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Abstract

Automated driving is an ML-intensive problem and its safety
depends on the integrity of perception as well as planning
and control. Responsibility Sensitive Safety (RSS) is a recent
approach to promote safe planning and control that relies on
perfect perception; however, perceptual uncertainty is always
present, and this causes the possibility of misperceptions that
can lead an autonomous vehicle to allow unsafe actions. In
this position paper, we sketch a novel proposal for a formal
model of perception coupled with RSS to help mitigate the
impact of misperception by using information about percep-
tual uncertainty. The approach expresses uncertainty as im-
precise perceptions that are consumed by RSS and cause it
to limit actions to those that support safe behaviour given the
perceptual uncertainty. We illustrate our approach using ex-
amples and discuss its implications and limitations.

1 Introduction

Perception in Automated Driving (AD) relies heavily on
Machine Learning (ML) and includes tasks such as classi-
fication, object detection, semantic segmentation and object
tracking. A significant source of safety risk in AD is due
to perceptual uncertainty (Czarnecki and Salay 2018) that
leads to misperceptions resulting in unsafe actions. How-
ever, the ability to accurately estimate perceptual uncertainty
can potentially reduce the negative impact if it is effectively
integrated into the AD planning and control policy.

Responsibility Sensitive Safety (RSS) (Shalev-Shwartz,
Shammah, and Shashua 2017) is a specification for AD plan-
ning and control that develops a safety model based on for-
malising common sense principles for safe driving and by
explicitly assigning responsibility for safety to the appropri-
ate road user. The result is a set of detailed driving rules
to deal with different driving scenarios. For example, in the
“safe longitudinal distance, same direction” scenario, the
rear car cr (ego vehicle) is travelling on a single lane road
with another car cf in front. RSS mandates that cr is respon-
sible for keeping a safe distance dmin from cf where dmin

is expressed as a formula in terms of the velocities of cr
and cf and general parameters specifying vehicle response
time (ρ), max acceleration (amax,accel), and max/min brak-
ing (amax,brake, amin,brake). If, for whatever reason, dmin

is breached, this is defined as a dangerous situation and cr

is then restricted to actions specified as a proper response
to the dangerous situation. A proper response is an action
that has lowest risk for the given setting of RSS parame-
ters. In this scenario, the proper response, given that tb is the
time the situation became dangerous, is that during the inter-
val [tb, tb + ρ], cr may accelerate any amount not exceeding
amax,accel and then must apply at least amin,brake until the
situation is no longer dangerous or it has come to a stop.
RSS provides rules (in this scenario) for what is consider a
safe driving behaviour.

Unsafe behaviour in an AD system may occur either be-
cause of (1) misperceptions due to perceptual uncertainty
in the perception subsystem that causes the planning and
control subsystem to take an unsafe action, or (2) flaws in
the planning and control subsystem that cause it to take un-
safe actions even when the perception subsystem is behav-
ing correctly. RSS addresses case (2) by providing a spec-
ification for safe planning and control, but it relies on per-
fect perception and thus is susceptible to case (1). The RSS
paper (Shalev-Shwartz, Shammah, and Shashua 2017) con-
siders the issue of perceptual uncertainty at a high-level by
assuming that the perceptual system is Probably Approxi-
mately Correct (PAC), where the behavioural error due to
perceptual uncertainty is probabilistically bounded. While
this has conceptual appeal, it is not integrated with the RSS
rules and remains at a level of abstraction that makes it dif-
ficult to see how it can be used in practice.

In this position paper, we sketch a proposal for address-
ing case (1) using a formal, but pragmatic, approach to
analysing and mitigating the safety impacts of misperception
in RSS due to perceptual uncertainty. We start by defining
a generic framework for representing AD perceptual states
and discuss how particular AD implementations must refine
RSS perceptual states. Then we use this framework to for-
mally characterise the conditions under which mispercep-
tions cause violations of RSS rules, and therefore, safety
risk. Finally, we show how to pragmatically incorporate op-
erational perceptual uncertainty into RSS and how this can
be used to mitigate safety risk due to misperception. We do
this by first showing how to represent perceptual uncertainty
by lifting perceptual states to imprecise states called under-
perceptions and then showing how these can be used with
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correspondingly lifted RSS rules to handle imprecise states
in a sound and safe way.

2 Perceptual Framework

An AD system consists of a perception subsystem produc-
ing representations of the world, which feeds a planning and
control subsystem that we assume conforms to RSS and de-
cides how to act on these perceptions. The representation
of the world state produced by the perceptual subsystem
is called a world model (Czarnecki 2018a). A world model
consists of a set of typed entities (e.g., road users, static ob-
jects, situations, etc.) whose states evolve in time.

A world model schema defines the structure of world
models. We assume this is based on an ontology for driv-
ing (e.g., (Czarnecki 2018b)) and has an object-oriented pro-
gram style consisting of a hierarchy of entity class defini-
tions. In particular, classes define attributes (e.g., pos, vel,
etc.), computations of derived attributes (e.g., computation
of dmin), parameters used by RSS (e.g., amax,brake) and
behavioural specifications defining feasible evolutions of a
class instance in time (e.g., state machines, differential equa-
tions, temporal logic properties, etc.). We assume an entity
can change class over time. For example, a cyclist “turns
into” a pedestrian when they dismount and start walking
with their bike. The set SΣ of world models defined by a
world model schema Σ are called the concrete or precise
world models.

In this model of perception, we assume the Markov prop-
erty relative to the world models — i.e., decisions can be
made based on the current world model without reference
to previous world models. However, historical information
about an entity (including its relationships to other entities)
can be stored as part of its current state if this is needed for
deciding actions. For example, when cars arrive at an inter-
section with a 4-way stop, the right-of-way is given to the car
who arrived first (or to the one to the right if both arrived at
the same time). Determining whether it arrived first requires
remembering its previous position and velocity before the
ego vehicle arrives at the intersection and comparing this to
the current position and velocity.

The beliefs represented by the world model may be re-
vised with time due to the arrival of new information. One
possibility is to refine an imprecise perception. E.g., we
weren’t sure what the entity was until it got close when we
realised it is a bicycle. Another (non-monotonic) possibility
is to correct a misperception. E.g., we thought an entity was
a motorcycle until it got close and we realised it is a bicycle.

2.1 Integration of the world model schema with
RSS

RSS is intended to be a minimal specification of safe driving
behaviour that is refined by AD implementations. Thus we
assume that RSS provides a specification in the form of an
RSS basic world model schema and the schema of any AD
implementation conforming to RSS must refine this schema.
A concrete link to safety assurance here is that the argument,
or ideally, proof, that this refinement is correct is part of the
safety case for AD system.
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Figure 1: A fragment of an hypothetical RSS compliant
world model schema showing classes for the running exam-
ple visualized as a UML class diagram.

The RSS basic world model schema should provide def-
initions of base classes (e.g., Road user), and all attributes
and parameters required by RSS rules. In addition, it defines
the function Safe where Safe(s) is the set of safe actions
for world model s. This can be defined in terms of safe dis-
tance to other road users, acceleration, and other criteria.
Thus, in a dangerous situation, Safe(s) is restricted to ac-
tions corresponding to the proper response. In other situa-
tions, Safe(s) contains the set of actions that will not cause
a dangerous situation to be entered due to the ego vehicle.

Fig. 1 shows a fragment of a hypothetical RSS compli-
ant world model schema showing classes for the “safe lon-
gitudinal distance, same direction” scenario visualized as a
UML class diagram. The class Vehicle has been refined
here to distinguish two classes that have different parame-
ters used in RSS computations. We assume typical inheri-
tance/override semantics so the parameters of class Car are
the same as for Vehicle but not for Truck. Only one sce-
nario class, Longitudinal Following, is shown with at-
tributes (modeled here as UML associations) indicating the
front and rear vehicles. Every subclass of RSS Scenario

must define function Safe, producing the set of safe actions
in the current state of the scenario. In the case of the lon-
gitudinal following scenario, this corresponds to actions of
the rear vehicle and also uses a function safe long dist to
compute dmin.

2.2 Misperception with precise world models

To study misperception, we can compare perceived states
to true states. Let s → s′ denote a perception case where
s, s′ ∈ SΣ, s is the correct world model (i.e. ground truth)
and s′ is what is perceived by the perceptual subsystem. A
perception case summarises a possible behavior of the per-
ceptual subsystem in perceiving the world at a given point
in time. Perception case s → s′ is a correct perception iff
s′ = s; otherwise, it is a misperception.



To illustrate perception cases, assume the cor-
rect world model s has a single instance of the
Longitudinal Following scenario from Fig. 1 with
the rear vehicle being a Car and the front being a Truck.
Examples of misperception cases s → s′ include: s′

classifies the front vehicle as Car, s′ has an erroneous
velocity value for the rear vehicle, s′ is missing the
front vehicle, and s′ does not contain an instance of
Longitudinal Following.

RSS is designed to be safe when perceptions are correct.
Some misperceptions are benign — e.g., misperceiving a
gray Vehicle as being white. Others, such as the examples
above, can pose a safety risk. We formally define when a
misperception can pose a safety risk.

Definition 2.1. Misperception case s → s′ potentially
causes safety risk iff Safe(s′) 6⊆ Safe(s).

That is, there is a potential safety risk when the safe ac-
tions for the perceived world model include actions that are
not safe in the true world model. Note that there is a definite
safety risk when Safe(s′) ∩ Safe(s) = ∅; however, even
when Safe(s′) ⊂ Safe(s), and the misperception is safe,
the fact that Safe(s′) is a proper subset means that it re-
stricts the allowable safe actions. This can negatively impact
non-safety quality criteria such as progress or comfort.

3 Incorporating uncertainty

The world model represents the current beliefs of the AD
system and we assume that we have information about the
degree of uncertainty (or conversely, confidence) about these
beliefs. This can come from development-time safety assur-
ance analyses of the perceptual subsystem or directly during
operation from the perceptual subsystem itself. The latter is
a reasonable assumption for ML-based perceptual compo-
nents, since their output often includes a value that can be
interpreted as a measure of confidence. For example, when
used for classification, a support vector machine (SVM) out-
puts a classification as well as the distance to the decision
boundary, where being further from the boundary indicates
higher confidence. Similarly, the softmax output of a deep
neural network (DNN) can be interpreted as a categorical
distribution and the probability value associated with the
classification decision indicates the confidence. Estimating
the uncertainty of neural network predictions is the subject
of active research (Malinin and Gales 2018).

A pure Bayesian approach to using this uncertainty infor-
mation requires propagating a probability distribution over
world models into the RSS rules to generate a correspond-
ing distribution over safe actions; however, this approach is
known to be intractable for all but simple cases. Instead, we
approach the handling of uncertainty by defining imprecise
world models that represent different levels of uncertainty.

3.1 Imprecise world models

Semantically, an imprecise world model s̄ represents a set
of precise models [s̄] = {s1, s2, ...}. Let s →α s̄ denote an
under-perception case, where s̄ is an imprecise model per-
ceived with confidence α when the correct model is s. This

sc = {o1 : Car{pos = 0}, o2 : Car{pos = 30}}
s̄1 = {o1 : Car{pos = 0}, o2 : Truck{pos = [29, 31]}}
s̄2 = {o1 : Car{pos = 0}, o2 : Vehicle{pos = [28, 32]}}

Figure 2: Under-perception examples.

is interpreted as saying “the AD system believes that, with
probability α, the precise model s is in set [s̄]” or, formally,

(s →α s̄) ⇒ Pr(s ∈ [s̄]) = α (1)

Thus, s̄ represents the α × 100% credible set of s (i.e., the
Bayesian equivalent of a confidence set). It may be that Eq. 1
depends on certain conditions, such as the perceptual sub-
system being calibrated (Guo et al. 2017) — i.e., that the
uncertainty is correctly aligned with accuracy. We leave the
investigation of the conditions on Eq. 1 for future work.

A world model schema as described in Sec. 2 represents
precise models but it can be lifted to represent imprecise
models with confidence α. The class of an entity can be
made imprecise by using a super-class while a continuous
attribute for which a probability distribution is given by the
perceptual system can be made imprecise by using a credible
interval as its value. For example, given the schema in Fig. 1,
assume the true current world model is sc as given in Fig. 2.
We omit some attributes for simplicity. Assume the percep-
tion system assigns entity o2 probability 0.7 of being Truck

and 0.3 of being Car, and its attribute pos is perceived as
normally distributed according to N (30, 1). In this case, us-
ing α = 0.68, would produce under-perception sc →0.68 s̄1
where o2 is classified precisely (but, incorrectly) as Truck
and the position is confident to an interval of 1 standard de-
viation. If the higher confidence α = 0.95 is required, the
under-perception sc →0.95 s̄2 classifies o2 less precisely as
Vehicle and pos is given as a larger interval of 2 standard
deviations. Note that sc /∈ [s̄1] but sc ∈ [s̄2] due to the
less precise world model produced by the higher confidence
requirement.

The computations of derived attributes used in RSS rules
must be reinterpreted for imprecise values. For example,
in scenario Longitudinal Following, the computation of
safe long dist() (i.e., dmin) in terms of imprecise ve-
locity attributes (i.e., intervals) for the rear and front car
should use interval arithmetic (now covered by standard
IEEE 1788 (Revol 2017)).

The key property that lifting function Safe to imprecise
model s̄ should have is the following:

Safe(s̄) =
⋂

si∈s̄

Safe(si) (2)

That is, a safe action in an imprecise model must be safe
for every precise model covered by the imprecise model.
We can argue that Eq. 2 holds for the vehicle classifica-
tion example discussed above. The imprecise classification
as Vehicle (corresponding to α = 0.95) represents the
set {Car, Truck} of precise classes. Since the parameters
shown in Fig. 1 for class Vehicle are at least as conserva-
tive as for its subclasses, any action that RSS considers safe
when treating the front vehicle as Vehicle will also be safe
if the vehicle is treated as a Car or Truck.



3.2 Using imprecise world models to mitigate
misperception

The most important consequence of Eq. 1 and Eq. 2, is that
for any under-perception s →α s̄,

Pr(Safe(s̄) ⊆ Safe(s)) ≥ α (3)

Eq. 3 says that we can make perception as safe as we like
and avoid risk associated with misperception in Defn. 2.1 by
using under-perception and sufficiently high α. The reason
for this is that Eq. 2 forces the planning/control subsystem
to act conservatively and only take actions that are safe for
any precise model covered by s̄. However, this will not hold
if the set Safe(s̄) is empty — i.e., there is no safe action in
common! This case is not ruled out by Eq. 2 but RSS pro-
vides an important safeguard against this, since it is designed
so that there exists a proper response for every combination
of unsafe situations. Thus, regardless of what set of danger-
ous situations are covered by s̄, the set Safe(s̄) will always
contain proper response actions.

With this, we have shown how the use of under-perception
addresses case (1) in Sec. 1.

4 Discussion and Next Steps

Although we have a strong support on the safety of us-
ing under-perceptions, there are limitations and impacts to
this, and a key part of this research is to explore these and
how they may be mitigated. In particular, there is an evident
trade-off that strengthening safety may incur a reduction on
non-safety quality criteria, such as progress and comfort,
since increasing α may cause the set Safe(s̄) to shrink and
therefore restrict allowable actions. For example, in the clas-
sification example discussed above, α = 0.95 corresponds
to the imprecise classification as Vehicle. Since, the param-
eters for class Vehicle are at least as conservative as for its
subclasses, any action that RSS considers safe when treating
the front vehicle as Vehicle will also be safe if the vehicle
is treated as Car. However, if the front vehicle actually is
a truck, then these more conservative parameters will cause
dmin to be unnecessarily large and may impact progress ob-
jectives.

There are two obvious ways to address this trade-off.
First, α can be made lower, and in fact, it can vary for differ-
ent components of the world model schema — but this im-
plies that more risk is incurred and there is lower bound to
what is societally acceptable. Second, the perceptual system
could be improved so that it exhibits higher confidence in its
perceptions and hence the size of the set [s̄] decreases (which
causes Safe(s̄) to increase). This may be possible, but there
are factors that limit it as well, including aleatoric uncer-
tainty. We are interested in investigating what approaches
may be available.

A key concern in this research is to make the approach
scalable to complex world model schemas and large world
models. RSS addresses scalability for planning and con-
trol by ensuring that correctness of the rules can be estab-
lished compositionally by only considering local interac-
tions between road users (i.e., the so-called “star-shaped”

argument). A similar compositionality is needed for work-
ing with imprecise models using under-perception. One pos-
sibility is to decompose the world model schema by treat-
ing components such as classes and attributes independently,
and the examples in this paper have used this perspective;
however, the probability distributions expressing uncertainty
may force dependencies. For example, the uncertainty on
Vehicle position and velocity attributes will be dependent
on the state of environmental conditions which are tracked
in another part of the world model.

Another aspect of scalability can be addressed by
analysing what parts of the world model are safety-relevant.
When Safe(s̄) = Safe(s), the under-perception is safety
irrelevant — i.e., whatever, dimensions of variation are cap-
tured by s̄, they are not relevant to safety decisions in world
model s. For example, examining the dmin computation on
which Safe(s) is based in the longitudinal following sce-
nario shows that it depends only on the velocities of cr
and cf . This means that under-perception of attributes of
other cars outside the scenario (e.g., parked in a driveway),
do not affect Safe(s). Identifying the relevant parts of the
world model can help focus limited computing resources.
This shows an interesting symmetry in the AD architecture:
while the perception subsystem contributes the uncertainty
information to the world model, the planning and control
subsystem contributes the relevance information. Also, note
that relevance is specific to quality attribute, so that safety
irrelevant aspects of the world model may still be relevant
for non-safety quality attributes.

Finally, while not considered in this paper, it is impor-
tant to explore how the Operational Design Domain (ODD)
as well as temporal aspects of world model evolution inter-
act with uncertainty and safety. In an AD system, the possi-
bility of exiting the ODD must be monitored to ensure the
safety boundaries of the architecture. Thus, the world model
schema must be rich enough to express the ODD condi-
tions. An interesting question to explore is whether under-
perception could be used to “soften” the ODD boundaries
without compromising safety. For example, if the ODD re-
quires that the AD system operate only in dry weather, and it
begins to rain lightly, an indication of increased perceptual
uncertainty could be used and a hard ODD exit maneuver
could be delayed until the rain intensity exceeds a threshold.
Uncertainty about entities can also increase or decrease as
the world model evolves and beliefs can be revised. Domain
knowledge in the form of behavioural models for different
classes in the world model schema could be used to set ex-
pectations about entity behaviour, and if these expectations
are violated, this could be a basis for increasing uncertainty
about it, treating it as “suspicious”.

In this paper we have discussed just a few of the top-
ics suggested by this work. Ultimately, we hope this work
makes an effective contribution to the important topic of us-
ing ML safely in the context of AD systems.
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