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Abstract

Deep neural networks generally perform very well on giving
accurate predictions, but they often lack in recognizing when
these predictions may be wrong. This absence of awareness
regarding the reliability of given outputs is a big obstacle in
deploying such models in safety-critical applications. There
are certain approaches that try to address this problem by
designing the models to give more reliable values for their
uncertainty. However, even though the performance of these
models are compared to each other in various ways, there is
no thorough evaluation comparing them in a safety-critical
context using metrics that are designed to describe trade-offs
between performance and safe system behavior. In this pa-
per we attempt to fill this gap by evaluating and compar-
ing several state-of-the-art methods for estimating uncertainty
for image classifcation with respect to safety-related require-
ments and metrics that are suitable to describe the models
performance in safety-critical domains. We show the relation-
ship of remaining error for predictions with high confidence
and its impact on the performance for three common datasets.
In particular, Deep Ensembles and Learned Confidence show
high potential to significantly reduce the remaining error with
only moderate performance penalties.

Introduction

The success of Deep Neural Networks (DNN) for many ap-
plications is based on their high capability on predicting cor-
rect results on a high number of input instances in many
different fields, ranging from computer vision to natural lan-
guage processing. For some tasks, like recommendation sys-
tems in retail, this strong performance is sufficient as the
low occurrence of wrong results has no effect on the safety
of a person. On the other hand, there are applications, for
example self driving cars utilizing deep learning methods,
where even a single misprediction can have life-critical con-
sequences for humans. Obviously, it is important to increase
the performance as much as possible in order to minimize
the number of dangerous mistakes. Nevertheless, solely im-
proving the models based on metrics like accuracy is not
enough as it does not take the severity of different types
of wrong results into account. For example, a pedestrian

classified as a non-vulnerable static object with high confi-
dence can lead to a dramatic outcome, while the same wrong
prediction with low confidence can trigger a safety-fallback
mechanism to avoid a collision. Unfortunately, the default
way of getting confidences by just taking the softmax score
and interpreting it as a type of certainty about the correct-
ness of an output often results in overconfident estimates
(Guo et al. 2017). Nonetheless, there are several different
approaches to acquire a more reliable value for the confi-
dence of a DNN than just the softmax scores, e.g. Bayesian
Neural Networks (Gal and Ghahramani 2016), Deep Ensem-
bles (Lakshminarayanan, Pritzel, and Blundell 2017), learn-
ing confidence as another output parameter (DeVries and
Taylor 2018), or using a Dirichlet distribution to quantify
the predictive uncertainty (Sensoy, Kaplan, and Kandemir
2018). These approaches have been compared to each other
mostly in a sense of how well calibrated their predictions
are. This solely measures how well the confidence estimates
match the average accuracy or how well they perform on
out-of-distribution examples. While these comparisons are
highly valuable, they do not consider other types of errors
and their severity from a safety perspective. Our main goal
is to determine the suitability of the individual methods for
specific safety-critical applications. For this, our main con-
tribution in this paper is a benchmark of these methods on
relevant metrics and characteristics for safety-critical appli-
cations.

Al for Autonomous Systems

A prominent use case in which the confidence of the Al
is crucial are autonomous systems. An exemplary safety
system for an automated driving system’s perception chain
(Weiss et al. 2018) is described, which shows the need for
well-performing uncertainty estimations. While DNNs have
proven to be capable of achieving impressive performance
for perception tasks, for the usage in safety-critical systems,
reliability of the perception is an inevitable precondition and
due to the complexity of DNNs cannot be guaranteed inher-
ently. To counteract this, a common practice is that a poten-
tially unsafe Al can be embedded in a safety-critical system
by encapsulating the Al in a so-called safety-envelope (or
safety bag) that continuously monitors it. In case of a de-
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tected fault, the Al is isolated and a verified safety path is
used as fallback solution. Figure 1 gives an overview of the
perception pipeline for such a system.
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Figure 1: Concept overview for utilizing uncertainty infor-
mation of modular perception stages for dynamic depend-
ability management.
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In different stages of the perception, Al is applied to solve
the respective tasks like object interpretation. Additionally is
depicted, how the uncertainty is used as a self-reporting and
diagnosis mechanism, which is in turn used by the surround-
ing safety systems to take runtime decisions about which in-
formation to trust and which potential mitigation actions to
take. However, a safety supervisor system like the one pre-
sented is only possible, if the self-reporting mechanisms of
DNNs, especially the uncertainty quantification, are suffi-
ciently reliable and high-performing from a safety point of
view.

Related Work

Embedding AI in Safety-Critical Systems A consider-
able amount of work has been done to analyze and define
the various aspects that help making Al safe. For example in
the whitepaper ~’Safety First for Automated Driving” (Wood
et al. 2019), to which 11 companies working on automated
driving systems have contributed, a lot of potential risks and
viable countermeasures for DNNs employed in autonomous
systems are covered. Among them are data quality, both for
gathering and labeling, self-reporting, plausibilisation, ex-
ternal observation of DNNSs, and the surrounding systems,
e.g. safety envelopes. A more specific framework for man-
aging perceptual uncertainties, especially for autonomous
driving, has been proposed by (Czarnecki and Salay 2018).
The authors describe various factors that influence the un-
certainty of DNNs and cover the whole process, from data
acquisition to the deployment of the trained models. Lastly,
practical experience reports, e.g. (Frtunikj 2019), show the
encountered difficulties when developing DNN-based per-
ception for automated driving systems and can give first
hints about the viability of different safety measures.

Verification of DNNs Automated verification of DNNs
and the resulting formal guarantees for them would greatly
benefit the applicability of such models in safety-critical
systems. However, due to their highly non-linear and non-
convex nature, classic verification tools like satisfiability

modulo theory or linear programming solvers are not suited
for neural networks (Katz et al. 2017). That being said, there
are advancements in this area, e.g. Reluplex (Katz et al.
2017) or the approach presented by (Ehlers 2017), which
aims to generate linear approximations of the behavior of
neural networks, in order to then solve these with conven-
tional verification tools. These methods, however, have some
limitations and are, as of now, only suited for very shallow
and narrow networks. Especially in the domain of machine
perception, where large architectures are dominant and the
state space is enormous, a formal verification of DNNs is
currently intractable.

Out-of-Distribution Detection Similar to uncertainty es-
timation, out-of-distribution (OOD) detection can be used to
minimize the misclassifications made by DNNs. The goal
here is to detect inputs that are not included in the data
distribution the network has been trained on, as generaliz-
ability to these can not be assumed. Various approaches for
this task exist, e.g. the monitoring of activation patterns at
runtime (Cheng, Niihrenberg, and Yasuoka 2018) or the ad-
dition of a discriminator based on adversarial autoencoders
(Pidhorskyi, Almohsen, and Doretto 2018). OOD detection
certainly is promising when it comes to increasing the safety
of systems operating in open world domains, but on their
own are not sufficient, as they don’t cover the in-distribution
1puts.

Explainable AI DNNs are black boxes and therefore most
of the time it is not entirely clear on what features their
predictions are based. To counteract this, there are efforts
to make the networks explainable, which belong to the
research area of explainable AI (XAI). Among these ap-
proaches are visualizations of the most relevant features or
input regions for a prediction, also known as saliency maps
(Hong et al. 2015). Another direction of XAl is the seman-
tic disentanglement of the learned features into high-level,
human-comprehensible features which are then used to form
the network’s opinion (Zhang et al. 2018). Although these
approaches don’t directly affect the predictive quality of
DNNSs, they can be used to, e.g., find suitable architectures,
validate the safety at design time and provide a tool to ana-
lyze errors that occur after the models have been deployed.

Predictive Uncertainty Quantification of DNNs

In the following, the approaches used for the benchmark and
discussion later in the paper are introduced.

Softmax

Using the softmax output of a neural network and inter-
preting it as a probability distribution or uncertainty is ar-
guably the simplest way of approaching this problem. How-
ever, it has been shown in previous research that especially
for deeper neural networks, these values tend to be overcon-
fident and poorly calibrated (Guo et al. 2017). Moreover,
cross-entropy loss, which is usually used for classification



tasks, can be interpreted as a maximum likelihood estima-
tion. Therefore, it is not suited for the estimation of a predic-
tive distribution’s variance, which informs about the predic-
tive uncertainty (Sensoy, Kaplan, and Kandemir 2018). For
safety-critical domains in particular, these characteristics are
very undesirable. Nevertheless, we still use the softmax as a
baseline to compare the other uncertainty estimation meth-
ods with.

Monte-Carlo Dropout

Arguably the most known method for the quantification
of uncertainty in DNNs is Monte-Carlo dropout (Gal and
Ghahramani 2016). They argue that when dropout is applied
at training and test time, it can be used to perform a varia-
tional approximation of a Bayesian neural network that has
Bernoulli distributions as prior. In consequence, when ran-
domly sampling over multiple forward passes with random
dropout masks and averaging the obtained softmax distribu-
tions, the mean and variance of the predictive distribution
can be approximated. As dropout is already part of, or can
be integrated into, many modern DNN architectures, it is
quite straightforward to use Monte-Carlo dropout for the es-
timation of their predictive uncertainty. It should, however,
be noted that several forward passes are required to achieve
a proper approximation. In embedded real-time systems this
can be a hindrance.

Deep Ensembles

Deep Ensembles is another sampling-based approach for the
estimation of the predictive uncertainty of DNNs (Lakshmi-
narayanan, Pritzel, and Blundell 2017). As with other en-
sembling methods, multiple models having the same basic
architecture are trained. Their softmax outputs are then av-
eraged to obtain a predictive mean and variance. Although
bootstrapping or bagging are often employed in other en-
semble learning methods, the authors argue that DNNs gen-
erally perform better with more data and their training takes
a significant amount of time, which is why they train each
ensemble member in parallel and on the entire dataset. To
further smooth the predictive distribution of Deep Ensem-
bles and make them more robust to adversarial attacks, an
augmentation of the training data with adversarial examples
has been proposed (Lakshminarayanan, Pritzel, and Blun-
dell 2017). Even though Deep Ensembles have no Bayesian
grounding, empirically they often outperform Monte-Carlo
dropout, even requiring significantly less samples, as e.g.
(Beluch et al. 2018) and (Lakshminarayanan, Pritzel, and
Blundell 2017) have shown. (Beluch et al. 2018) examined
why Deep Ensembles generally perform better and suggest
that it is mainly due to an increased model capacity, as Deep
Ensembles require no dropout at inference time, and due to
different weight initializations, which cause each network to
converge to a different local minimum.

Learned Confidence Estimates

A further method to estimate the uncertainty of neural net-
works is to learn the confidence values by incentivising the

neural network to produce confidence estimates which cor-
rectly reflect the ability of the model to produce correct pre-
dictions for given inputs in exchange for a reduction in loss
as shown in (DeVries and Taylor 2018). They proposed a
method to give neural networks the ability to ask for hints
during training. This is done by adding a confidence estima-
tion branch to any neural network in parallel with the class
prediction branch where both branches receive the same
input. Equation 1 formalizes the outputs of the network,
whereby p is the softmax distribution and c is the confidence
in the softmax output.

M
p.c= f(z,0) pi,c€[0,1] Zpizl. (D
i=1

The confidence branch outputs a single scalar between 0
and 1 which is parameterized as a sigmoid. That value repre-
sents the confidence of the neural network to correctly pro-
duce the target output to a given input. A low confidence
value indicates that the network can not be trusted about the
given prediction. During training, the network is given hints
by adjusting the softmax prediction scores for the classifica-
tion, interpolating between the target and the original predic-
tions probability distribution, where the extent of interpola-
tion is determined by the networks confidence, as shown in
equation 2.

p; = cpi + (1 = c)y;. (2)
The overall loss is composed of a task- and a confidence
loss. The task loss is computed by applying a standard clas-
sification loss function (e.g. negative log-likelihood) on the
modified prediction outputs. The confidence loss is a bi-
nary cross-entropy loss where the target value is always 1.
This confidence loss is added to the task loss with a certain
weighting factor in order to prevent the network from mini-
mizing the loss by always choosing to have 0 confidence and
receiving the entire ground truth.
Both losses can then be computed following equation 3.

M
Ltask = - ZZOQ(p;)yiv Lconf = _lOg(C)' (3)
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Finally, both the task and the confidence loss are com-
bined to get the total loss.

Loyt = Ligsi + >\Lconf~ (4)

Now it shows, that for cases where the confidence ¢ ap-
proaches 1, the predictive distribution will not receive any
hints from the ground truth (see equation 2) and thus is equal
to the standard predictive distribution. As the confidence loss
will be zero, the overall loss is identical to a normal classi-
fication network with a standard task loss (see equation 3).
On the other hand, if c is approaching 0, the predictive dis-
tribution will be equal to the ground truth and hence, the
task loss would approach zero. Contrary, this would result
in a very high confidence loss. The \ parameter is balancing
how much it costs the network to ask for hints.



Evidential Deep Learning

Another sampling-free approach for uncertainty quantifica-
tion is Evidential Deep Learning (Sensoy, Kaplan, and Kan-
demir 2018). The authors take ideas from the Dempster-
Shafer Theory of Evidence and its formalization, Subjective
Logic. There, in the case of classification tasks, a Dirichlet
Distribution is used to quantify the belief masses and overall
predictive uncertainty. The parameters of such a Dirichlet
distribution can be learned by replacing the softmax acti-
vation of the output layer with a different activation func-
tion, e.g. ReLU or softplus. To fit the Dirichlet distribution
to data, the authors propose three methods for the loss com-
putation. The empirically best performing has the following
form

K . R
L) = Yoy — )2+ PES P )

= i+ 1
where i is the current data sample, y is the ground truth,
p is the prediction, K are the individual class labels and, in
consequence, the parameters of the learned Dirichlet distri-
bution, and S = Zfil (e;+1), where e; is the evidence for a
class label 7. This loss function generates more evidence for
correct classifications, while simultaneously removing evi-
dence that could lead to misclassifications. Overall, the au-
thors have shown in their experiments that Evidential Deep
Learning can perform on par with other uncertainty methods
and can be also help with the detection of OOD samples,

while requiring only a single forward pass.

Evaluation

Our benchmark for uncertainty estimation is applied to the
common task of image classification, where a label from a
defined set of classes is assigned to each individual input im-
age. We compare the following methods as described in the
previous section: Softmax, Monte-Carlo Dropout (MCDO),
Deep Ensemble (DE), Learned Confidence (LC) and Evi-
dential Deep Learning (EDL).

Experimental Setup

In order to compare the uncertainty estimation methods we
trained a simple 6-layer CNN (SimpleCNN) and a deeper
VGG16 (Simonyan and Zisserman 2014) network. In both
networks, batch normalization is used after each convolu-
tional layer and dropout is applied after each max pooling
layer with a rate of 0.5. For the LC and EDL methods, the
last prediction layers and the loss function had to be changed
adapted as described in the previous section.

We compare the performance on three different datasets
for image classification: MNIST, CIFAR-10, and German
Traffic Sign Recogntion Benchmark (GTSRB) (Stallkamp
et al. 2011) which are all publicly available. The task for
the MNIST dataset is to classify handwritten digits into 10
classes. For CIFAR-10 images have to be classified into
10 different classes, e.g. automobile, truck or dog. The
objective of the GTSRB is to classify images of german
traffic signs into one of 43 classes. The first two datasets
are arguably simple standard datasets to test new machine

Certain | Uncertain
Correct CC UucC
Incorrect CI Ul

Table 1: Classification result interpretation with uncertainty

learning approaches, whereas the latter one is highly
relevant for the field of autonomous driving systems. For
CIFAR-10, data augmentation (rotation, flip, color, crop)
was applied in order to increase performance. As optimizer,
Adam was used with the learning rate set to 3 - 10~ and the
momentum parameters set to the tensorflow keras default
values. We stopped the training early if the validation loss
did not change for a few epochs. Unfortunately, EDL did
not perform reasonably well on the GTSRB dataset with
both selected models. Therefore, the corresponding results
are excluded in the following discussion.

Evaluation Metrics

Without uncertainty, predicted labels are either correct, if the
highest softmax output matches the respective target label,
or incorrect otherwise. However, if we consider the confi-
dence as well, each of the results can also either be certain,
if the confidence is above a defined threshold, or uncertain
otherwise. Table 1 summarizes the possible outcomes.

A system which relies on these estimates is expected to be
in functional mode if the predictions are certain and in fall-
back/mitigation mode if the prediction is uncertain. How-
ever, the most critical result regarding safety are the predic-
tions where the model is certain about its prediction but in-
correct (CI). We call the ratio of the number of certain but
incorrect samples to all samples the Remaining Error Rate
(RER). For minimizing the overall risk, it needs to be as low
as possible. Nonetheless, if a model would always give a low
confidence as output, the system would constantly remain in
fall-back mode and will be unable to provide the intended
functionality. Therefore, the ratio of the number of certain
and correct samples to all samples - we call it the Remain-
ing Accuracy Rate (RAR) - needs to be as high as possible
to stay in performance mode for most of the time.

Results and Discussion

All results shown are based on a separate test set that was
used for neither training nor hyper-parameter selection.

Model Selection All tests were performed with both mod-
els where the plain classification accuracy showed only mi-
nor differences between the two. Therefore, we stick to the
SimpleCNN for most of the discussion since it has drasti-
cally fewer parameters and therefore is faster to train and
apply and also is closer to the size of networks used in em-
bedded real-time systems. Furthermore, we observed that
MCDO showed almost no variance in the sampled output
with VGG16 for all three datasets. This remained true even
if we introduced further dropout layers into the architecture.
We speculate, that given the moderate difficulty and small



input image size of the three datasets, the large VGG16
model learns a lot of redundant paths that lead to the same
output even if parts of the network are dropped.

In contrast to that we consistently observed, that the LC
method is working considerably better with VGG16 for its
confidence predictions, which is why we selected it for this
particular approach. Given our observation, we assume that
increased depth of the network improves the model’s capa-
bility to learn better confidence values. However, further re-
search has to be done in the future, to allow for a better com-
parison between the uncertainty quantification methods and
their underlying architectures, especially with respect to the
applicability in embedded systems.

Number of Samples For the sampling based methods we
investigated the influence of the number of samples on the
accuracy and uncertainty estimation performance. For DE
5 samples already provided good results, with a slight im-
provement if 7 samples were considered. Adding more sam-
ples did not improve the results any further. MCDO on the
other hand benefited much more from a higher sample count,
where 10-20 samples already provided good results and fur-
ther minor improvements could be observed using 100 sam-
ples.

In the following discussion we used 7 samples for DE
and 100 samples for MCDO to highlight the best possible
performance for each approach.

Remaining Error and Accuracy The remaining error
and accuracy directly depend on the uncertainty estimation
method and the threshold value that separates the certain
from the uncertain outputs. However, requirements on er-
ror or accuracy rate are highly application dependent and so
is the selection of a suitable threshold. Therefore, Figure 2
shows the remaining accuracy against the remaining error
for each method plotted for all thresholds ¢ € [0,1) which
are sampled with steps of 0.005 for the visualization.

On all three datasets, DE provide the best results in terms
of remaining error and accuracy at the cost of keeping mul-
tiple model instances and sampling during inference time.
With MNIST, depending on the selected threshold, the RER
can be reduced from 0.3% to less than 0.1% with only a
slight reduction in RAR. On this dataset, MCDO can reduce
the RER even further at the cost of a loss of almost 4% of ac-
curacy. Note that the results for MNIST should be taken with
a grain of salt as the overall performance of every model is
already very good and the differences often lie in a hand-
ful of wrong predictions which can also be attributed to the
convergence to a different local minimum of each model.

CIFAR-10 shows a much lower performance overall. Fur-
thermore, since all curves are steeper, there is a higher
penalty for a reduction in the remaining error on the remain-
ing accuracy. However, it also covers by far the largest RER
range of all three datasets. Nonetheless, the RER can be re-
duced from almost 12% to 2% if a reduction of the RAR
to 75% percent is acceptable. On this dataset, LC achieves
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Figure 2: RAR vs. RER for each method

a strong second place and EDL performs almost as good as
MCDO.

Finally, the performance on GTSRB shows some similar-
ities to MNIST: the curves have a reasonable flat part on the
right indicating a good trade-of between remaining error and
accuracy for lower thresholds. LC, MCDO and softmax are
quite close, where especially the results for softmax are sur-
prisingly good. However, the curve for softmax ends earlier
while all other methods allow to reduce the RER even fur-
ther.

Confidence Calibration A further metric, which is often
used to show the quality of uncertainty estimates in context



to the overall performance is the network calibration. Figure
3 shows the achieved accuracy for the predictions on each
confidence interval.
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Figure 3: Network calibration, CIFAR-10

A perfect calibration would match the diagonal line
from bottom left to the top right. It can be observed that
Deep Ensembles give the best calibrated results as the
curve is very close to the diagonal for a large part and also
contains values in low confidence bins. While the softmax
predictions often tend to be overconfident (confidence
higher than accuracy), MCDO also produces well calibrated
estimations for higher confidence scores. However, both
methods do not estimate confidences of less than 0.2 at all.
Contrary to that, the estimates for EDL and LC are very
cautious and often result in low confidence values even
though the output is correct. Nevertheless, the confidences
estimated by these methods cover the entire value range
which can be beneficial for safety-critical applications.

Uncertainty Estimation Quality A perfect uncertainty
estimation approach would rate all incorrect predictions as
uncertain and all correct predictions as certain, therefore
maximizing the achievable performance while reducing the
remaining error to zero.

In an attempt to visualize the uncertainty estimation
quality of a method, we plot the ratio of uncertain cor-
rect/incorrect to all correct/incorrect samples respectively,
highlighting the ability to shift predictions from certain
to uncertain depending on the defined threshold. Figure 4
shows the two ratios for each method.

The sampling based approaches and softmax do not es-
timate low confidence values below 0.3 even for incorrect
classified examples. However, once they start to label predic-
tions as uncertain, the ratio increases much faster for incor-
rect outputs, which is a good sign. Overall, favorable thresh-
olds with a maximum separation can be found at the higher
end of the threshold interval, e.g. around 0.8.

On the other hand, the sampling free approaches, exclud-
ing softmax, are much more conservative in their predic-
tions giving low confidences to an overwhelming number
of the incorrect predictions. Unfortunately, they also shift
some of the correctly classified outputs into the uncertain
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Figure 4: Uncertainty ratios for different thresholds

domain right from the start. However, they provide a very
wide range of suitable thresholds allowing for a finer con-
trol of the trade-of between remaining performance and er-
ror. Furthermore, sampling free methods are more time effi-
cient during inference as they only require one forward pass
which makes them a strong candidate for time sensitive and
safety-critical applications, for example object detection in
autonomous vehicles. It is also worth mentioning that DE
need much fewer forward passes while still consistently out-
performing MCDO for both performance as well as safety
related metrics.

Softmax Performance Even though softmax is usually
outperformed by the other proposed methods, its scores were
a better uncertainty estimate than we anticipated - especially
on GTSRB. We attribute this to the comparatively small
model size of the SimpleCNN which is in line with the ob-
servations in (Guo et al. 2017) where softmax showed to be
well calibrated for small models.

Figure 5 provides further evidence for this hypothesis by
comparing the results for the SimpleCNN and VGG16 both



in terms of remaining accuracy and error as well as cali-
bration. It can be observed that the softmax output from
VGG16 is much less useful to reduce the RER and also
significantly worse calibrated compared to the output of the
smaller model.
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Figure 5: Softmax uncertainty with SimpleCNN and VGG16
for CIFAR-10

Conclusion and Future Work

In this paper we described and evaluated several different
methods for uncertainty estimation on metrics which were
designed to give more insights on the performance with re-
spect to safety-critical applications. We also briefly put the
information gained from these uncertainty values into the
context of autonomous system, where it can be used for sys-
tem adaption and risk mitigation. In the results we saw that
all four uncertainty estimation methods outperformed the
shallow softmax predictions in almost all cases, especially
for deeper networks where the softmax was highly overcon-
fident. Furthermore, we discovered that the sampling-free
approaches, especially the Learned Confidence method, are
much more restrictive in their predictions giving consistently
lower confidences and show a high capability to reject false
predictions while still maintaining a fairly low rate of being
uncertain about correct predictions. On the other hand, for
lower thresholds, the sampling based methods have far lower
rejection rates as they almost never give confidence values
below 0.2. Nevertheless, especially Deep Ensembles show

strong performance while still rejecting most of the false ex-
amples for many thresholds above that level. Overall we see
strong potential by combining the two overall best perform-
ing methods which are Deep Ensembles and Learned Con-
fidence and bringing together the good calibration and gen-
eral performance of Deep Ensembles with the strong capa-
bility of rejecting false examples with a very low confidence
of Learned Confidence. In the future work we will exam-
ine these promising methods and combinations of them on
other tasks like out-of-distribution detection with respect to
the proposed safety metrics.

Acknowledgments

This work was partially supported by the Bavarian Min-
istry of Economic Affairs, Regional Development and En-
ergy through the Center for Analytics — Data — Applications
(ADA-Center) within the framework of "BAYERN DIGI-
TAL II” and within the Intel Collaborative Research Institute
Safe Automated Vehicles.

References

Beluch, W. H.; Genewein, T.; Niirnberger, A.; and Kohler,
J. M. 2018. The power of ensembles for active learning in
image classification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June.

Cheng, C.-H.; Niihrenberg, G.; and Yasuoka, H. 2018. Run-
time monitoring neuron activation patterns.

Czarnecki, K., and Salay, R. 2018. Towards a framework to
manage perceptual uncertainty for safe automated driving.
In Gallina, B.; Skavhaug, A.; Schoitsch, E.; and Bitsch, F.,
eds., Computer Safety, Reliability, and Security, 439—-445.
Springer International Publishing.

DeVries, T., and Taylor, G. W. 2018. Learning confidence
for out-of-distribution detection in neural networks.

Ehlers, R. 2017. Formal verification of piece-wise linear
feed-forward neural networks.

Frtunikj, J. 2019. Practical experience report: Engineering
safe deep neural networks for automated driving systems.
In Romanovsky, A.; Troubitsyna, E.; and Bitsch, F., eds.,
Computer Safety, Reliability, and Security, volume 11698 of
Lecture Notes in Computer Science. Springer International
Publishing. 235-244.

Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In Balcan, M. F., and Weinberger, K. Q., eds., Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning
Research, 1050-1059. PMLR. 20-22 Jun.

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017.
On calibration of modern neural networks. ICML 2017.

Hong, S.; You, T.; Kwak, S.; and Han, B. 2015. Online
tracking by learning discriminative saliency map with con-
volutional neural network. In Proceedings of the 32Nd In-

ternational Conference on International Conference on Ma-
chine Learning - Volume 37, ICML’15, 597-606. JMLR.org.



Katz, G.; Barrett, C.; Dill, D.; Julian, K.; and Kochenderfer,
M. 2017. Reluplex: An efficient smt solver for verifying
deep neural networks. This is the extended version of a paper
with the same title that appeared at CAV 2017.

Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. In Guyon, I.; Luxburg, U. V.; Bengio, S.;
Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems
30. Curran Associates, Inc. 6402-6413.

Pidhorskyi, S.; Almohsen, R.; and Doretto, G. 2018. Gener-
ative probabilistic novelty detection with adversarial autoen-
coders. In Bengio, S.; Wallach, H.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 31. Curran Asso-
ciates, Inc. 6822-6833.

Sensoy, M.; Kaplan, L.; and Kandemir, M. 2018. Evidential
deep learning to quantify classification uncertainty.

Simonyan, K., and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition.

Stallkamp, J.; Schlipsing, M.; Salmen, J.; and Igel, C. 2011.
The German Traffic Sign Recognition Benchmark: A multi-
class classification competition. In IEEE International Joint
Conference on Neural Networks, 1453—-1460.

Weiss, G.; Schleiss, P.; Schneider, D.; and Trapp, M. 2018.
Towards integrating undependable self-adaptive systems in
safety-critical environments. In [3th International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems.

Wood, M.; Robbel, P.; Maass, M.; Tebbens, R. D.; Mejis,
M.; Harb, M.; Reach, J.; Robinson, K.; Wittmann, D.; Sri-
vastava, T.; Bouzouraa, M. E.; Liu, S.; Wang, Y.; Knobel, C.;
Boymanns, D.; Lhning, M.; Dehlink, B.; Kaule, D.; Krger,
R.; Frtunikj, J.; Raisch, F.; Gruber, M.; Steck, J.; Meja-
Hernandez, J.; Syguda, S.; Blher, P.; Klonecki, K.; Schnarz,
P.; Wiltschko, T.; Pukallus, S.; Sedlaczek, K.; Garbacik, N.;
Szmera, D.; Li, D.; Timmons, A.; Bellotti, M.; O’Brien, M.;
Schollhorn, M.; Dannebaum, U.; Weast, J.; Tatourian, A.;
Dornieden, B.; Schnetter, P.; Themann, P.; Weidner, T.; and
Schlicht, P. 2019. Safety first for automated driving. Tech-
nical report.

Zhang, Q.; Cao, R.; Shi, F.; Wu, Y. N.; and Zhu, S.-C. 2018.
Interpreting cnn knowledge via an explanatory graph.


http://www.tcpdf.org

