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Abstract

We propose a continuous learning system for autonomous
driving based on first principles and constraints. The learn-
ing system includes a knowledge base to represent the first
principles’ manifestations; Initial vehicle control commands
are derived from the knowledge base, and constrained ex-
ploration and sequence analysis based intelligent exploita-
tion are used to refine the control commands and keep the
learning safe. A decomposed learning curriculum is utilized
to enrich the knowledge base and handle complicated sce-
narios. Our experiments in simulations and real test environ-
ments show the system’s advantages of fast learning, smooth
driving, and quick adapting. The proposed system does not
require the complicated vehicle model calibration, and facili-
tates the easy transfer learning from simulation environments
to real driving environments.

1 Introduction

Recently a number of self-driving projects use deep learn-
ing for part of the driving tasks (Bojarski and et al. 2016;
Rao and Frtunikj 2018; Hecker and et al. 2018), but there are
more challenges in interperability of the models, safety is-
sues, and transfer learning problems. More recently, (Zhou,
Krähenbühl, and Koltun 2019) compared supervised imita-
tion learning of driving using raw images (from pixels to
actions) and using representation of scene content produced
by computer vision, and showed that intermediate represen-
tations have the benefits of modularization and abstraction
(Müller and et al. 2018), and generalize better to unseen
environments. More researches utilize deep reinforcement
learning, which builds a reinforcement learning architecture
on deep neural networks (Arulkumaran and et al. 2017). Re-
inforcement learning has been used in robot control and au-
tonomous driving simulations. However, many of them are
based on a try-and-error approach, and generally require
longer learning time. In addition, real autonomous driving
environments can not withstand the errors (accidents) in the
procedure of the general reinforcement learning, and run-
time safety monitoring using constraints is required to meet
the safety standards (such as Automotive Safety Integrity
Level (SAIL) defined in ISO26262).

One kind of deep reinforcement learning is deep deter-
ministic policy gradients(DDPG) (Lillicrap and et al. 2016;

Silver and et al. 2014), which only integrates over the state
space, and can handle continuous action space. However, the
difficulty of transfer learning still exists, such as transferring
the learned model of autonomous driving from simulation
environments to the real vehicle on the real test roads.

Guided Policy Search (GPS) (Levine and et al. 2013;
2015) is a supervised learning method for training com-
plex nonlinear decisions. However, it requires to reset the
state of the environment each time when a local trajectory
is generated. Or you need to generate a large number of
samples from the global policy network. Policy Learning us-
ing Adaptive Trajectory Optimization (PLATO) (Kahn and
et al. 2017) is a continuous, reset-free reinforcement learn-
ing method. PLATO uses model predictive control (MPC)
to generate the supervision, but requires accurate dynamic
system model. Trust Region Policy Optimization (TRPO)
(Schulman and et al. 2015) directly constructs stochastic
neural network policies without decomposing problems into
optimal control and supervised phases, but requires an ini-
tial safe policy and large amount of data, and is significantly
less data efficient.

On the other hand, driving control based on accurate phys-
ical models and rules requires time-consuming and laborious
system calibration for the control parameters, which may
take months to get the complete calibration for a vehicle. Im-
itation learning (Liu and et al. 2018; Ng and Russell 2000;
Song and et al. 2018) is based on the behavior of human
beings. In autonomous driving, imitation learning has many
disadvantages, including difficulty in training all scenes, es-
pecially dangerous scenes/corner cases. Under some scenar-
ios, human behaviors have limitations, not necessarily are
the best. (Chen and et al. 2019) decomposed the learning
problem into two stages: A privileged agent cheats by ob-
serving the ground-truth layout of the state; The privileged
agent acts as a teacher that trains a purely vision-based sen-
sorimotor agent. Their trained system achieved higher per-
formance than direct imitating learning.

To deal with the challenges of machine learning for au-
tonomous driving, we propose a new modularized reinforce-
ment learning (RL) framework based on first principles and
constraints to control the autonomous system safely in con-
tinuous learning. The system architecture overview is shown
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Figure 1: Overview of the system architecture.

in Figure 1: Learn the environmental constraints via percep-
tion and motion prediction; Determine the next driving tar-
get, such as the relative/absolute position, trajectory, speed,
etc.; Query the knowledge base (KB) using the understand-
ing of the environment and the determined driving target,
and create the initial control commands and constraints; Im-
prove the control commands via intelligent constrained rein-
forcement learning; Execute the commands and collect feed-
back for enriching and updating the knowledge base.

Our experimental evaluation shows that our learning
system can significantly reduce the learn time (from
month/days to hours), and make the transfer learning more
efficiently and safely in adapting from simulation environ-
ments to real driving scenarios.

The following section will talk about the details of the
learning system: The initial control commands and con-
straints are generated (Sec. 2.2) based on the knowledge
base with the first principles’ manifestations (Sec. 2.1); The
constrained exploration and intelligent exploitation are used
for improving the control commands (Sec. 2.3); The obser-
vation and feedback are used for enriching the knowledge
base via following a learning curriculum (Sec. 2.4).

2 System Design

2.1 Creating Knowledge Base for Deriving
Control Commands

One example table in the knowledge base is shown in Table
1. The content of the initial knowledge base can be derived
from the car manufacture’s specifications, or can be safely
obtained by driving the vehicle in the parking lot or a train-
ing site as follows:

• Set the vehicle to the expected speed, then send the cor-
responding deceleration commands and measure the dis-
tance and time to stop.

• Set the vehicle to the desired speed, then send the ap-
propriate steering wheel angle command and measure the
curvature of the path the vehicle is passing.

The collected driving samples can be used to estimate the
structural parameters (mass, wheelbase, center of gravity) of
the vehicle. The knowledge base keeps the manifestations of
the first principles of driving, and provides the functions of
reasoning, fitting, and querying, such as creating the initial
control commands. Knowledge base query functions have

states and KB as inputs, and output the suggested candidates
for vehicle control commands. For example, when driving at
different speeds, query the appropriate steering angles under
different road curvatures:
expectedSteeringAngle = QuerySteeringAngleFromKB

(roadCurvature, currentSpeed)

2.2 Generating Constraints for Safe Learning

Constraints are used to avoid dangerous situations:

• Hard constraints:

– Maintain safety distance/safe response time from the
obstacles/other moving objects in the environment.

– Prevent slipping and derailment.

– Keep operating commands within the operating range
of the system (acceleration/braking limits, matching
between steering angle and speed, etc.)

• Soft constraints:

– Maintain comfort and stability.

– Maintain fuel efficiency.

Constraints can be expressed as boundaries of control com-
mands and are used to limit the exploration space in the RL,
as shown in Table 2. The generation of constraints can be in-
dependent of the learning algorithm, and the constraints will
be updated in real time according to changes in the environ-
ment and state. Therefore, constrained exploration avoids
the limitations of the predetermined constraints and loss
functions in terms of flexibility and scalability. As shown
in Figure 3, if the action will result in driving out of lane,
the action will not be explored.

2.3 Intelligent Constrained Reinforcement
Learning

In real environments of autonomous driving, we cannot af-
ford errors/accidents from continuous learning. Incomplete
training/learning will lead to potentially unsafe strategies
and cannot handle scenarios that are not learned or unseen.
Including corner cases can greatly increase the variance of
the reward function and make converging more difficult. To
solve these problems, We propose an efficient exclusion and
search algorithm, which is capable of transfer learning. The
flow chart of the proposed reinforcement learning is illus-
trated in Figure 2 , and including:



Figure 2: Flow chart of smart RL

Table 1: Example content of knowledge base

Speed Steering angle Curve radius of the lane Vehicle orientation changing rate

50km/h 2 degrees 100m 0.2 degrees/s

Table 2: Examples of representation of state based constraints

State Constraint Based on

Lane curvature Upper limit of speed
Road friction coefficient and first prin-
ciples of vehicle motion

Distance to the ahead vehicle

Speed of the ahead vehicle
Safety distance / response time (e.g. 3
second rule)

Distance to the behind vehicle Lower limit of speed
Speed of the behind vehicle
Speed limits of the lane Safety distance / response time

Road curvature The average steering angle. First principles of vehicle motion

Figure 3: An example of constraints of following lane.

• Decomposed learning: For example, learn speed control
and steering control separately (e.g. learning the steer-
ing control at a fixed speed). Furthermore, the steering
control may include the steering control of following the
curved lane, the steering control of the lateral speed (to
approach the next target from current position), and the
steering control of vehicle orientation (to keep the vehicle
orientation the same as the lane direction). These steer-
ing controls can be learned separately and used with the
proper combinations.

• Preview of state and reward for optimization: Based
on the first principles’ manifestations in the knowledge
base, for each operation command candidate, preview
the state/reward of the host vehicle at next step(s). Esti-
mated reward is based on the result of computeNextCar-
Pose(KB,currentActions,currentState). See details in Al-
gorithm 2.

• Constrained exploration and intelligent exploitation: Con-
straints are used to reduce the exploration space; Control
command selection must be within the boundaries repre-

sented by the constraints (such as the speed limits derived
from the steering angles). Based on the tried operation
commands and the observed effects, sequence analysis is
used to compute the gradient direction to generate better
operation command candidates.

The detailed description of the intelligent constrained RL
is in Algorithm 1, where Step 1 is for generating control
commands candidates; Step 2 and Step 3 are for constrained
exploration (using preview of state and reward, i.e. looking
ahead). For example, if a steering action will result in run-
ning off the road in a few seconds, that action will be ruled
out from the exploration; Step 4 is for transfer learning and
adapting to new environment; Step 5 and Step 6 are for up-
dating the real rewards and adjusting the actions in the cor-
rect direction for next try based on feedback; Step 7 is for
generating better commands based on the results from step
6.

An enhancement of Step 4 (When KB accumulates to a
certain extent): Preview the state and reward of the com-
mands based on KB, and the algorithm is described in Algo-
rithm 2.

An enhancement of Step 6 is listed in the following:
Check overshoot/undershoot based on a sequence of ¡action,
result¿ so as to reduce the influence of delayed execution of
the control commands, make better use of the delayed re-
wards, accelerate the learning, and improve the smoothness
of driving. For example, Algorithm 3 describes how to learn



Algorithm 1 Algorithm of intelligent constrained RL

Inputs:state,Constraints,KB
output:Refined control command.
Step 1: InitialCommand =KB.findInitialCommand(state)); Extend InitialCommand to a group of command
candidates:Scommands. For example, use a group of scale factors (e.g. 0.8, 0.85, 0.9, ......,1.2) to scale InitialCommand.
Step 2: Check the command candidates, only keep the command candidates satisfying the constraints.

for all command within Scommands do
for all constraint within Constratints do

if KB.satisfy(command, constraint) is false then
Remove command from Scommands

end if
end for

end for

Where KB.satisfy(command, constraint) might be implemented based on preview of the states for the next couple of times-
tamps, described in the following:

for all t within [1, n] do
hostCarPoseTimeT = KB.computeHostCarPose(t, command)
obstalePoseTimeT = KB.computeObstaclePose(t, constraint)
if notSafe(hostcarPoseTimeT, obstalePoseTimeT) is true then

return false;
end if

end for
return true;

Step 3: If state is a learned state:

Find the bestCommand from Scommands with the best estimated reward;
if bestCommand is marked with how to refine for further trials (see Step 6) then

Adjust bestCommand along the associated gradient direction;
Output the adjusted command;

else
Output bestCommand;

end if

Step 4: If state is a new state (not learned before), find a learned state nearby, and make use of its learning re-
sult:

for all dimension within state’s Dimensions do
testState = state
testState.dimension.value +/-= threshold
if islearned(testState) is true then

return (bestActionIndex) of testState
end if

end for

Based on the returned index, output the corresponding (or the nearest) command in Scommands.
Step 5: Observe the execution result of the chosen command, and update the corresponding rewards related with the command
(e.g. update Q learning table or SARSA table).
Step 6: Based on the observation result, adjust the actions.

if the result is undershoot(e.g. reward is negative) then
mark the selected action to increase in next trial.

end if
if the result is overshoot (e.g. from ”left to center line” to ”right to center line”, as shown in Figure 4) then

mark the selected action to decrease in next trial.
end if

Step 7: If needed, adjust or refine the generation of candidate control commands (to be more centered around the best action).

following lane with a specified speed in a curved lane: Us-
ing steering control as an example, if the selected steering
angle causes overshoot, then next time the adjustment will
be reduced (and vice versa). Therefore, the benefits of intel-

ligent RL include adapting to the new environments: Learn
from the previous states to help with the selection of opera-
tional commands in the new states (avoid random command
selection). For example, the learning results at low speed are



Algorithm 2 Enhancement of Step 4 in Algorithm 1

for all command within Scommands do
reward= KB.computeNextReward(state, command)
if reward > otherRewards then

keep command
end if

end for
Output the command with the best reward.

Algorithm 3 Enhancement of Step 6 in Algorithm 1

For a sequence of (steeringAngle, nextState) on a lane
with the same curvature, find the variance of steering an-
gles:

if variance > varianceThreshold then
Calculate the medium (or average) value of the steering
angles (expectedValue)
for steeringAngle within the sequence of
(steeringAngle, nextState) do

if steeringAngle < expectedV alue then
mark as increasing for next trial

end if
if steeringAngle > expectedV alue then

mark as decreasing for next trial
end if

end for
end if

applied to the command generation at high speed; Adjust-
ments when turning a sharp curve are based on experiences
of turning smooth curves.

After the knowledge base is rich enough in information,
the algorithm can be used as a “teacher” policy for super-
vised deep learning or “teacher” based self-play reinforce-
ment learning (to replace or further optimize the knowledge
base’s fitting function: from linear fit to non-linear fit). This
self-play based learning is described in Algorithm 4.

Algorithm 4 Self-play learning algorithm

Initialize training data D to be empty
for i = 0 to N do

for t = 1 to T do
Sample action at for state st based on the teacher’s
policy
Append the new (st, at) to D
State evolves to st+1 according to KB

end for
Train learner’s policy on D

end for

2.4 Continuous Online Learning and KB
Accumulation/Optimization

The study course of establishing/improving the knowledge
base is illustrated in Figure 5:

• Initialize KB from samples of human driver’s driving
data.

Figure 4: Example of overshooting.

• Learn basic tasks first before learning combination tasks;
learn simple tasks before learning complex tasks; and
learn the prerequisites for tasks before learning the tasks
themselves.

• New control commands are based on experiences learned
from old behaviors; explore in the state/action space, and
gradually improve the knowledge base (no sudden jumps
in states/actions during learning).

• Online learning: observed actions/effects are consistently
used to improve the reasoning power of the knowledge
base.

Figure 5: Learning and knowledge accumulation

Online learning will help adapting to the environmental
changes and the vehicle’s performance changes, and once
the KB becomes more matured, online learning may only
occur occasionally for rare/corner cases.

3 Implementation of the Learning Using KB

In our implementation, the sensors on the vehicles get the
perception of the surrounding environment (safety and per-
formance validation of the perception algorithms are beyond
the scope of this paper), and then the system learns how to
generate appropriate driving control commands (such as the
steering wheel angle, acceleration/deceleration, etc.) accord-
ing to the observed environments and the determined driv-
ing target which is decided by a planning module (a separate
module which is beyond the scope of this paper).

To learn the commands of controlling the steering wheel
angle and acceleration/deceleration in following lanes (such
as high-speed cruise), the calculation of the initial steering
angle is based on the following components:

• angle0 based on the distance from the host vehicle to
the lane center and a look ahead distance. For example,
angle0 = atan(distanceToLaneCenter

lookaheadDistance ).



Table 3: Model simplification for car acceleration and braking

Simplified Original

Fr = c1 ∗m ∗ g Fr = rr ∗m ∗ g
Rolling resistance force depends on the resistant parame-
ter (rr), mass (m), and gravity coefficient(g).

Fd = c2 ∗ v
2 Fd = 1

2
∗ Cd ∗A ∗ ρ ∗ v2

Air resistance force depends on the coefficient of friction
(Cd), car shape/cross sectional area (A), air density (ρ),
and speed (v).

Fw = c3 ∗% throttle Fw = TB ∗ R∗ gk
d /2

Forward/drive force controlled via throttle: the engine
torque (TB), the gear ratio (gk), the differential ratio (R),
and the wheel diameter (d).

a = Fw−Fr−Fd

m Acceleration is based on the above forces.

Fb = c4 ∗ BFw T = BFw ∗ R
r

Brake torque depends on the braking force for the wheel
(BFw), the wheel radius (R), and the speed ratio between
the wheel and the brake.

• angle1 based on the Lane’s curvature. It can
be queried from the knowledge base, or cal-
culated from simplified formula. For example,
angle1 = asin(distanceFrontWheelToMassCenter

roadCurveRadius ).

• angle2 which is the host vehicle’s orientation relative to
the lane direction.

The calculation of initial acceleration/deceleration is
based on steering constraints caused by lane curvature,
speed limit from speed limit sign, and limitations for pas-
sengers’ comfortness.

To learn the acceleration/deceleration control commands
when following another vehicle (e.g. low speed following)
so as to maintain the desired distance (as shown in Figure
6), the following factors are considered:

• The difference between the current distance and the ideal
distance;

• The speed difference between the two vehicles;

• The difference in acceleration between the two vehicles;

Via data mining in KB, the relationship between vehi-
cle model parameters and vehicle control parameters are
established. Based on the data accumulation, the vehicle
model parameters are calculated using simplified dynam-
ics/kinematics formulas, and used for generating the control
commands. Table 3 displays the simplification of the formu-
las for acceleration and braking computation. Therefore, the
number of unknown parameters (e.g. c1 to c4 in Table 3) to
learn is reduced.

For steering control, steering wheel angle(δf ) is set
properly according to normalizedSteeringAngle (based
on angle0 to angle2 mentioned earlier), and the derived
knowledge in KB is two-way mapping:
f(normalizedSteeringAngle) = δf
normalizedSteeringAngle = f−1(δf)

4 Experimental Results
Intelligent constrained RL optimizes the control commands
for the vehicle, and is capable of compensating the inaccu-
racy in estimation of the first principles of vehicle motion,

Figure 6: Illustration of following car.

and conducts constrained reinforcement learning through
self-guided exploration and exploitation.

We tested the learning of following lane in TORCS simu-
lation environment (Wymann and et al. 2014) (an open rac-
ing car simulator). As shown in Figure 7, after a short pe-
riod of learning (less than an hour), the vehicle can remain
on the centerline of the road even under high speed (70km/h)
and on curved roads. In contrast, DDPG based learning takes
days to correct its mistakes (Lau 2016). We also tested learn-
ing of following lane and following car in the SCANeR
Studio simulation environment (AVSimulation ), which has
more powerful simulation capability for different road types,
traffic landmarks, and vehicle types, etc. Users of SCANeR
can also create new scenarios based on the real road situa-
tion, and modify the vehicle settings to match the real test
vehicles. Figure 8 shows the learned car follows the traffics
in SCANeR. Our sequence analysis algorithm (Algorithm 3)
achieved more smooth driving in curved roads (curve radius
varies from 30 meters to 100 meters) under higher speed (70
-80km/h) after about half an hour of learning. Our supple-



Figure 7: Learning following lane in TORCS simulation environment. Left:Before the learning; Right:After the learning.

Figure 8: SCANer test environment

Figure 9: Following lane in real road



mental materials will provide more video clips of the test-
ing.

In TORCS simulation, the state information (speed, dis-
tance to lane boundaries, lane curvatures, etc.) is obtained
from the simulation environments. In SCANeR studio and
real environments, image and Lidar based perception sys-
tem (based on proprietary software package) provides the
state information.

We further tested our learning system using real car on
real roads by transferring the learned knowledge base from
the simulation environment to the real car, and achieved
fast transfer learning without time consuming mechanical
re-calibration. The self-driving on real road was smooth in
its first try. Figure 9 shows the following lane in real road
with speed about 45km/h. Experiments of following car, and
following traffic lights were also conducted using real car in
our test field.

5 Conclusion

The existing machine learning technologies have limitations
in autonomous driving, such as the “trial and error” rein-
forcement learning method takes a long time (a few days
to several months) to learn. It is not acceptable for learning
from accidents in a real environment. Driving control based
on accurate physical model requires time-consuming and la-
borious system control parameters’ calibration; Incomplete
training/learning will learn potentially unsafe strategies and
cannot deal with unlearned or unseen scenarios; Learning
from the operator/human requires the use of computation-
ally expensive inverse-reinforcing learning. We proposed an
efficient, continuous, and safe first principles-based con-
strained self-learning to solve the following challenges in
autonomous driving: Shorten the learning time; Learn on-
line safely; Avoid complete system control parameters’ cal-
ibration; Transfer learning to deal with unlearned or unseen
scenarios.

Our experiments show that the proposed learning system
does not rely on big data collection for initialization; Can
reduce the exploration space in reinforcement learning, and
significantly improve learning efficiency; Supports continu-
ous online safe learning; The knowledge representation and
enhancement are based on first principles’ manifestations,
and are beneficial to transfer knowledge/skills between dif-
ferent vehicles and between different scenes.

We understand that autonomous driving has a lot of com-
plexities and challenges, this work is a small step toward
principled learning, and more complex tasks and situations
will be needed to consider. Deep learning based methods
might be combined with this first principles based learning
to work together (such as the self-playing based learning de-
scribed in Algorithm 4): The first principles based learning
improves the interpretability of the system, and deep learn-
ing further generalizes the system capabilities.
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