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Abstract 
A problem of association rules discovery in a 
multivariate time series is considered in this 
paper. A method for finding interpretable 
association rules between frequent qualitative 
patterns is proposed. A pattern is defined as a 
sequence of mixed states. The multivariate 
time series is transformed into a set of labeled 
intervals and mined for frequently occurring 
patterns. Then these patterns are analyzed to 
find out which of them occur close to each 
other frequently. Some modifications and 
improvements of the method are proposed and 
discussed. 

1 Introduction 
Many classes of data that we deal with in our everyday 
life are temporal in their nature: medical information 
about patients and their diseases, goods selling data, 
financial data from stock markets, etc. In most cases 
they describe development of some variables or objects 
over time. All these data provide relatively small 
amount of knowledge by themselves, but much more 
information can be obtained from objects behavior 
analysis. Such analysis that aimed at extracting 
previously unknown rules from temporal data is called 
Temporal Data Mining or Knowledge Discovery. A 
comprehensive and detailed overview of temporal data 
mining techniques can be found, for example, in [3] and 
[12]. 

Discovered knowledge can be used both to improve 
understanding of underlying processes and for time 
series prediction given some observations in the past. In 
both cases it is important for all found regularities, 
patterns and rules to be understandable and interpretable 
by a domain expert. It seems that the best way for this is 
to create a model of time series behavior (e.g., ARMA 
or ARIMA models [4]), but in many cases these models 
are difficult to understand for a human. Furthermore, 
for many series, such as stock market data, it is 
impossible to develop a global model due to their 

chaotic nature. On the other hand, when someone thinks 
of the system behavior, he rather keeps in mind some 
dependencies between typical local development pieces 
or scenarios. When an expert inspects system behavior 
over time, usually he tries to find some relatively short 
and simple pieces of history that occur frequently 
enough and are easy to interpret. The next natural step 
is to find out some cause-effect, coincidence or some 
other dependencies between frequent episodes. For 
example, he may find that “IF pressure falls and it is 
summer THEN rain will start in 24 hours with high 
confidence”. In this paper we propose a method for 
such association rules discovery from a multivariate 
temporal sequence. 

Automation of this process requires a definition of 
time series similarity. Frequent episodes obtained with 
different measures traditionally used for estimating 
similarity (e.g. Euclidian distance) provide a little 
information about system behavior that can be 
interpreted by a human ([1], [5]). In this paper we use a 
different way to discover frequent time series episodes 
(or patterns). Similar approaches are used, for example, 
in [10] and [14]. This kind of process is believed to be 
much closer to a process used by a human (see [10]). 
The main idea is to divide up the time series into a set 
of labeled intervals. Each interval is a time interval 
during which some condition is true in the original 
series (for example, “a series decreases” or “a patient 
has flu”). This can be done in different ways: intervals 
and their labels can be identified empirically or as a 
result of some automatic process, e.g. short 
subsequences clustering [6]. Once we have the initial 
set of intervals, we build all intersections of all subsets 
of intervals and add them to our set. Finally we know 
all segments of time series where one or more simple 
conditions hold simultaneously. 

This paper proposes the method of frequent patterns 
discovery from the described interval set. A pattern is 
defined as a sequence of state labels (simple or mixed). 
More formally it will be defined later. An algorithm of 
finding such pattern’s occurrences has been developed 
and is described in the paper. 

The paper is organized as follows: Section 2 
contains a brief overview of similar works; Section 3 
defines a notion of a pattern and describes frequent 
patterns discovery procedure; in Section 4 a process of 
association rules generation is briefly outlined; Section 
5 is devoted to discussions of the method and some 
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modifications are proposed there. Section 6 contains 
conclusions and outlines further work directions. 

2 Related Work 
There are a number of approaches dealing with symbol 
sequences. In [6] a set of symbols is obtained from a 
time series by clustering short subsequences extracted 
with a sliding window. Then the sequence is mined for 
associations between symbols that are close enough to 
each other. In [13] an a priori style algorithm is used to 
discover frequent Episodes in a symbol sequence. In [8] 
authors apply genetic programming for pattern mining 
and use special hardware for efficient sequence 
matching. 

The following approaches work with interval 
sequences produced from the time series, for example, 
using feature extraction. In [11] a sequence of intervals 
is searched for containment relations. In [7] a time 
series is divided into a set of labeled intervals. Then the 
interval set is mined for patterns described in terms of 
Allen’s [2] interval logic. Interesting patterns are 
restricted to A1 patterns, where operators can be 
appended only on the right hand side. Another method 
that uses Allen’s operators for pattern definition is 
proposed in [10]. A set of labeled intervals is obtained 
from a multivariate time series and mined for patterns 
with a sliding window to restrict pattern length. Then 
patterns are filtered by their interestingness using J-
measure [15]. 

The last mentioned method is close to the proposed 
approach, but its has two main disadvantages. The first 
is that pattern’s frequency strongly depends on the 
width of the sliding window. If an occurrence of a 
pattern is a little longer than the window, it’s not taken 
into account at all. The second disadvantage is that 
patterns in [10] are expressed in terms of interval logic, 
that makes them difficult to understand. 

The approach proposed in this paper solves both of 
these problems. It uses “windows” of all widths, that 
significantly smooths the difference between 
frequencies of patterns with instances of close lengths. 
Patterns are expressed in terms of simultaneous states – 
in the way that is closer to the human reasoning. The 
author believes that a description like “pressure 
increases and temperature decreases for 1 hour, and 
then (may be after some time) pressure slightly 
decreases” is more natural then “an interval where 
pressure increases is overlapped by an interval where 
temperature decreases, and the latter one is met by an 
interval where pressure slightly decreases”. Moreover, 
since the first statement involves only important 
sequence pieces, it matches more segments of the time 
series than the second one. 

Ther is another work ([14]) that uses an idea of 
simultaneous states, but in rather simplified form: it’s 
authors state that a labelled interval matches an “Event” 
(a set of simultaneously holding states) if a set of states 
holding on this interval exactly coincides with the 
Event. The method proposed in the current paper uses 
more flexible approach that allows to treat an interval as 

matching even if some conditions except ones defined 
by the pattern are held on it. 

3 Frequent Patterns Discovery 
The frequent patterns discovery procedure includes 
three general steps: 
1. Extract a basic set of simple intervals from the time 

series (i.e. intervals labeled with simple states); 
2. Convert an initial time series into a sequence of non-

overlapping intervals labeled with mixed states; 
3. Mine the sequence for frequent patterns. 
This section gives a definition of a pattern and describes 
all these stages in details. 

3.1 Basic Interval Set 

As was mentioned above, to be able to discover time 
series behavior qualitative patterns, we need to extract a 
set of labeled intervals from the series. Let’s denote as 
S0 a set of all simple states or conditions based on which 
we divide our series into intervals (for example, “a 
patient has a high temperature” or “humidity goes up”). 
States in S0 are not required to be mutually exclusive, so 
intervals of the resulting set may overlap. This fact 
allows us not to restrict ourselves with only single 
univariate time series, but freely work with multivariate 
time series or even with several ones as well. Thus we 
obtain a set I0 from our time series – a set of intervals 
labeled with simple states: 

I0 = {(s1, b1, e1), (s2, b2, e2), … , (sn, bn, en)} (1)

Here (si, bi, ei) denotes an interval labeled with a 
state si ∈ S0, beginning at bi and ending at ei. All these 
intervals are required to be maximal intervals. This 
means that in I0 there are no adjacent intervals or 
intervals with non-empty intersection labeled with the 
same state. I.e.: 

∀ i=1..n, j=1..n:  si = sj  =>  ej < bi ∨ ei < bj (2)

For the next step we need to order states of S0 in 
some way. A choice of ordering procedure is not very 
important. For example, states may be ordered 
lexicographically according to names of their labels or 
somehow else. This is needed only to enable ordering of 
all intervals of I0 according to the rules below: 
∀ (si, bi, ei), (sj, bj, ej) ∈ I0: 
• If bi < bj then (si, bi, ei) < (sj, bj, ej); 
• If bi > bj then (si, bi, ei) > (sj, bj, ej); 
• If bi = bj then: 

− If si < sj then (si, bi, ei) < (sj, bj, ej); 
− If si > s j then (si, bi, ei) > (sj, bj, ej); 
− Note that si = sj is impossible due to the 

maximality requirement. 
I0 – is a set of maximal simple intervals – that is 

ordered as described above, we call it a basic interval 
set. An example is shown on the Fig. 1. Here S0 = {A, 
B, C, D} and I0 = {(A, 1, 4), (B, 2, 3), (C, 2, 6), (D, 3, 
5)}. 
 



 
Fig. 1. An example of interval set 

3.2 Patterns 

As was mentioned above, the main goal of this method 
is to find association rules for patterns expressed in 
terms of simultaneous or mixed states. A mixed state is 
any subset of S0. An interval i is labeled with a mixed 
state s = {s1 , …, sn} if: 

i = i1 ∩ i2 ∩ … ∩  in:  ik ∈ I0 and ik is labeled with 
sk, k = 1..n 

(3)

In other words, if two or more simple intervals 
overlap, then their intersection is labeled with a mixed 
state, composed of all simple state labels of these 
intervals. Since I0 consists of maximal intervals, all 
simple states in a mixed state are different. 

For further description of patterns and matching 
procedure we need to define a sequence I that will be 
searched for pattern occurrences. Let D = {d1, d2, …, 
dm} be an ordered sequence of all different beginning 
and ending points of I0 intervals. I consists of all 
intervals (s, dk, dk+1), where s is a mixed state that 
includes all simple states holding during this time 
interval. For example, Fig. 2 (a) illustrates I for 
intervals shown on Fig. 1: 
D = {1, 2, 3, 4, 5, 6}; 
I = (({A}, 1, 2), ({A, B, C}, 2, 3), ({A, C, D}, 3, 4), ({C, 
D}, 4, 5), ({C}, 5, 6)) 

Note that I consists of maximal intervals due to 
maximality of all intervals of I0. 

A pattern is defined as a sequence of mixed states. 
For example, <{A}, {A, B}, {C}> denotes a pattern 
that consists of mixed states {A}, {A, B} and {C}, 
where A, B and C are simple states. 

Consider: 
− a pattern P = <ps1, …, psn>  
− a subsequence Q of I: Q = ((s1, b1, e1), (s2, b2, 

e2), … , (sm, bm, em)), where (sk, bk, ek) ∈ I and ek ≤ 
bk+1. 
An algorithm that matches P and Q is outlined 

below. After successful matching the sequence Q is 
broken into n groups of consecutive intervals so that k-
th group is associated with psk. Q matches P only if u > 
n, v > m and all intervals of Q are associated with states 
of P when this process finishes. 

u := 1; v := 1; 
while (u ≤ n and v ≤ m and psu ⊆ sv) 
  while ((v = 1 or ev-1 = bv 
         or (sv-1,bv-1,ev-1) is  
              associated with psu-1) 
         and v ≤ m and psu ⊆ sv 
         and (u = n or psu+1  sv 

                     or psu+1 ⊆ psu)) 
     associate (sv,bv,ev) with psu; 
     v := v + 1; 
  end while 
  u := u + 1; 
end while. 
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There are some facts that should be noted: 
1. If an interval (sk, bk, ek) belongs to a group associated 

with psu, then psu ⊆ sk. 
2. If ek < bk+1, then (sk, bk, ek) and (sk+1, bk+1, ek+!) 

cannot be associated with the same element of P. I. e. 
non-adjacent intervals cannot be associated with the 
same element of P. 

3. If psu+1 ⊆ psu, (sk-1, bk-1, ek-1) is associated with psu 
and psu+1 ⊆ sk, then (sk, bk, ek) will be associated with 
psu+1 only if psu  sk. This is due to semantics of 

such patterns. A pattern <{A, B}, {A}> means that at 
first conditions A and B must hold for some time 
simultaneously and then there must be some time 
when A is true and B is false. If an existence of one 
of these intervals is not important, then the pattern is 
to be reduced to <{A}> or <{A, B}>. 
Fig. 2 (b, c) shows how a sequence ({A}, {A, B, C}, 

{A, C, D}, {C, D}, {D}) matches patterns <{A}, {A, B}, 
{C, D}, {D}> and <{A}, {B}, {C}, {D}>. 
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Fig. 2. Pattern matching 

To find all subsequences of I that match P – 
occurrences of P – the following procedure is used: 
1. Let u = 1. 
2. Find and add to the resulting subsequence the earliest 

interval (sk(u), bk(u), ek(u)) so that psu ⊆ sk(u). 
3. If psu+1 ⊆ psu, then find the maximum d(u) so that 

(sk(u), bk(u), ek(u)), (sk(u)+1, bk(u)+1, ek(u)+1), …, (sk(u)+d(u), 
bk(u)+d(u), ek(u)+d(u)) are adjacent intervals and psu ⊆ 
sk(u), psu ⊆ sk(u)+1, …, psu ⊆ sk(u)+d(u). Add these 
intervals to the resulting subsequence. 

4. If psu+1  psu, then find the maximum d(u) so that 

(sk(u), bk(u), ek(u)), (sk(u)+1, bk(u)+1, ek(u)+1), …, (sk(u)+d(u), 
bk(u)+d(u), ek(u)+d(u)) are adjacent intervals and psu ⊆ 
sk(u), psu(u) ⊆ sk(u)+1, …, psu ⊆ sk(u)+d(u) and psu+1  

sk(u), psu+1  sk(u)+1, …, psu+1  sk(u)+d(u). Add these 

intervals to the resulting subsequence. 
5. Repeat steps 2 – 4 with the next u and all intervals 

beginning later than ek(u)+d(u) until u > n or the end of 
I is reached. If all elements of P are processed, then 
the resulting sequence matches P. 

6. Repeat steps 1 – 5 with all intervals beginning later 
than ek(1)+d(1) until the end of I is reached. 



3.3 Frequent Patterns Discovery 

In this section the procedure of frequent patterns 
discovery is described. 

Let a time series under consideration be of length L. 
Consider a time “window” of width w ≤ L that overlaps 
[0, L]. There are (L + w) different windows of width w.  
Consider a set of all different windows of length ≤ L. 
This set is of size 3L2/2. 

Consider a pattern P of cardinality n and a set of all 
intervals {[pb1, pe1], [pb2, pe2], …, [pbr, per]} so that 
for each 1 ≤ i ≤ r: 
− pbi < pbi+1 (if i < r); 
− there is a subsequence ((s1, b1, e1), (s2, b2, e2), …, (sm, 

bm, em)) of I matching P so that: 
• if n ≥ 2, then: 

− ex = pbi and by = pei (where (sx, bx, ex) is the last 
interval associated with ps1, and (sy, by, ey) is 
the first interval associated with psn during 
matching); 

− there are no shorter (i.e. with less |by – ex|) 
subsequences of I matching P within [pbi, pei]. 

• if n = 1, then pbi = b1 and pei = e1. 
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(4)

supp(P) – a support of P – is a set of all windows of 
length ≤ L that contain at least one of [pbi, pei] (if n ≥ 2) 
or overlap with at least one of [pbi, pei] (if n = 1), 1 ≤ i 
≤ r. 

This definition is similar to a support definition 
given in [10], but considers “sliding windows” of any 
length between 0 and L, that allows not to limit a length 
of a pattern occurrence. In common words it can be 
expressed like this: if we take any window of  length ≤ 
L, and consider it as a time series, and try to find 
occurrences of P in it, and succeed, then this window is 
an element of supp(P). 

|supp(P)| is a cardinality of supp(P). A pattern is 
called frequent if |supp(P)| ≥ suppmin. Assuming pb0 = -
L + pe1 and pe0 = -L + pb1, (4) is a formula for 
|supp(P)| evaluation. 

An important property of these definitions is that 
any subpattern of a frequent pattern is also frequent. 
This enables the following procedure of frequent pattern 
discovery: find all frequent patterns of length 1, then 
construct patterns of length k+1 by appending one 
mixed state to frequent patterns of length k and get a set 
Fk+1 – a set of all frequent patterns of length k+1. The 
process finishes when no new frequent patterns can be 
found. In more details the procedure is described below: 

Step 1: Scan I and find all patterns <ps> of length 1 
so that there exists an interval (s, b, e) ∈ I with  ps ⊆ s. 
Add all frequent patterns to F1. 

Step k+1: For each P=<ps1, …, psk> ∈ Fk find all 
patterns Q=<qs1, …, qsk> ∈ Fk so that qs1 = ps2, …, 
qsk-1 = psk, and generate patterns <ps1, …, psk, qsk> 
from P and each described Q. Test all generated 
patterns and add all frequent ones to Fk+1. 

4 Association Rules Discovery 
Once all frequent patterns are discovered, we can try to 
find association rules. Let’s denote a rule as A 6 B. But 
first of all we need to define which patterns will be 
considered as associated. This must be some condition 
(cond) describing how antecedent pattern (A) and 
succedent pattern (B) are disposed. For example, this 
can be “B starts during A and ends within 2 hours after 
A ends” or “B starts within 5 minutes after A ends”. 
This condition is to be chosen by a domain expert so 
that discovered rules would be easy to interpret. 

Consider all occurrences of A and B that satisfy 
condition cond. Let suppA6B(A) and suppA6B(B) be a 
supports of A and B respectively, that are built basing 
only on such occurrences. Support of A 6 B is defined 
in (5). 

supp(A 6 B) = suppA6B(A) ∩ suppA6B(B) (5)

The simplest way to generate association rules is to 
evaluate a confidence: 

supp(A)
B)supp(A

B)conf(A =  

for each pair of frequent patterns and select the rule 
only if conf(A 6 B) ≥ confmin. But this will result in a 
large set of relatively useless rules. For example, if 
occurrences of B cover almost all time series, then all 
rules with B as a succedent will be selected, but most of 
them will be of small interest. 
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[9] gives a survey of the most successful 
interestingness measures used in knowledge discovery. 
One of the most popular measures for association rules 
evaluation is a J-measure [15] (see (6)). It is a special 
case of Shannon’s mutual information and takes into 
account both rule frequency and rule “surprisingness”. 
If J-measure of a rule is less than some threshold value, 
then it is not interesting enough and should be excluded 
from consideration. 

In our context p(B) is a probability of pattern B 
occurring in randomly selected window of length ≤ L, 
and p(A 6 B) is a probability of the fact that B occurs 
in a randomly selected window of length ≤ L that 
contains an occurrence of A and cond is true for these 
occurrences. The probabilities are evaluated as: 
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5 Discussion and Evaluation 
There are a number of issues that should be discussed 
about the proposed method. One of them is a number of 
mixed states. In general case, having N simple states, 
we obtain 2N possible mixed states. But in practice 
some of them cannot take place simultaneously (or can 
hold only simultaneously) due to some reason. For 
example, consider 3 time series: pressure, temperature 
and humidity data, and 6 simple states for each of them: 
“increase”, “slow increase”, “fast increase”, “decrease”, 
“slow decrease”, “fast decrease”. There are 23*6 possible 
mixed states, but it is obvious that slowly increasing 
and fast increasing segments of the same time series 
cannot overlap, or decreasing and fast decreasing 
segments of the series always overlap, and so on. Thus 
the number of possible mixed states is reduced to 73 (or 
even 53 if any decreasing/increasing segment is either 
fast or slowly decreasing/increasing). Moreover, 
possibly not all of them have support exceeding suppmin, 
so they will be removed from consideration after the 
first step of frequent patterns discovery procedure. 

Another problem is very short mixed-state intervals 
appearing due to inaccurate initial time series division 
(especially if it was performed by a human). On Fig. 3 
(a) the bounds of intervals labeled with simple states A 
and B were defined roughly, and this resulted in a small 
interval labeled with a mixed state {A, B}. A simple 
solution is to ignore intervals shorter than some 
threshold ε when searching for pattern occurrences. For 
example, if l < ε, then a sequence from the Fig. 3 (a) 
does not match a pattern <{A}, {A, B}, {B}>. The 
same idea can be applied to situation when there is a 
small gap between intervals labeled with the same state 
(see Fig. 3 (b)). Such gaps may appear, for example, 
due to smoothing faults. In this case it may be ignored 
during patterns discovery and both intervals may be 
considered as one continuous interval.  

But what if the user wants to have patterns that 
exactly define which intervals must be adjacent and 
which may have a gap between them in a matching 
sequence? For example, he wants to extend pattern 
<{A}, {B}, {C}> with some information like “in a 
matching sequence {A}-interval must be met by {B}-
interval, but there may be a gap between {B}-interval 
and {C}-interval”. Such patterns can be enabled by 
introducing of a special symbol “gap” (,). A pattern 

described above can be expressed like <{A}, {B}, ,, 
{C}>. “Gap” is not a mixed state, so pattern cardinality 
does not change, but a space of all candidate patterns 
increases. 

 

Fig. 3. Too short intervals 
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Fig. 4. Dependency of frequent patterns number from 
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Fig. 5. Dependency of frequent patterns number from ε 

Fig. 4 and Fig. 5 present dependencies of discovered 
frequent patterns number from suppmin and ε 
respectively. Data were obtained by applying of a 
pattern discovery algorithm to a simulated interval set. 
To simulate it the following parameters were used: 
− number of variables: 3; 
− number of labels: 9; 
− random interval length from 1 to 100; 
− total series length: 30000. 

Fig. 4 shows that the number of patterns is inversely 
proportional to suppmin, and it seems that this number 
decreases close to linearly if ε grows (Fig. 5). 

6 Conclusion and Future Work 
This paper proposes a method and an algorithm for 
frequent patterns and rules discovery in labeled interval 
sequence. The interval sequence can be obtained, for 
example, from multivariate time series by dividing each 
variable’s behavior into labeled intervals. Since pattern 
is a sequence of mixed states, a domain expert can 
easily interpret all found frequent patterns and rules. 
Inaccuracy of series division and data smoothing 
defects can be compensated by filtering intervals with 
minimum interval length. The method was tested over 
simulated interval set and dependency of a frequent 
patterns number from minimum support and minimum 
interval length were investigated. l l 

(a) (b) 

B 

BABA A A

A 

The problem of the proposed method is a large 
number of generated frequent patterns and rules. A J-
measure can help to reduce it, but there still remains a 
problem of ranking patterns by their interpretability and 



“importance”. Also an effective algorithm for frequent 
patterns discovery needs to be developed. Although an 
initial interval set is converted to a simple sequence of 
mixed state intervals and a pattern is either a mixed 
states sequence, classical methods of finding 
subsequence in a sequence are not suitable for pattern 
matching, since this process is rather complicated. 

References 
[1] Agrawal, R., Lin, K.-L., Sawhney, H.S., Shim, K.: Fast 

Similarity Search in The Presence of Noise, Scaling and 
Translation in Time-Series Databases. In: Proc. of the 
21st Int. Conf. on Very Large Databases, Zurich, 
Switzerland (1995) 

[2] Allen, J.F.: Maintaining knowledge about temporal 
intervals. Communications of the ACM, 26(11) (1983) 
832 – 843 

[3] Antunes, C., Oliveira, A.: Temporal Data Mining: an 
Overview. In: KDD Workshop on Temporal Data 
Mining, San Francisco (2001) 1–13 

[4] Box, G.E.P., Jenkins, G.M.: Time Series Analysis: 
Forecasting and Control. San-Francisco, Holden-Day 
(1976) 

[5] Brendt, D.J., Clifford, J.: Finding Patterns in Time Series: 
A Dynamic Programming Approach. In: Advances in 
Knowledge Discovery And Data Mining, chapter 9. MIT 
Press (1996) 229 – 248 

[6] Das, G., Lin, K.-I., Mannila, H., Renganathan, G., Smyth, 
P.: Rule Discovery from Time Series. In: Proc. of the 4th 
Int. Conf. on Knowledge Discovery and Data Mining, 
AAAI Press (1998) 16 – 22 

[7] Fu, A.W.C., Kam, P.S.: Discovering Temporal Patterns 
for Interval-Based Events. In: Kambayashi, Y., Mohania, 
M.K., Tjoa, A.M., eds.: Second International Conference 
on Data Warehousing and Knowledge Discovery 
(DaWaK 2000). Volume 1874., London, UK, Springer 
(2000) 317 – 326 

[8] Hetland, M.L., Saetrom, P.: Temporal Rule Discovery 
Using Genetic Programming and Specialized Hardware. 
In: Proc. of 4th Int. Conf. on Recent Advances in Soft 
Computing (2002) 182 – 188 

[9] Hilderman, R.J., Hamilton, H.J.: Knowledge discovery 
and interestingness measures: A survey. Technical Report 
CS 99-04, Department of Computer Science, University 
of Regina (1999) 

[10] Höppner, F.: Discovery of Temporal Patterns – Learning 
Rules about the Qualitative Behavior of Time Series. In: 
Proc. of the 5th European Conference on Principles and 
Practice of Knowledge Discovery in Databases, Lecture 
Notes in Artificial Intelligence 2168, Springer (2001) 

[11] Hua, K.A., Maulik, B., Tran, D., Villafane, R.: Mining 
Interval Time Series. In: Data Warehousing and 
Knowledge Discovery. (1999) 318 – 330 

[12] Lin, W., Orgun, M.A., Williams, G.J.: An Overview of 
Temporal Data Mining. In: Proceedings of the 1st 
Australian Data Mining Workshop, Canberra, Australia 
(2002) 

[13] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of 
Frequent Episodes in Event Sequences. Data Mining and 
Knowledge Discovery 1 (1997) 259 – 289 

[14] Moerchen, F., Ultsch, A.: Mining Hierarchical Temporal 
Patterns in Multivariate Time Series. In: Proc. of the 27th 
German Conference on Artificial Intelligence (KI). Ulm, 
Germany (2004) 

[15] Smyth, P., Goodman, R. M. Rule Induction Using 
Information Theory. In: Knowledge Discovery in 
Databases, chapter 9. MIT Press (1991) 159 – 176 

http://datamining.csiro.au/Graham.Williams

