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Abstract

The landscape of AI safety is frequently explored differently
by contrasting specialised AI versus general AI (or AGI), by
analysing the short-term hazards of systems with limited ca-
pabilities against those more long-term risks posed by ‘su-
perintelligence’, and by conceptualising sophisticated ways
of bounding control an AI system has over its environment
and itself (impact, harm to humans, self-harm, containment,
etc.). In this position paper we reconsider these three aspects
of AI safety as quantitative factors –generality, capability and
control–, suggesting that by defining metrics for these dimen-
sions, AI risks can be characterised and analysed more pre-
cisely. As an example, we illustrate how to define these met-
rics and their values for some simple agents in a toy scenario
within a reinforcement learning setting.

Introduction

Despite the impressive advances in AI in recent years, AI
systems remain narrow. They typically solve or perform well
at one task, or one type of task. These systems lack general-
ity and perform poorly outside of their target domain. Gener-
ality is intrinsic to the notion of “intelligence” and Artificial
General Intelligence (AGI) in particular.

We clearly want AI (general or not) to be safe and ben-
eficial to humanity. It is not that narrow AI systems do
not pose risks, ranging from mistakes made by improperly
validated systems, through to the misuse of research and
technology, but AGI seems to pose unique safety issues.
Bostrom describes many scenarios in which a hypothetical
superintelligent AGI could present existential risk to human-
ity (Bostrom 2014) due to its enhanced capabilities over a
wide range of problem domains. The environmental con-
trol wielded by AGI systems could further increase safety
risks from the systems. The ability of a system to manipu-
late its environment could overcome previous system safety
guarantees as well as cause harm to other entities sharing
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the environment. Various strategies for controlling intelli-
gent systems have been proposed (Armstrong, Sandberg,
and Bostrom 2012), although none are entirely satisfactory.

However, there are several problems with this view of the
risk posed by very powerful systems. First, while Bostrom’s
Orthogonality Thesis (Bostrom 2012) posits that any goal or
value system is compatible with any level of intelligence,
it is unclear how this ‘level’ affects the hazards. It is as-
sumed that some risks are more likely as AI systems be-
come more intelligent, but the intelligence ‘level’ is never
fully characterised, beyond the notion of superhuman intelli-
gence. These omissions are not necessarily an oversight, but
may simply originate from major unsolved problems to char-
acterise the behaviour of intelligent systems in a richer, more
predictable way. Recent approaches, such as (Armstrong and
Levinstein 2017) and (Drexler 2019), and the overview by
(Amodei et al. 2016), introduce frameworks that go beyond
a monolithic view of intelligence, but do not aim at charac-
terising, and measuring, different dimensions of agent be-
haviour.

We believe many views of intelligence conflate different
levels of generality, capability and control, and disentan-
gling them can allow for a richer understanding, especially
as safety is concerned. For instance, can we have very capa-
ble but narrow systems? And very general systems with low
control over their environment?

In this position paper we analyse three separate factors
that are frequently integrated, but may affect risk differently.
We disentangle them using agent characteristic curves and
analyse how they relate to AI risk. Finally, we introduce a
toy scenario in which we precisely define metrics of gener-
ality, capability and control, and assess agents and situations
with them. With the aid of these unambiguous definitions,
the scenario highlights possible disagreements about percep-
tions of these three factors. This should encourage fruitful
discussions about how to define or generalise these metrics
for more complex situations, in a way that can be used to
explore a wide range of AI systems that have different levels
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of capability, generality and control over their environment.

Disentangling the Factors

Before we can analyse how the factors of capability, gener-
ality and control contribute to AI risk, we need some under-
standing of what those terms mean in the literature, and dis-
entangle them from terms such as AGI or superintelligence.

Capability: Capability is how good a system is at solv-
ing or performing in the domains for which it was designed.
Evaluating a system’s capability at a specific domain is rel-
atively straightforward if the domain has some sort of per-
formance metric, which would preferably be linked to the
resources available to the system, such as the available com-
putational power, memory and time (Martı́nez-Plumed et al.
2018). One key issue of capability is its scale. Ignoring this,
forces us to speak of capability in less than ideal terms —
either comparing capabilities vaguely or only with regard to
very narrow AI systems across very similar domains. An-
other issue appears when the task has infinitely many in-
stances, and agents are only able to solve a finite number
of them, precisely because of resources. The percentage of
success would be 0, and hence a useless metric.

One ingenious solution for this problem comes from Psy-
chometrics, and Item Response Theory (IRT) (Embretson
and Reise 2000), in particular. IRT tries to provide a well-
founded statistical method for scoring abilities of test-takers.
IRT focuses not just on the ability of the test-taker when
scoring an individual, but also the difficulty of the ques-
tion or “item”. IRT then can produce an “Item Characteristic
Curve” (ICC) for each item, approximating the probability
an individual scores correctly on the item in question based
on their ability. From the ICCs, the ability of a test-taker can
be evaluated through the use of a maximum likelihood esti-
mate of the test-taker’s item responses. These allow the cre-
ation of “Agent Characteristic Curves” (ACC) for each test-
taker, mapping item difficulty to the probability of a correct
response. Figure 1 shows an ACC.
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Figure 1: An ACC showing performance Ψ of a Q-learning
agent over environments of increasing difficulty (h, on the
x-axis). Data from (Insa-Cabrera et al. 2011).

In IRT, the ACC is usually sigmoidal, and ability is just
the x-axis position at 0.5. For a non-parametric curve, we
just consider capability as the area (3.32 in the example). In
this way, if we introduce infinitely many extremely difficult
problem instances in the pool that the agent cannot solve, the
capability does not change. Note that this does not happen

when we calculate the average expected score over the set of
problem instances (in the figure, this is 0.28).

Generality: Generality is a measure of the number and
types of domains for which a system is able to handle and
perform well in. Generality is not always easy to evaluate
or quantify, especially when we do not have a clear defini-
tion of the types of domain, but just a wide set of tasks. One
novel solution to this problem comes again by looking at
ACCs. As the item difficulty increases we typically expect
to see a performance drop. The rate at which this happens
captures generality over the problem space, which can be
calculated as some kind of proxy to the slope of the ACC. A
test-taker with a slow, gradual decline in performance over
the problem-space is much less general than an agent cover-
ing a consistent level of item difficulty with a sharp decline
in performance after this point. This can seem quite counter-
intuitive, but it is key to understand that we usually make the
comparison of systems with similar area under the ACC —
for a sharper decline, the decline must begin later and thus
the agent retains its high performance for a higher level of
difficulty. This approach frames generality as system per-
formance on as many low-difficulty tasks as possible, with-
out capturing the notion of systems performing tasks over
wildly different areas of problem-space. But this notion of
generality ensures that this breakout does not happen at least
until a level of difficulty.

Ultimately, unless we give an indication of the types of
domains for which a system performs well in, we would be
forced to speak of generality in aggregated terms. For the
purposes of this paper we will use generality to refer to the
gradient of an ACC.

Control: Another factor of a system that is of interest from
a safety perspective is control. By agent control we mean the
the reliability and deliberate intent of an agent’s actions and
decisions. We often wish to measure control with respect to
specific behavioural properties such as completing a goal or
avoiding “risky” behaviour.

This idea of control is also related to that of “affordances”
in the science of perception (Gibson 1979), where Gibson
describes an affordance as actions resulting from the rela-
tionship between agents and their environment. Affordances
have made their way into AI research as Nye and Silverman
(2012) make clear in their literature review of the subject.

For the purpose of our paper, we will refer to control as
opposite to the expected entropy of visited states conditioned
over the behaviour for which we wish to measure control.
Control is hence opposite to variability. If we look at an
ACC, control is related to the dispersion along the ACC.

Interaction between Risk and the Factors

Now we discuss the ways in which the factors may be re-
lated to the risk of an AI system. First, we need to under-
stand what it is exactly we are trying to assess. Risk is usu-
ally described as exposure to danger of some kind. While
danger to life or well-being is ultimately what we are trying



to prevent, in the context of AI safety a few specific scenar-
ios present themselves as potentially enabling this indirectly
and thus we consider those scenarios risky too. These types
of scenarios or behaviours include the system misinterpret-
ing goals or goals being poorly defined. This is known as
the Value Learning problem (Soares 2015). Another risk we
are concerned with is the system resisting external efforts to
alter the system by its designers; ensuring the system allows
this is known as corrigibility (Soares et al. 2015). There are
countless other ways risk can manifest in AI (Amodei et al.
2016). Again, there are no wholly satisfactory solutions for
quantifying risk, but within one environment we can often
quantify specific risks as probabilities or as expected penal-
ties. It is then straightforward to compare –numerically– the
effect our factors have on risk within that environment.

Now let us explore the interaction at an abstract level. In-
tuitively there is potentially more risk associated with higher
capability and generality, and lower control. However, there
are more nuances on this than originally expected. Some of
these nuances come from the fact that very incompetent sys-
tems (low capability) are dangerous, as they do not fulfill
their duties, which is a clear safety concern. But these can
be categorised as known unknowns. As capability increases
in a given domain it becomes more difficult to identify which
states the system may traverse through and what sort of side
effects may be caused as a result. These are unknown un-
knowns. Once an agent becomes more and more capable, we
encounter Vingean uncertainty — that is, if the agent is more
capable in a domain than we are, then we cannot completely
predict what the agent will do in that domain, otherwise we
would have the same domain capabilities. Guaranteeing safe
behaviour is much more difficult in this scenario. Note that
the view of ACC, where difficulty is on the x-axis helps us
understand this. As tasks become more complex, solutions
can be achieved in ways we are not able to anticipate, espe-
cially if we ourselves do not reach that capability level.

Similarly, as generality increases, we can intuit that the
risk posed by the system also increases. This is because the
system becomes more adept at a wide range of tasks and
this makes constructing safety guarantees more time con-
suming. Further, if we use the generality notion from the
ACC, with an unchanging capability, we have worse perfor-
mance on high-difficulty tasks. These high difficulty tasks
may present more danger than their low-difficulty counter-
parts, especially if we do not understand them. But gener-
ality makes the system more expectable conditioned to dif-
ficulty. For instance, it gives reassurance to know that an
automated assistant is going to work well for all easy tasks.

The risks of a high capability and generality system are
further exacerbated by Omohundro’s “Basic AI Drives”
(Omohundro 2008), which hypothesises that such a system
may develop self-preservation instincts in order to ensure
its goals are achieved, as well as preemptively acquiring re-
sources in aid of these goals. Even seemingly benign goals
may pose a significant risk.

Finally, as a system’s control over its environment in-
creases, the related risk the system poses may actually de-
crease. With higher control comes an agent acting more
deliberately and hence more predictably. When a system’s

goals are aligned with our safety standards, this deliberate
action performance can reduce the chance of violating safety
properties. For instance, a personal assistant that sometimes
fails at some easy tasks possibly because it solves them very
stochastically may become a hazard. The view of control as
reliability (or reduction of entropy) is aligned with this per-
spective. Of course, this requires a notion of safety align-
ment for the system’s actions. Deliberately unaligned ac-
tions obviously make no safety guarantees.

However, the system may also exert excessive control
over the environment and reduce the freedom of other agents
in it. This has been studied in AI-safety previously, often
from the perspective of enforcing safety by minimising or
reducing environmental control over certain factors. Exam-
ples of this include penalising actions that cannot be un-
done (Krakovna et al. 2018), or by minimising the impact
a system has on its environment (Armstrong and Levinstein
2017). Both of these approaches attempt to make exerting
certain types of control over the environment undesirable.

Capability, generality and environmental control can also
in some ways influence each other, in turn further increasing
the risk posed by the system. Whilst these factors are heavily
decoupled from each other, they are not entirely orthogonal.
Figure 2 shows the inter-connectivity between these factors
more visually.
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Figure 2: Relations between properties of an AI system and
the risk it poses.

An example of this entanglement is that as environmen-
tal control increases, new affordances become available to
the system. We already know that this can increase the risk
posed by the system, but these new affordances can allow
new behaviour, which may increase the system’s capability
across domains, or even the types of domains that the system
can perform well in.

The reverse of this relation can also be considered. The
idea of an AI breakout posits that as the system becomes
more capable and general, it may be able to detect and ex-
ploit vulnerabilities in the environment it is situated in, ul-
timately gaining control over the environment and utilising
that control to achieve its goals, behaving in a manner the
designers deemed unacceptable.

It is also possible that generality and capability can affect
each other in a system. It may be the case that the further a
system specialises into specific problem domains, the fewer
computational resources are left for other task types.

Overall, we can see that the factors of capability, general-
ity and control can all seemingly affect each other. What is
not so clear is the extent to which they do this, or the exact
relationship between them — these factors are clearly not



orthogonal nor directly correlated.

Scenario: Exploration in a RL Setting

While the relations shown in Figure 2 are hard to determine
in an abstract way, especially if we do not specify the partic-
ular risk we want to analyse, the analysis can be done for par-
ticular scenarios. Figure 3 shows a simple grid environment
in which an agent (designated as a smaller orange square)
must navigate to the goal (designated by a green square) in
the allotted number of steps.

Different properties of the agent can influence its capabil-
ity, generality and control over tasks from this environment
type. Such properties can include the agent’s method of ob-
servation (see the vision cone in Figure 3 as an example) and
algorithm employed for learning. Comparing the expected
success rate of different agents can give valuable insight into
how capability, generality and control are related to risk.

We now give a more formal description of the environ-
ment and measures of capability, generality and control. It
is important to note that the formal descriptions given here
for risk and the factors are domain specific. We consider a
bounded grid of mˆn cells, where the agent π is located in
one cell and can move in the four cardinal directions at each
step. A goal is also located in one cell and yields a positive
reward rg ą 0 when the agent reaches the cell. Reaching the
goal terminates the episode. There may be one or more pits:
cells that if the agent reaches them, it can never go out for
the rest of the episode. Episodes have a length of fixed Te

steps. Rewards are always 0 unless stated otherwise above.
Environments µ are generated with a distribution ppµq over
the location of agent, goal and pits.

Let spπ, µq denote that agent π was successful on environ-
ment µ (reaching the goal before the episode terminates).

Now we define a simple notion of difficulty ℏ for each
environment as ℏpµq “ 1 ´ Ppspπrnd, µqq where πrnd is a
random-walk agent. In other words, the difficulty of an envi-
ronment is 1 minus the probability of success of a random-
walk agent. Now, we build an ACC as follows. For each
difficulty h, we calculate the expected success of agent π
only for the environments of that difficulty, i.e., we condi-
tion p on h. We denote this success rate per difficulty as:
Shpπ, pq “ Ppspπ, µq | ℏpµq “ hq. By plotting Sh for the
range of difficulties we have a “curve”, the agent character-
istic curve for π, very much like the example in Figure 1.

The capability (Ψpπ, pq) of an agent is the area under its
curve. The generality (Γpπ, pq) of an agent is (a proxy of)
the steepness of this curve.

As examples of agents we could have agents that solve
all situations (very capable and general), agents that solve
the task only when the goal is nearby (general but not very
capable) or specific agents that solve the task only when the
goal is in the upper half of the grid (e.g., imagine that it has
been trained on a distribution where the goal was usually in
the upper half).

The control of an agent in environment µ is defined as
cpπ, µq “ Hmax ´ Hpµ, πq, where H is the entropy of the
states π is expected to visit in µ, and Hmax is the maximum

Figure 3: Possible domain to test risks related to control

entropy. Then an agent’s control over all environments is:

Cpπ, pq “ Eµ„p,Ppspπ,µqqě1´δrcpπ, µqs

i.e., the expected control for the environments where the
agent is expected to be successful1. The failure probability
threshold δ P p0, 1q can be selected as appropriate for the
environment and agent.

For instance, a random-walk agent is expected to have
medium generality, low capability and very low control. An
agent that goes optimally to the goal is expected to have high
generality, high capability and high control.

The risk of an agent π within environment µ is υpπ, µq
is the probability that π will fall into a pit during an episode
within environment µ. The risk of an agent over a whole task
distribution is Υpπ, pq “ Eµ„prυpπ, µqs. This risk is usually
referred to as safe exploration.

It is worth noting that in the test environment it is indeed
possible to have agents of high capability and low control
and vice versa. Although in many cases control will correlate
well with capability. Similarly, many capable and general
agents within our setting may have a high risk level.

We claim that an increase in an agent’s control will lead
to a decrease in the risk of the agent. That is, a higher level
of control yields safer exploration. As an agent’s control
Cpπ, pq increases, the expected control of tasks drawn from
p which we expect π to succeed in also increases — this is
just the definition of agent control. Subsisting in the defini-
tion for agent control within a specific environment tells us
that Eµ„p,Ppspπ,µqě1´δqrHmax ´ Hpµ, πqs increases. Since
Hmax is fixed, the expected entropy in successful environ-
ments Hpµ, πq must be decreasing. In a successful environ-
ment, we expect the agent to reach the goal within the time
limit Te. If the expected entropy decreases, the agent is less
likely to select moves that are not on the successful path.
This reduces the chance of entering a pit cell and thus re-
duces the agent’s risk.

Discussion
Characterising AI agents in terms of average performance
is simplistic, as there are many different ways in which the
same performance can be obtained. Much active research in
AI safety at the moment is characterised by efforts to go be-
yond this narrow view The perspective of robustness in AI

1Note that the definition of control here seems related to the
observability the agent has over the environment — an agent with
perfect “sight” and policy will have much greater control than an
agent with partial observability due to needing to explore to spot
the goal or build up belief states.



safety is identified here by the assurances that certain diffi-
culty is achieved (capability), that up to this level of diffi-
culty no pocket of problems is ignored by the agent (gen-
erality) and that the variability in results and strategies for
successful policies is low (control). In a way, we are limiting
unpredictability conditioned to a bounded difficulty, which
can be used to define a safe area for the system.

Although the main goal of the paper was to raise aware-
ness of the necessity and relevance of disentangling perfor-
mance into more refined factors and the opportunities of
analysing risk according to them, as future work we plan
to explore these ideas ourselves for different classes of en-
vironments. We also encourage AI safety researchers to ob-
tain theoretical and experimental results under the factors
introduced here, such as the degree of correlation between
capability and control. New formulations may be needed.
For instance, as problems become harder the maximum en-
tropy also increases, and relating or normalising control to
difficulty may be more appropriate.
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