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Abstract

Modern machine learning systems can exhibit undesirable
and unpredictable behavior in response to out-of-distribution
inputs. Consequently, applying out-of-distribution detection
to address this problem is an active subfield of safe AI. Prob-
ability density estimation is one popular approach for out-
of-distribution detection of low-dimensional data. However,
for high dimensional data, recent work has reported that deep
generative models can assign higher likelihoods to out-of-
distribution data than to training data. We propose a new
method to detect out-of-distribution inputs using deep gen-
erative models with multimodal prior distributions. Our ex-
perimental results show that our models trained on Fashion-
MNIST successfully assign lower likelihoods to MNIST, and
successfully function as out-of-distribution detectors.

1 Introduction

The field of machine learning has experienced rapid
progress in various areas including computer vision and nat-
ural language processing. However, modern machine learn-
ing systems can return predictions with high confidence
even for out-of-distribution inputs (Goodfellow, Shlens, and
Szegedy 2015; Gal 2016). This is a serious problem in terms
of the safety of machine learning. As a real world example,
in 2016, an autonomous car collided with a tractor trailer on
a highway with no warning (Natural Highway Traffic Safety
Administration 2016). They reported that the situation was
outside the expected performance capabilities of the system.

To avoid this problem, out-of-distribution detection is an
important field of study within safe AI. For low-dimensional
data, many studies have been performed over the past few
decades. The review paper by Pimentel et al. (2014) cat-
egorized detection methods into five groups: probabilistic,
distance-based, reconstruction-based, domain-based, and
information-theoretic methods. However, it is known that
those methods cannot be applied to high dimensional cases
straightforwardly, so new detection methods for high di-
mensional data have been proposed recently (Theis, Van
Den Oord, and Bethge 2016; Hendrycks and Gimpel 2017;
Liang, Li, and Srikant 2018). In this work, we focus on prob-
abilistic approaches, which estimate the distribution of train-
ing data via a probabilistic model and are based on the intu-

ition that out-of-distribution inputs locate in low-density ar-
eas (Bishop 1994). For high dimensional data, recent work
(Choi, Jang, and Alemi 2019; Nalisnick et al. 2019a) has
reported that deep generative models cannot detect out-of-
distribution inputs via assigned likelihoods. Methods for
alleviating this problem have been proposed from vari-
ous perspectives (Hendrycks, Mazeika, and Dietterich 2019;
Choi, Jang, and Alemi 2019; Nalisnick et al. 2019b).

We propose the use of deep generative models with multi-
modal prior distributions to alleviate the out-of-distribution
problem. Although a typical choice of the prior is the stan-
dard normal distribution, various studies have proposed the
use of alternatives (Dilokthanakul et al. 2016; Chen et al.
2017; Tomczak and Welling 2017). Previous work on the
choice of a prior distribution for deep generative models
have criterion based on the representative ability, natural fit
to data sets, and the likelihood or reconstruction quality of
in-distribution inputs. To the best of our knowledge, this is
the first work focusing on the relationships between the prior
distribution and likelihood assigned to out-of-distribution
data. Here, we consider data sets which can be naturally
partitioned into clusters, so its underlying distribution can
be approximated as a multimodal distribution with compo-
nents located far away from each other. This assumption
is reasonable for many data sets found in the wild such as
Fashion-MNIST containing different types of images such
as T-shirts, shoes, and bags. If a unimodal prior distribution
is used to train generative models on such data sets, the mod-
els are forced to learn the mappings between unimodal and
multimodal distributions. We consider this inconsistency is
an important factor causing the assignment of high likeli-
hoods to out-of-distribution areas.

We evaluate our method on Fashion-MNIST, and show
that models with multimodal prior distributions assign lower
likelihoods to out-of-distribution inputs. In our experiments,
we use Gaussian mixture distributions that are not trainable,
and manually assign each data to a component of the prior
distribution based on the labels in the data set. While it is
difficult to apply this method to more complex data sets, our
observation motivates further work on the relationships be-
tween prior distributions and the out-of-distribution likeli-
hoods.
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2 Related Work

Our work is directly motivated by the recent observation that
deep generative models can assign higher likelihoods to out-
of-distribution inputs (Nalisnick et al. 2019a; Choi, Jang,
and Alemi 2019).

2.1 Out-of-Distribution Detection by Deep
Generative Models

Nalisnick et al. (2019a) reported that deep generative models
such as Variational Autoencoders (VAEs), flow-based mod-
els, and PixelCNN can assign higher likelihoods to out-of-
distribution inputs. Solutions have been proposed from var-
ious perspectives. Hendrycks et al. (2019) proposed “outlier
exposure”, a technique using outlier data during training to
lower the likelihoods assigned to out-of-distribution inputs.
Another line of study is to use alternative metrics. Choi et
al. (2019) proposed the use of the Watanabe-Akaike Infor-
mation Criterion (WAIC). Nalisnick et al. (2019b) proposed
the use of a hypothesis test to check whether an input re-
sides in the model’s typical set. Grathwohl et al. (2020) pro-
posed to use the l2 norm of the gradient of the log-likelihood
as a score. To our knowledge, no prior work has focused
on the relationship between prior distributions and out-of-
distribution likelihoods.

2.2 Prior distribution

The standard Gaussian distributions are typically used as
prior distributions for deep generative models such as VAEs
and flow-based models. However, various studies propose
different options. One line of study suggests more ex-
pressive prior distributions: multimodal distributions (John-
son et al. 2016; Dilokthanakul et al. 2016; Tomczak and
Welling 2017; Nalisnick and Smyth 2017), stochastic pro-
cesses (Nalisnick and Smyth 2017; Goyal et al. 2017; Casale
et al. 2018), and an autoregressive models (Chen et al. 2017;
van den Oord, Vinyals, and Kavukcuoglu 2017).

3 Proposed Method

Motivation If a data distribution is unimodal, intermediate
images of two in-distribution data should have high likeli-
hoods. However, this assumption is not reasonable for many
data sets including Fashion-MNIST that contains dissimi-
lar images such as T-shirts and bags whose intermediate im-
ages may not be in-distribution data. Therefore, we assume
that data distributions can be approximated by multimodal
distributions. Under the assumption that the data distribu-
tion is multimodal with components located far away from
each other, high likelihood areas of the prior and data dis-
tribution have differing topologies if the prior distribution
is unimodal. Therefore, some high likelihood areas in the
prior distribution will be mapped to out-of-distribution ar-
eas in the data distribution if we assume that deep gener-
ative models learn topology preserving mappings between
prior and data distributions. While the probability density of
latent variables in the prior distribution is not the only fac-
tor influencing the likelihoods assigned by the models, we
consider this inconsistency an important factor in the out-
of-distribution phenomenon.

Model We replace the prior distributions of deep genera-

tive models with mixture distributions
∑

K

i=1
pi/K that are

not trainable, and we assume that all components are uni-
formly weighted for simplicity. We manually assign each
input to a component of the prior distribution based on the
labels in the data set. During training, the likelihood for each
input is evaluated with a different unimodal prior distribu-
tion pi (different i for each input), which is the component
of the multimodal prior distribution assigned to each input.
The test likelihood is evaluated on a mixture prior distribu-

tion
∑

K

i=1
pi/K without using the label information used

during training.

Evaluation We evaluate the generative models as out-of-
distribution detectors by interpreting the log-likelihoods as-
signed to inputs as classifier scores. Here, we consider out-
of-distribution data as the negative class. We evaluate our
models with four different metrics: the false positive rate
(FPR) at 95% true positive rate (TPR), Detection Error at
95% TPR, the Area Under the Receiver Operating Charac-
teristic curve (AUROC), and the Area Under the Precision-
Recall curve (AUPR). The Detection Error is defined as
Pe = 0.5(1−TPR)+0.5FPR. Our evaluation assumes that
in-distribution and out-of-distribution inputs have an equal
probability of appearing in the test set.

4 Experiments

We assess deep generative models with multimodal prior
distributions as out-of-distribution detectors trained on
Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) and
evaluated on MNIST (LeCun et al. 1998) as the out-of-
distribution inputs.

4.1 Model Structure and Training Details

VAE Our implementation is based on the architecture de-
scribed in (Rosca, Lakshminarayanan, and Mohamed 2018;
Nalisnick et al. 2019a). The encoder is comprised of five
convolutional layers with 5 × 5 kernels. The output chan-
nels are [8, 16, 32, 64, 64], the strides are [2, 1, 2, 1, 2], and
the paddings are [1, 1, 1, 1, 1]. After the convolutional lay-
ers, two fully connected layers project into 50 dimensional
means and log-variances. The latent variables are projected
into 3,136 dimensions with a fully connected layer, and re-
shaped into 7 × 7 × 64. The decoder is comprised of five
convolutional layers. The first four layers use 5× 5 kernels,
and the last layer uses a 4 × 4 kernel. The output chan-
nels are [64, 32, 64, 256], the strides are [2, 2, 1, 1], and the
paddings are [2, 1, 1, 1]. We assume i.i.d. categorical dis-
tributions on pixels. We train for 1,000 epochs using the
Adam optimizer (Kingma and Lei Ba 2014) with parameters
β1 = 0.5, β2 = 0.9, and a constant learning rate of 1e−3.
We use 5,000 samples to approximate the test likelihood.

Glow Our implementation is based on the code hosted in
OpenAI’s open source repository1. We use 1 block of 32

1https://github.com/openai/glow



(a) VAE

(b) Glow

Figure 1: Histograms of log-likelihoods assigned by VAEs
and Glow trained on Fashion-MNIST (label 1 and 7). “uni”
denotes a standard Gaussian prior distribution, and “multi”
denotes a bimodal Gaussian Mixture prior distribution. For
Fashion-MNIST, we report the likelihoods evaluated on test
data. Models using multimodal prior distributions alleviate
the out-of-distribution problem.

affine coupling layers, squeezing the spatial dimension af-
ter the 16-th layer. To mitigate spatial dependencies on the
latent variables, we do not use the multi-scale architecture,
which splits the latent variables after squeezing (Dinh, Sohl-
Dickstein, and Bengio 2017). Additionally, we apply 1 × 1
convolution over width, height, and channel after the en-
coder, and the inverse operation before the decoder. We train
for 1,000 epochs using the Adam optimizer in accordance
with the OpenAI’s code. We use a learning rate of 1e−3,
which is linearly annealed from zero over the first 10 epochs.

4.2 Evaluation

Here, we evaluate the deep generative models trained only
on label 1 (Trouser) and 7 (Sneaker) of Fashion-MNIST.
We compare two types of prior distributions: a standard
Gaussian and a bimodal Gaussian Mixture distribution. The
means of the bimodal prior are [±75, 0, . . . , 0] for VAE, and
[±50, 0, . . . , 0] for Glow. The variances are diag([1, . . . , 1])
for all components. In the training phase, images with dif-
ferent labels are allocated to different components. Figure 1
shows that the models using multimodal prior distributions
successfully assign lower likelihood to MNIST, the out-of-
distribution data, while the models using unimodal prior dis-
tributions assign high likelihood to MNIST.

We evaluate the models as out-of-distribution detectors.
Figure 2 shows the ROC curve, AUROC, and AUPR of
the detectors. The models using multimodal prior distribu-
tions increase both AUROC and AUPR for VAE and Glow.
Figure 3 shows FPR at 95% TPR and Detection Error of
the detectors. Our models reduce both metrics significantly
on VAE and Glow. Improvements in all metrics evaluated

(a) ROC curve

(b) AUROC and AUPR

Figure 2: ROC curves, AUROC, and AUPR of the out-of-
distribution detectors using the log-likelihood assigned by
the models with unimodal and multimodal prior distribu-
tions. Higher values are better for AUROC and AUPR.

Figure 3: False positive rate (FPR) at 95% true positive rate
(TPR) and Detection Error Pe = 0.5(1− TPR) + 0.5FPR
at 95% TPR of the out-of-distribution detector using the log-
likelihood assigned by the models with unimodal and mul-
timodal prior distributions. Lower values are better for both
metrics.

demonstrate that models using multimodal prior distribu-
tions improve the performance as out-of-distribution detec-
tors.

5 Conclusion and Discussion

We propose a new method for out-of-distribution detection
using deep generative models with multimodal prior distri-
butions. Recent work (Nalisnick et al. 2019a; Choi, Jang,
and Alemi 2019) has shown that deep generative models can
assign higher likelihoods to out-of-distribution inputs than
to training data, and the reported results suggest that they
cannot be used as out-of-distribution detectors. We show



that our model lowers the out-of-distribution likelihoods,
and functions as an out-of-distribution detector on Fashion-
MNIST vs. MNIST. To the best of our knowledge, this is
the first work on the relationship between the choice of
a prior distribution and the likelihoods assigned to out-of-
distribution inputs.

However, it is difficult to apply our method to complex
data as it would require a large number of components, bet-
ter data allocation strategy, and more sophisticated prior dis-
tributions. Our observations motivate further work on latent
variable space and prior distribution design for deep genera-
tive models.
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