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Abstract. A quantum computer that is useful in practice, is expected to be devel-

oped in the next few years. An important application is expected to be machine 

learning, where benefits are expected on run time, capacity and learning effi-

ciency. In this paper, these benefits are presented and for each benefit an example 

application is presented. A quantum hybrid Helmholtz machine use quantum 

sampling to improve run time, a quantum Hopfield neural network shows an im-

proved capacity and a variational quantum circuit based neural network is ex-

pected to deliver a higher learning efficiency.  
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1 Introduction 

Quantum computers make use of quantum-mechanical phenomena, such as superposi-

tion and entanglement, to perform operations on data [1]. Where classical computers 

require the data to be encoded into binary digits (bits), each of which is always in one 

of two definite states (0 or 1), quantum computation uses quantum bits, which can be 

in superpositions of states. These computers would theoretically be able to solve certain 

problems much more quickly than any classical computer that use even the best cur-

rently known algorithms. Examples are integer factorization using Shor's algorithm or 

the simulation of quantum many-body systems. This benefit is also called ‘quantum 

supremacy’ [2], which only recently has been claimed for the first time [3]. 

There are two different quantum computing paradigms. The  first is gate-based quan-

tum computing, which is closely related to classical digital computers. Making gate-

based quantum computers is hard, and state-of-the-art devices therefore typically have 

only a few qubits. The second paradigm is quantum annealing, based on the work of 

[4]. A practically usable quantum computer is expected to be developed in the next few 

years. In less than ten years quantum computers will begin to outperform everyday 

computers, leading to breakthroughs in artificial intelligence, the discovery of new 

pharmaceuticals and beyond. Currently, various parties are developing quantum chips, 

which are the basis of the quantum computer, such as Google, IBM, Intel, Rigetti, 

QuTech, D-Wave and IonQ [5]. The size of these computers is limited, with the state-

of-the-art being around 70 qubits for gate-based quantum computers and 5000 for 
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quantum annealers. In the meantime, progress is being made on algorithms that can be 

executed on those quantum computers and on the software (stack) to enable the execu-

tion of quantum algorithms on quantum hardware.  

One of the promising candidates to show a useful quantum advantage on near-term 

devices, so called noisy intermediate-scale quantum (NISQ) devices is believed to be 

machine learning. Different types of machine learning exist, most of them boiling down 

to supplying data to a computer, which then learns to produce a required outcome. The 

more data is given, the closer the outcome will be to the actual solution or the higher 

the probability will be that the ‘correct solution’ is found. Even though machine learn-

ing, using classical computers, has solved numerous problems and improved approxi-

mate solutions of many others, it also has its limitations. Training machine learning 

models requires many data samples and models may require a long time to be trained 

or produce correct answers.  

In this short paper we sketch some near future machine learning applications using 

gate-based quantum computers. In Section 2 we give an introduction to Quantum Ma-

chine Learning and its expected benefits. In Section 3 a few example applications are 

given from our own research. 

2 Quantum Machine Learning 

Machine learning is a potential interesting application for quantum computing [6]. Cur-

rent classical approaches ask huge computational resources and in many cases training 

costs a lot of time. In machine learning, the machine learns from experience, using data 

examples, without a user or programmer giving it explicit instructions; the machine 

builds its own logic. Looking at classical machine learning, one can distinguish various 

types: 

▪ Supervised learning – here labelled data is used, e.g. for classification problems. 

This means that the data that is used for learning contains information about the 

class it belongs to. 

▪ Unsupervised learning – here you use unlabelled data for, e.g., clustering problems. 

Here data points have to be assigned to a certain cluster of similar points, without 

prior information. 

▪ Semi-supervised learning – here partially labelled data is available and models are 

investigated to improve classification using labelled data with additional unlabelled 

data. Many of these models use generative, probabilistic methods. 

▪ Reinforcement learning – here no labelled data is available, but a method is used to 

quantify the machine’s performance in the form of rewards. The machine tries many 

different options and learns which actions are best based on the feedback (rewards) 

it receives. 

If we think about where quantum computing and machine learning meet, we could 

think of the input and/or the processing part being classical or quantum [7], giving four 

combinations. If both are classical, we have classical machine learning. Classical ma-

chine learning can be used to support quantum computing, for example in quantum 

error correction. Quantum processes can also be used as an inspiration for classical 
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algorithms, such as tensor networks, simulated annealing and in optimization. If the 

input is a quantum state and the computing is classical, the machine learning routine is 

used to translate quantum information into classical information. If both the input and 

processing are quantum, this will be real quantum machine learning, however, only a 

few results in this direction are published yet. In most quantum machine learning re-

search, however, the focus is on the fourth case where the input contains classical in-

formation and processing is quantum. 

One of the main benefits of quantum computers is the potential improvement in 

computational speed. Depending on the type of problem and algorithm, quantum algo-

rithms can have a polynomial or super-polynomial (exponential) speed-up compared to 

classical algorithms. However, other benefits are expected more relevant in the near 

future. Quantum computers could possibly learn from less data, deal with more com-

plex structures or could be better in coping with noisy data. In short, the three main 

benefits of quantum machine learning are (interpretation based on [8]): 

▪ Improvements in run-time: obtaining faster results; 

▪ Learning capacity improvements: increase of the capacity of associative or content-

addressable memories; 

▪ Learning efficiency improvements: less training information or simpler models 

needed to produce the same results or more complex relations can be learned from 

the same data. 

For each of these benefits we show some examples in Section 3. 

 

The improvement in run-time can be realized in various ways. Machine learning 

consists mainly of optimization tasks that might be done faster by quantum annealers, 

like the D-Wave machine. Another way of getting a speed-up is the use of quantum 

sampling in generative models. Sampling is one of the tasks on which a quantum com-

puter is expected to outperform classical computers already in the near future. One of 

the first algorithms that are expected to outperform classical algorithms are hybrid 

quantum-classical algorithms. These hybrid algorithms perform a part of the algorithm 

classically and a part on a quantum machine, using the specific benefits such as for 

example efficient sampling. The last way to realize the speed-up is via specific quantum 

machine learning algorithms using amplitude amplification and amplitude encoding. 

Amplitude amplification is a technique in quantum computing and is known to give a 

quadratic speed-up in comparison with classical approaches. In amplitude encoding, 

amplitudes of qubits are used to store data vectors efficient, enabling exponential speed-

up. However, this exponential speed-up is not obvious and the assumptions made to 

come to this theoretical speed-up have some huge technological challenges, see also 

[9]. 

3 Examples 

In the previous section three main benefits are given for Quantum Machine Learning: 

improvements in runtime, capacity and learning efficiency. For all three categories we 

give an example based on our own research. 
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3.1 Improving Runtime – Quantum Hybrid Helmholtz Machine 

As mentioned before, hybrid algorithms perform a part of the algorithm classically and 

a part on a quantum machine, using the specific benefits such as, for example, efficient 

sampling. Generative modelling is a task where such hybrid algorithms are the solution 

to challenges encountered with classical computing. These generative models are used, 

for example, to learn probability distributions over (high dimensional) data sets. By 

increasing the depth of a generative model, the generalization capability grows and 

more abstract representations of the data can be found, however, at the cost of intracta-

ble inference and training. Both inference and training rely on variational approxima-

tions and Markov Chain Monte Carlo sampling, both computationally expensive. As 

quantum computers allow for efficient sampling, the expensive sampling subroutine 

can be run on a quantum computer, thus reducing the computational complexity of gen-

erative models significantly. This can be used in the implementation of a hybrid Helm-

holtz machine, a special type of generative model, on a gate-based quantum computer 

[10] or on a annealing device [11]. A Helmholtz machine is an artificial Neural Network 

consisting of a bottom-up recognition network and a top-down generative network. The 

recognition network takes data and produces probability distributions over it, while the 

generative network generates representations of the data and the hidden variables.  

In [10], a Parameterized Shallow Quantum Circuit implementation of a hybrid 

Helmholtz machine is given. This circuit captures aspects of Bayesian Networks and 

Helmholtz machines and is trained by a gradient-free optimizer under an adaptation of 

the Wake-Sleep-algorithm. The implementation of this circuit is done on the Quantum 

Inspire simulator (www.quantum-inspire.com) and has the potential to be run on a few 

qubit quantum device. The proposed hybrid Helmholtz machine was tested for a small 

problem on the BAS22-data-set [12], consisting of two by two pixel images, of which 

the valid patterns are those that contain only bars or only stripes. For both the hybrid 

and the classical Helmholtz machine four visible nodes and three hidden ones are used. 

The used Powell optimization method gave a promising set of parameters, for which 

the hybrid Helmholtz machine outperformed its classical counterpart. 

 

3.2 Improving capacity – Quantum Hopfield Neural Network 

Neural networks are a subclass of machine learning algorithms, consisting of nodes that 

can be connected in various configurations and interact with each other via weighted 

edges. As special case, Hopfield neural networks (HNN), consists of a single layer of 

nodes, all connected with one another via symmetric edges and without self-connec-

tions. Due to this connectivity, HNNs can be used as associative memories, meaning 

that they can store a set of patterns and associate noisy inputs with the closest stored 

pattern. Memory patterns can be imprinted onto the network by the use of training 

schemes, for instance Hebbian learning. Here, the weights are calculated directly from 

all memory patterns, and thereby only a low computational effort is required. It is pos-

sible to store an exponential number of stable attractors in an HNN if the set of attractors 

is predetermined and fixed. In general, however, less patterns can be stored if they are 

randomly selected, resulting in a very limited storage capacity of HNNs. For Hebbian 

learning the storage capacity of an HNN with n nodes is n/(4 log n) patterns 
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asymptotically [13]. Translating HNNs to counterparts in the quantum domain is as-

sumed to offer storage capacities beyond the reach of classical networks [14]. For ex-

ample, in [15] a quantum HNN is proposed that could offer an exponential capacity 

when qutrits are used. 

In [16] a quantum feed-forward representation of an HNN is presented, where the 

unitaries are trained on a training set. The performance is compared to that of a classical 

HNN using Hebbian learning, using three increasingly strict error rates. The ‘strict error 

rate’ only considers the patterns the HNN should memorize and equals one if at least 

one bit of any memory pattern cannot be retrieved. The ‘message error rate’ is less strict 

and equals the fraction of the probe vectors from which the memory cannot be recov-

ered exactly. The ‘bit error rate’ also uses probe vectors but considers all bits separately 

that cannot be retrieved correctly. Using a quantum computer simulator, only small 

patterns can be tested. These tests show that all the error rates of the quantum model 

are smaller than the classical model gives, indicating a higher capacity. 

 

 

Fig. 1. A quantum neural network consists of a layered structure with parameter-dependent uni-

tary operations. The lines correspond to qubits, with the lowest one being the readout qubit and 

the other ones being the data qubits. 

3.3 Improving learning - Variational Quantum Circuit for Machine Learning 

A recently very popular approach to find and implement new hybrid QML algorithms 

are so called variational quantum circuits (VQC), which consist of a number of quantum 

gates with parameters that are optimized. These quantum circuits can be used to evalu-

ate some cost function. To optimize the cost function, a variety of classical strategies 

can be used, which in turn may again employ a quantum circuit. 

In [17] a VQC is proposed with a sequence of unitary gate operations depending on 

continuous variables, used for binary classification. In [18] this framework is presented 

in more detail, and a more efficient representation of data is integrated, which is im-

portant for implementations on real near-term quantum devices. In this neural network, 

a classical input bit string of length n is translated to the initial state of a quantum reg-

ister (qubit encoding) with n+1 qubits, where the last qubit is regarded as readout qubit 

to estimate the classification of the sample. A set of parameter-dependent (θ) unitaries 

acts on all qubits sequentially as shown in Fig. 1. The loss function then has to be de-

fined and minimized, depending on the parameter θ. For this, the parameters are up-

dated using a stochastic gradient descent method. 
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Instead of qubit encoding, [18] proposes a more compact presentation of data using 

amplitude encoding, which means that a bit string is mapped to a superposition of com-

putational basis states of a register. The implementation in [18] is done using simula-

tions, and can easily be applied to real quantum devices with only minor adaptions. 

Overall, this proposed model of a supervised quantum machine learning algorithm 

seems promising for implementation on actual (NISQ) quantum devices in the near 

future. 
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