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Abstract. Here we discuss quantum algorithms for the so-called k-local Hamil-

tonian problem. This is one of the problems that is QMA-complete which, 

roughly speaking, is the NP-complete analogue for a quantum computer. We 

discuss exact methods, both classical and quantum, as well as approximate al-

gorithms, more tailored to existing NISQ (noisy, intermediate-scale quantum) 

devices. We present a roadmap towards building an algorithmic cooling proce-

dure in a NISQ device and we conclude observing some of the challenges that 

quantum software engineering might encounter in the future. 
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1 Introduction 

Quantum computers are devices that are designed to exploit quantum-mechanical 

effects in order to solve specific tasks much faster than their classical counterparts (1). 

As originally envisioned by Feynman (2), they are expected to have a large impact in 

the simulation of large quantum systems. Additionally, Shor's algorithm for efficient 

prime number factorization (3) further sparked the interest in quantum computation. 

Until recently, however, an experiment conclusively demonstrating that current quan-

tum devices can, in some sense, go beyond foreseeable classical capabilities, was 

lacking. Very recently, in (4) this major milestone was met, in an experiment where a 

53-qubit chip was reported to sample from a probability distribution that would have 

been otherwise impossible to sample from classically in a reasonable amount of time. 

However, quantum computation finds applications beyond, in areas as diverse as 

cryptography (3), simulation of quantum systems (5), quantum chemistry (6), optimi-

zation (7), search (8), equation solving (9) and machine learning (10), (11), (12). 

In order to be successfully addressed, not all the above tasks require the same 

quantity and/or quality of resources. For instance, integer factorization requires a 

fault-tolerant, fully scalable quantum computing technology with thousands of logical 

quantum bits (qubits) and universal quantum gates (13) (see also (14)). In addition, 

logical qubits should ultimately be encoded into several physical qubits in order to 

enable recursive quantum error correction, which would increase the qubit and gate 

count several orders of magnitude (15), (16). For instance, quantum chemistry simula-

tions that go beyond classical capabilities could be performed with few hundreds of 

qubits, but gate counts based on current realistic parameters give estimates of the 
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order of 1015-1016 gates (17), (18). Despite recursive layers of quantum error correc-

tion should not be, in principle, a problem once a certain gate fidelity threshold is met 

(19), and despite some technologies (e.g. silicon (20) or superconducting qubits (21)) 

indeed rapidly approach the fault-tolerance threshold for error correction on single 

one- and two-qubit gates, the assumption behind recursive quantum error correction, 

namely, that the error-per-gate is independent of the system size, still poses a major 

technological challenge. 

On the other hand, currently available quantum devices operate in the so-called 

noisy intermediate-scale quantum (NISQ) (22) regime. They typically consist of a 

number of qubits that lies slightly above the limit of brute-force classical simulation 

(23) (around 50), and their operations are too noisy to allow for recursive quantum 

error correction to be a viable option. Therefore, NISQ devices can be seen as early 

quantum computers that can maintain coherence only for a small amount of time. 

Equivalently, they can carry out algorithms with a fixed number of gates (103 - 104), 

which would roughly be of the order of the inverse of a single gate fidelity. 

Whether NISQ devices can already solve some tasks which cannot be addressed 

purely by classical means was a matter of intense debate. On the theoretical side, it 

had been shown that shallow-depth quantum circuits pose an advantage over their 

classical counterparts (24), even in the presence of quantum noise (25). On the exper-

imental side, the recent experiment of Google (4) showed that this separation is does 

exist, although some criticism followed, based on leveraging a secondary storage to 

extend the power of classical simulation (26) (See also Section 3.1). However, this 

criticism is likely to be refuted in the near future, with slightly larger quantum NISQ 

devices, overcoming the secondary storage argument (see also (27). It is worth noting 

that this is but a first milestone, since the problem selected to show quantum inimita-

bility (4) does not have any particular use except for, potentially, certified quantum 

randomness generation (28), and of course showing this separation between classical 

and quantum devices. 

Most of the potential of NISQ devices is expected, not only in the certified ran-

domness generation area (28), but perhaps more importantly, in optimization prob-

lems that are intractable with classical computers. Such optimization tasks, e.g. quad-

ratic unconstrained binary optimization (QUBO), arise naturally in diverse areas of 

industry, but due to their inherent NP-hardness, classical approaches are only capable 

of giving sub-optimal solutions by means of heuristics. Despite a NISQ device may 

not yield the global optimum either (these optimization problems are, in their full 

generality, what is termed QMA-complete, which is, roughly speaking, the equivalent 

of NP-complete for a quantum computer), it is open whether they can produce better 

sub-optimal solutions than classical computers can do (29). NISQ devices have natu-

rally attracted a lot of attention due to their potential in optimization problems, where 

the cost function is classical. This cost function is represented as finding the ground 

state of a quantum Hamiltonian that is encoded in the computational basis. Algo-

rithms such as the Quantum Approximate Optimization Algorithm (QAOA) (30) 

constitute a promising avenue for the solution of such optimization tasks (31). 
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In this work, we give an overview of the possible approaches that might be rele-

vant for NISQ devices. In Section 2, we consider the k-local Hamiltonian as a bench-

mark problem and we discuss its complexity-theory implications. In Section 3, we 

discuss exact quantum algorithms that work in a fault-tolerant quantum computer, 

which would solve the problem in a worst-case complexity scenario. In Section 3.1 

we discuss existing classical approaches and in Section 3.2 we discuss quantum exact 

methods. In Section 4 we present approximate approaches to the problem; in particu-

lar in Section 4.1 we consider methods based on Variational Quantum Eigensolvers, 

whereas in Section 4.2 methods based on cooling. In Section 5 we sketch a blueprint 

for an algorithmic cooling algorithm suited for NISQ devices from a platform-

agnostic perspective. We conclude in Section 6. 

2 The problem of Hamiltonian ground-state energy estimation 

and preparation 

One of the problems that inspired Feynman’s ideas on Hamiltonian Quantum compu-

tation (2) is the k-local Hamiltonian problem, defined by Kitaev in (32). In our work 

we focus in this problem for the following reasons: 

• Unlike the classical complexity class NP, where thousands of NP-complete prob-

lems are classified, there are relatively few QMA-complete problems that are 

known. 

• This problem can be viewed as a quantum analogue of MAX-k-SAT (how many 

Boolean clauses involving at most k variables can be satisfied by an assignment), 

where Boolean variables would be replaced by qubits, and clauses would be re-

placed by local Hamiltonians, i.e. constraints on sets of, at most, k qubits. 

• This is a problem of natural interest in physics, since many of the Hamiltonians 

appearing in Nature enjoy this property (33), (34). 

• A broad class of optimization problems can be recast into a k-local Hamiltonian 

problem, such that, if we can prepare the ground state of such a Hamiltonian, then 

we have succeeded in finding the optimal solution. 

Hence, the k-local Hamiltonian is a good problem to be our benchmark, due to the 

above-mentioned reasons. We therefore consider a quantum system of n r-level sub-

systems described by a Hamiltonian 

  H= ∑ Hi
m
i=1  , (1) 

 

where m depends polynomially on n. We say that H is k-local if each of the Hi acts 

non-trivially in, at most, k sites. We note that being k-local does not necessarily give 

any information about the geometrical arrangement of the particles. We also say that 

H is d-dimensional if the particles are arranged in a d-dimensional lattice and only 

nearest neighbor interactions are allowed. We observe that d-dimensional systems are 

2-local. 
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Preparing the ground state |ψg〉 of H or even finding its ground state energy 

〈ψg|H|ψg〉 can result into a very complex task. Indeed, many optimization problems 

can be recast into the form of Eq. (1), even classical NP-complete problems such as 3-

SAT or MAX-CUT, simply by taking H to be diagonal in the computational basis. 

Approximating the ground state of a quantum Hamiltonian is the paradigmatic exam-

ple of a QMA-complete problem (35). QMA stands for Quantum Merlin-Arthur and it 

is the set of decision problems for which, if the answer is affirmative, there exists a 

polynomial-size quantum proof that is accepted with probability greater than 2/3 by a 

quantum verifier in polynomial time and, when the answer is negative, no quantum 

proof convinces the verifier to accept with probability greater than 1/3. This holds 

even in perhaps surprising, apparently simpler, particular instances, such as the Ham-

iltonian being k-local (for k = 5 (32), k = 3 (36) and k = 2 assuming P ≠ QMA (37)), 

or even in a 1-dimensional case (although with qudits of dimension ≥ 12) (35). 

One usually finds several approaches when tackling the optimization problem 

stemming from Eq. (1), which we here briefly recall: Fully classical methods (Section 

3.1), quantum exact methods (Section 3.2) methods inspired by variational quantum 

eigensolvers (Section 4.1) and algorithmic cooling schemes (Section 4.2). 

3 Exact algorithms 

3.1 Fully classical methods 

It is natural to start considering fully classical methods to simulate a quantum com-

puter. This is the first obvious step when developing, benchmarking and debugging a 

new quantum algorithm or studying quantum processes. However, fully classical 

methods are of course limited by the exponential growth of the Hilbert space dimen-

sion (where quantum states are represented) with the system size, rendering them 

impractical for even moderate system sizes. The largest simulations, to the best of our 

knowledge, that have been performed reach up to 49 qubits, intensively exploiting 

symmetries of the Hamiltonian (23), (28), (38), (39). 

To this end, there are basically two extremal algorithms (28). The first one (also 

known as Schrödinger's algorithm) stores all the amplitudes of the wavefunction in 

the computational basis and updates these amplitudes for every unitary in the circuit 

that is applied. Clearly, Schrödinger's algorithm cannot be directly applied beyond a 

system size given by the available memory in the system. The second algorithm (also 

known as Feynman's algorithm) exploits Savitch’s theorem, to allow one to break this 

memory barrier, keeping it linear in the number of qubits and gates, however at a 

much larger exponential cost in runtime (28). 

Interestingly, the limitation in memory can be overcome, at the expense of a much 

higher runtime (see also (4), (26)): As a rule of thumb, every halving of the memory 

requirements (i.e., every extra qubit) comes at the price of multiplying the runtime of 

the circuit by its depth (28). Regarding the specific problem of ground state prepara-
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tion, direct classical algorithms are based on exact diagonalization of H, power itera-

tion methods (40) or Lanczos-based algorithms (41). 

 

3.2 Quantum exact methods 

The main advantage that a quantum computer offers is the ability to simultaneously 

store and manipulate all the amplitudes of the wavefunction. Exact methods for 

ground state preparation have been developed and improved since the advent of quan-

tum algorithms. Most of the existing algorithms can be classified within two groups: 

• In the first group, we would find those which attempt to project a trial, easy to 

prepare, state onto the ground state by means of phase estimation (42), (43) or fil-

tering (44), which require an implementation of the Hamiltonian dynamics (45), 

(46), (47), (48), (49), or those that are based on or power-iteration methods (50), 

(51), which also require the implementation of certain functions of the Hamiltoni-

an, via e.g. linear combinations of unitaries (46), (52), (53). 

• In the second group, one can find those which are based on variants of the adia-

batic algorithm (54), (55). These aim at preparing an easy state which is the ground 

state of a known Hamiltonian H0, and slowly turning this Hamiltonian into the one 

we are interested in, H1, by continuously transforming H0 into H1, for instance, by 

parameterizing the adiabatic path as H(s) = (1-s) H0 + sH1. 

In (50), a method for ground state preparation and ground energy estimation with a 

quantum computer with a smaller number of qubits than other approaches. If we de-

note by N the size of H (i.e., N is exponential in n); |𝜙0| (𝜒) the overlap (a bound on 

that) between the initial state of the quantum computation and the ground state of H; 

Δ the spectral gap of H (the difference between the first excited state energy and the 

ground state energy); 𝜀 the desired precision of the output state with the ground state 

of H; Φ the gate cost to prepare the initial state of the algorithm; and Λ the oracle cost 

to access an element of H in order to implement the Hamiltonian simulation; then in 

(50) we showed that one obtains an algorithm for ground state preparation with the 

following quantum gates and qubits requirements: 

Table 1. Qubit and quantum gate count for exact ground state preparation algorithms (50). 

Algorithm Gate count 

(time complexity) 

Number of qubits 

(memory complexity) 

Phase estimation + 

Amplitude Amplification 
�̃� (

Λ

|𝜙0|2Δ𝜀
+

Φ

|𝜙0|
) 𝑂 (log 𝑁 + log

1

𝜀
+ log

1

Δ
) 

Filtering method (44) �̃� (
Λ

|𝜙0|Δ
+

Φ

|𝜙0|
) 𝑂 (log 𝑁 + log

1

𝜀
+

log
1

𝜒𝜀

log log
1

𝜒𝜀

log
1

Δ
) 

(50) with known ground 

energy 
�̃� (

Λ

|𝜙0|Δ
+

Φ

|𝜙0|
) 

𝑂 (log 𝑁 + log log
1

𝜀
+ log

1

Δ
) 

(50) with unknown 

ground energy 
�̃� (

Λ

𝜒Δ3 2⁄
+

Φ

𝜒Δ1 2⁄
) 
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Note that in Table 1 the �̃� notation indicates that logarithmic factors have been 

omitted in the interest of simplicity. 

4 Approximate algorithms 

From Table 1 we learn that the worst-case complexities deem the problem intractable 

in its full generality: The parameters |𝜙0| (𝜒) and Δ are going to be, in general, expo-

nentially small. This should not be surprising, since the k-local Hamiltonian problem 

is QMA-complete in its full generality. Nevertheless, these are asymptotic results, and 

they do not imply that NISQ devices may yield an advantage still for low number of 

qubits. Therefore, our goal in this section is not to exactly prepare the ground state 

|𝜓𝑔〉 of H in a worst-case scenario, but to prepare a low-energy state |𝜓〉 within the 

NISQ framework, ideally achieving a good overlap |〈𝜓𝑔|𝜓〉| in an average-case, and 

benchmark the performance of the algorithm we propose. This means that the set of 

available quantum gates is limited (given e.g., by the available experimental setup) 

and the coherence time is upper bounded, thus not allowing for a quantum circuit 

composed of more than 103 - 104 of such quantum gates. In addition, the fidelity of 

quantum gates would not be good enough to enable fault-tolerant recursive quantum 

error correction (38), (56), (57).  

 

Our vision is that a shallow quantum circuit that cheaply (i.e., with as few operations 

as possible) boosts the overlap with the ground state |〈𝜓𝑔|𝜓〉|  allows for much faster 

quantum exact methods for ground state preparation, as the best dependence with 

such overlap scales, to the best of our knowledge, as |〈𝜓𝑔|𝜓0〉|−1 (44), (50) (see also 

Table 1). Therefore, in practice, one might be interested in using such a hybrid heuris-

tic-exact approach, even when a scalable, fully fault-tolerant quantum computer 

would be available. 

 

4.1 Methods inspired on Variational Quantum Eigensolvers  

Methods based on variational quantum eigensolvers (VQE) aim at preparing the low-

est energy state of H within a parameterized family of wavefunctions. Recently, these 

methods have gained increasing attention (58), (59), (60), (61), (62), (63). The suc-

cess of VQE critically depends on the parameterization being general enough, mean-

ing that it should be able to, at least, represent quantum states having high fidelity 

with the actual ground state but, at the same time, efficient enough, meaning that it 

should do so with a manageable number of parameters. Tensor network states, such as 

matrix product states (64), (65), (66), (67), (68), (69) or projected entangled pairs 

states (70), but also neural quantum states (71), (72), (73), (74) have been shown to 

successfully represent ground states of physically relevant Hamiltonians. Despite the 

success of such variational classes of states, except in some cases (63), (75), it is in 

general not obvious how to prepare such states within the NISQ paradigm. 

Interestingly, the so-called Quantum Approximate Optimization Algorithm (QAOA) 

is specially tailored to shallow-depth devices (30), provided one can perform Hamil-
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tonian evolution efficiently. This includes the case of classical optimization problems, 

when the Hamiltonian terms commute as they are diagonal in the computational basis. 

Within the NISQ paradigm a classical-quantum continuous feedback loop is normally 

a key ingredient in the development of such algorithms (76). 

 

4.2 Algorithmic cooling schemes  

Schemes based on algorithmic quantum cooling (77), (78), (79), (80) are built upon 

using ancillary qubits to cool the system of interest: These ancillary qubits weakly 

interact with the system and are measured after some time. When they are found in an 

excited state, this process removes energy in the rest of the system. Repeating this 

process in cycles, produces a monotonically decreasing function of the energy with 

time, thus achieving the cooling. It is worth mentioning there also exist related, albeit 

different, approaches based on dissipative open-system dynamics to drive quantum 

systems to their ground state (81), (82), (83). 

5 A blueprint for energy minimization with NISQ devices 

In this section, we sketch a blueprint to construct a quantum circuit that heuristically 

minimizes the energy of a quantum Hamiltonian H. The algorithm is based on an 

adaptive algorithmic cooling procedure, aided by some classical optimization. Its goal 

is to approximate a low-energy state of that Hamiltonian with a small number of 

gates, no extra qubits and few measurements. The method is agnostic to previous 

insight about the physical properties of the model to be solved, although we bench-

mark it with 1D systems or exactly diagonalizable models, to show its performance 

beyond 50 qubits. 

Our work incorporates features of the algorithms presented in Sections 4.1 and 4.2 

with the vision of being also eventually applicable to improve exact algorithms from 

Section 3.2 in the future: Indeed, we propose a quantum circuit layout which encodes 

the variational parameters and we perform the optimization/cooling in a way that the 

energy is monotonically decreasing at every step. We remark our procedure would 

still be of interest for a future universal, scalable, fault-tolerant, quantum computer, as 

it would give a good initial state candidate for the latter application of the exact algo-

rithms in Section 3.2, reducing their necessary runtime. 

In our work we do not assume that one can perform any arbitrary unitary per gate, 

but simply considers the set of interactions that are engineerable in a specific quantum 

platform. The method we give can be therefore tailored to the experimental possibili-

ties that are available, which greatly vary depending on the physical implementation. 

By time-evolving an initial quantum state with an interaction h that is available in the 

lab, we can produce a time-dependent state |𝜓(𝑡)〉 = 𝑒−𝑖 ℎ 𝑡|𝜓0〉 that will vary the 

energy of the quantum state as a function of time. By looking at an infinitesimal time 

evolution, as long as 𝑖〈[ℎ, 𝐻]〉 ≠ 0, the sign of the previous quantity will tell us 

whether evolving by ±𝛿𝑡 shall decrease the energy. Going to second order, one can 

then decrease the energy by a non-negligible amount in a single gate. 
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By exploiting the property that the energy is a monotonically decreasing function 

with the number of gates, one can build an algorithm that starts with an empty circuit 

and, from scratch, builds a quantum circuit to decrease the energy of the initial state, 

eventually converging to a low energy state of H, potentially with a good overlap with 

the ground state. This algorithm shall be further developed and studied in depth in a 

future work. 

6 Conclusions 

This is an exciting time for quantum technologies. The first prototypes of NISQ de-

vices have been developed and, in some aspects, they are starting to go beyond the 

limits of classical devices. Although the algorithms presented in Section 3 may be out 

of reach still for some time, those in Sections 4 and 5 are starting to become a reality. 

This is an intensive, novel field of research, where new algorithms, platforms and 

experiments appear every day (84), (85), (76), (29), (61), (5), (86), (87), (57), (88), 

(63). 

Here we have presented several approaches to the textbook problem of the k-local 

Hamiltonian. We have discussed exact methods, approximate solutions and heuristic 

algorithms to tackle it. We have also seen that it is likely that hybrid approaches will 

be necessary in the future. 

In our case, the vast variety of existing experimental platforms made it non-

optional for us to design our algorithm in a platform-agnostic way. The algorithm 

presented in Section 5 can be further tailored to specific experimental platforms, e.g. 

where connectivity is limited or only a subset of operations is available. This is but an 

example of one of the many future challenges that complex, large-scale quantum al-

gorithms might face. As we start to build bigger and more complex quantum systems, 

the need for the development of a set of good practices to systematically design, im-

plement, test, and document quantum software (i.e., a quantum analogous to software 

engineering) is likely to become a necessity. 
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