cases
when an application produces large amount of similar
queries with xpath_array function call, where XPath
expression itself is static.

5.1 XLABEL: Extending XML Storage With GiST

The Generalized Search Tree (GiST) [5] is an extensible
data structure, which allows to develop indexes over any
kind of data, supporting any lookup over that data.

The GiST is a balanced tree structure, containing
{key, pointer} pairs, where keys are members of a
user-defined class. The rules for tree balancing are de-
fined by the developer, who is responsible for the type
creation. There are several structures implemented with
GiST support: B-tree, R-tree (for indexing spatial data),
RD-tree (indexes for sets of items; used, for example, in
the PostgreSQL full text engine), etc.

To increase the performance of XPath expressions
evaluation we have developed special module, XLLABEL.
The general concept is similar to ORDPATHs [8] but we
use more efficient prefix numbering scheme, SLS [1],
which serves as a basis for GiST-based XLLABEL data
type. Being modifications-friendly (there is no need in
key recalculation for any document node that has not
been affected by a partial document modification), this
scheme provides more compact way to store keys for
nodes of the XML document.

The basic idea behind the XLABEL module is as fol-
lows. LOB-based XML type has great performance on
tasks where retrieval of entire documents is needed. But
evaluation of arbitrary XPath query needs XML process-
ing at query time, dramatically decreasing the perfor-
mance. To allow fast XPath expression evaluation, the
XLABEL module extends the XML storage with addi-
tional tables, known as xnames and xdata. The first
one is the database-wide table where XML element and
attribute names for all XML values in the database are
stored. It allows to enumerate all element names to save
space. A table of the second type is created for every
XML column, which is registered in XLABEL module
(there might be many such tables in the database).

Table 1 and 2 demonstrate examples of, respectively,
xnames table and xdata table for tablel table defined
in section 4.2. For simplicity reasons namespaces infor-
mation is not shown. Also, numbering scheme keys rep-
resented in the table corresponds to the simplest prefix
scheme. [1] provides comprehensive description of SLS
numbering scheme, which is essentially the next step in
development of prefix schemes.

Table 1: xnames

xname_id | xname_name
1 person

2 dept

3 name

4 did

5 persons

Table 2: tablel _xdata

tid | xlabel node_type | xname_id | value

1 a 1 (elem.) 2 NULL

1 a.b 2 (attr.) 4 DPTO11-IT
1 a.c 1 (elem.) 3 NULL

1 a.c.a NULL NULL 1T

1 a.d.a.b 1 (elem.) 3 NULL

1 a.d.a.b.a | NULL NULL John Smith

Using shredding transformation the XLABEL mod-
ule fills the xdata table with rows each representing one
node in the original XML document. Hierarchical infor-
mation is encoded by means of the numbering scheme.
Then, GiST index is created over the column of xlabel
type. Additional indexes (including composite indexes)
might be created to increase query performance.

An XPath expression is translated by the XLABEL
module to pure SQL query to the main table which con-
tains the XML type column and additional tables de-
scribed above. This SQL statement uses special GiST-
powered operators over xlabel column. There are var-
ious approaches for further performance increase, which
are beyond the scope of this paper.

5.2 XML Full-Text Indexes

Full-text search is a technique widely used in document
and content-centric XML applications. PostgreSQL ex-
isting full-text search engine, tsearch2 [2] (available as a
separate GiST-based module before version 8.3 and in-
tegrated to the core in 8.3), provides a powerful set of
capabilities such as advanced parsing techniques based
on ispell dictionaries, stemming methods, stopword lists,
synonym dictionaries and thesaurus support.

PostgreSQL full-text search engine can be easily
adopted to the needs of XML support. For example, us-
ing XPath expressions it is possible to point out, what
parts of documents must be indexed. Moreover, it is pos-
sible to define different weights to different parts of the
document and then use the weights in ordering (ranking)
of result set.

6 Future Work

XML support in relational DBMS is a huge task. There
are completely different directions of work on the sup-
port, including XQuery data model [14] and XML
Schema types support, performance improvements using
advanced index types and data structures, tools and appli-
cations for work with XML data in RDBMS, XML type
support in API of various programming languages (such
as Java, Perl, PHP) and procedural languages (such as
PL/Perl, PL/Python).
Our nearest plans include following items:

o XLABEL module enhancements;

e better integration of full-text engine with XML
type;

e support of XML values to relations decomposition
based on annotated schemas (some reasons to im-
plement this technique in the database with already
implemented XML type were given in section 3.1);

o XMLQUERY (XQuery integrated with SQL, per
SQL/XML standard) support.

One of prioritized direction is development of GiST-
based indexes (now as a part of XLABEL module) suit-
able for use in other database systems. It is possible,
because there exist several separate implementations of
GiST engine, and due to the fact that the code of Post-
greSQL and adjacent projects is shipped under liberal
BSD license.

7 Summary

XML support in open source relational database systems
only starts developing. PostgreSQL is a good platform
to develop complicated data structures and powerful so-
lutions, what makes it attractive to develop support of
work with XML data.

PostgreSQL version 8.3 was enhanced with integrated
XML type, what includes implementation of standard
SQL/XML functions and support of XPath expressions.
To allow efficient queries containing XPath expressions
we have developed XLABEL module which provides an
advanced method to work with XML data. This mod-
ule uses GiST-based structures to index the data in XML
documents and allows XPath expressions be transformed
to plain SQL with special operator over xlabel type.

Additionally, we presented several directions of our
work on XML support, including full-text indexes,
XQuery support and decomposition with annotated
schemas.

Aknowledgements

The author recognizes developers participated in XML
type support imlementation: P. Eisentraut, P. Stehule and
J. Gray & T. Dyson; and thanks I. Chilingarian, D. Mo-
rozov and I. Zolotukhin for valuable discussions on Post-
greSQL XML type support.

References

[1] N. A. Aznauryan, S. D. Kuznetsov, L. G. Novak,
and M. N. Grinev. SLS: A numbering scheme for
large XML documents. Program. Comput. Softw.,
32(1):8-18, 2006.

[2] O. Bartunov and T. Sigaev. Full-Text Search
in PostgreSQL. A Gentle Introduction.
http://mira.sai.msu.su/~megera/pgsql/ftsdoc/.

[3] A. Eisenberg and J. Melton. Advancements in
SQL/XML. SIGMOD Rec., 33(3):79-86, 2004.

[4] P. Eisentraut. XML Support in PostgreSQL.
Specifications and Development (Talk at
PostgreSQL Anniversary ~ Summit), 2006.
http://developer.postgresql.org/~petere/xml.pdf.

(5]

(6]

[71

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized Search Trees for Database Systems. In
VLDB, pages 562-573, Trondheim, Norway, 1995.

B. Momyjian. PostgreSQL In-
ternals Through Pictures, 2005.
momjian.us/main/writings/pgsql/internalpics.pdf.

M. Nicola and B. van der Linden. Native XML
Support in DB2 Universal Database. In VLDB,
pages 1164—1174, Trondheim, Norway, 2005.

P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller,
and N. Westbury. ORDPATHs: insert-friendly
XML node labels. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD international confer-
ence on Management of data, pages 903-908, New
York, NY, USA, 2004. ACM Press.

I. Zolotukhin, N. Samokhvalov, F. Bonnarel, and
I. Chilingarian. Comprehensive Metadata Query
Interface for Heterogeneous Data Archives Based
on Open Source PostgreSQL ORDBMS. In As-
tronomical Data Analysis Software & Systems XVI,
page P3.23, Tucson, Arizona, USA, 2006.

SQL:2006, 2006, Part 14: XML-Related Specifi-
cations (SQL/XML), ISO/IEC JTC 1/SC 32, CD
9075-14:200x(E). International Standard, ISO,
ANSI.

Extensible Markup Language (XML) 1.1.
W3C Recommendation REC-xml11-20060816,
2006. http://www.w3.0rg/TR/2006/REC-xml11-
20060816/.

XML Path Language (XPath) 2.0. W3C Rec-
ommendation REC-xpath20-20070123, 2007.
http://www.w3.0rg/TR/2007/REC-xpath20-
20070123/.

XQuery 1.0: An XML Query Language.
W3C Recommendation REC-xquery-20070123,
2007. http://www.w3.0rg/TR/2007/REC-xquery-
20070123/.

XQuery 1.0 and XPath 2.0 Data
Model (XDM). W3C Recommendation
REC-xpath-datamodel-20070123, 2007.
http://www.w3.0rg/TR/2007/REC-xpath-
datamodel-20070123/.

PostgreSQL Database Management System.
http://postgresql.org.

PostgreSQL Manuals. PostgreSQL 8.2 Documenta-
tion. http://postgresql.org/docs/8.2/static/.

XML Support in PostgreSQL (Sum-
mer of Code Project), 2006.
http://chernowiki.ru/Dev/Pgxmltype.

