
Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-

mons License Attribution 4.0 International (CC BY 4.0).

Quantum Software Testing

Macario Polo Usaola1

1 Escuela Superior de Informática, Universidad de Castilla-La Mancha
macario.polo@uclm.es

Abstract. This article introduces some ideas and challenges related to the test-

ing of quantum programs. In particular, it approaches functional testing, white

box testing (specially mutation) and model-based testing.

Keywords: Quantum programming, quantum testing.

1 Introduction

Quantum computers operate on cryogenic environments, at temperatures close to

absolute zero. One of the characteristics of calculus made with quantum computers is

the uncertainty of the results, that are not always the same: in fact, the same program

executed two times may produce different outputs with different probabilities. As the

number of executions grows up, the program output that could be considered as the

actual output will be the most repeated one. This uncertainty introduces interesting

challenges in quantum program testing. The situation is different if the quantum pro-

gram is executed on a simulator, that produce deterministic results. However, the

complexity of the quantum program may convert testing on a simulator in an unap-

proachable task.

In classic software engineering, a test case [1] is a “specification of the inputs, exe-

cution conditions, testing procedure, and expected results that define a single test to

be executed to achieve a particular software testing objective […]”. One of the de-

sired characteristics of test cases is their “repeatability”: this is, the verdict of a test

must be always the same. The “verdict” is the result of the test execution, usually

“Pass” (if the test has not found any error in the system under test, the SUT) or “Fail”

(if the system has shown a behavior different than the expected one). So, a test case

has three parts: (1) specification of the initial situation, (2) execution of operations on

the SUT and (3) an oracle, which compares the actual and expected outputs, so de-

termining the verdict.

Thus, executing a test case on a quantum computer actually requires executing the

same test case a number of times and, then, to compare the most repeated output to

the expected output.

As well as this adaptation is required, quantum software testing requires both the

adaptation of other techniques, as well as the creation of new ones. In this paper we

discuss what can researchers do in this sense.

58

2 Functional testing

In practice, quantum programs provide quantum functionalities to conventional pro-

grams via some kind of interface. In Figure 1, the Functionaly Q calls the quantum

program, which runs on a quantum computer, to perform some specific calculus.

Fig. 1. A quantum system offers services to a conventional system

In a functional testing, the test suite (i.e., the set of test cases) checks the different

functionalities offered by the SUT. Depending on the test level, the test suite usually

executes on the system the same operations that any of the actors could execute. For

the system of Figure 1, the Test suite could replace the User, as illustrated on the left

side of Figure 2. In the same way, a test suite for testing the quantum program will

substitute the conventional system functionalities’ that require the services offered by

the quantum program (right-hand side of Figure 2).

Fig. 2. A functional test suite plays the role of an external actor

Going back to the three-parts structure of a test case, and recalling that the uncer-

tainty requires that every test case must be executed several times: (1) the initial situa-

tion of a quantum test case will set up the initial status of the qubits, (2) as in conven-

tional testing, the quantum circuit will be executed, and (3) finally, the test suite will

59

save the obtained result, in order to calculate, in a further step, which is the most

probable actual result.

3 White box testing

In white box testing, the tester is interested in knowing which “fragments” of the pro-

gram are executed by the test cases. Thus, a program is completely tested if the test

cases have gone through all those “fragments”. Moreover, if the test cases do not

reveal errors, then the probability that the program is right is very high. The problem

here is in the granularity of the “fragment”. To measure it, there exist a number of

coverage criteria [2], such as statements, branches, conditions, decisions, modified

condition-decision…

Thus, if a test suite runs all the statements of the SUT, it is said that its coverage is

100%. Obviously, some coverage criteria are more powerful than others: running all

the methods is a coarse criterion that is subsumed by, for example, statements because

if a test suite runs all the program statements, it runs also all its methods. Modified

condition-decision (MC/DC) is one of the most powerful coverage criteria. It is ful-

filled when every decision (understood as a set of conditions: for example, if A>B or

B<C is a decision with two conditions, A>B and B<C) is executed in its two branches

(true and false) thanks to the individual contribution of each individual condition. For

this example, since the decision is composed by two conditions separated by OR, a

complete test suite should lead the decision to the true branch thanks to A>B and to

B<C (first two rows of Table 1), and to the false branch also thanks to each individual

condition: since the operator is OR, this requires to do false both individual condi-

tions, as shown in the third row.

Table 1. Modified condition-decision coverage

A>B B<C A>B or B<C Determinant condition

true false true A>B (B<C has no influence)
false true true B<C (A>B has no influence)
false false false Both conditions influence

An additional white-box coverage criterion is based on mutation testing. In muta-

tion testing, the tester creates a set of mutants, which are copies of the SUT. Each

copy contains a syntactic change that, with the adequate test case, may produce an

output different than the SUT’s output. Thus, the mutant can be seen as a faulty ver-

sion of the original program. In this way, a mutation-based testing process finishes

when the test suite has found all the faults inserted in the mutants and none in the

original one. Some of the mutants produced are functionally equivalent, what means

that it is impossible to find a test case that finding the inserted fault (in practice, this

means that the change introduced in the mutant is not a fault, bust a code optimization

or de-optimization). The coverage is measured in terms of the mutation score, which

is the percentage of faults discovered (excluding equivalent mutants).

Artificial faults are inserted by means of mutation operators. A mutation operator

introduces some type of fault: some of the most typical mutation operators (see Table

60

2) are AOR (Arithmetic Operator Replacement), ROR (Relational Operator Replace-

ment) or UOI (Unary Operator Insertion). As it is seen, the artificial faults reproduce

errors that a competent programmer could commit [3, 4].

Table 2. A classic program and some mutants

if (a>b)
 return a+b;

AOR

if (a>b)
 return a*b;
if (a>b)
 return a-b;

ROR
if (a==b)
 return a+b;

UOI
if (-a==b)
 return a+b;

There are many different types of mutation operators for reproducing many differ-

ent types of faults. There are also specific operators for specific programming lan-

guages (operators on the use of pointers in C and C++, for example) and specific

technologies, such as mobile software.

Depending on the goodness of the mutation operators used, a given mutation score

may subsume other coverage criteria. Mutation testing is quite suitable for quantum

testing.

3.1 One example: adding two numbers

In quantum programming, the programmer writes her/his programs directly using bits

(actually qubits) and logic gates (actually quantum gates). Thus, the simple operation

of adding two numbers requires to work at so low abstraction level.

Anagolum [6] presents an example for adding two integer numbers using the

IBM’s QISkit simulator. The program code (and its corresponding quantum circuit)

reproduces the process used by a classical computer (carry bits, etc.). The example

needs two qubytes for saving the initial numbers, one additional qubyte for the carry

bits and one classical byte (to save the state of the read qubits).

The program code, translated into OpenQASM, appears in Figure 3: it reserves 5

qubits for the first binary number (qreg a), 6 for the second one (qreg b), 5 for the

carry bits (qreg c) and 6 classical bits (creg d) for saving the results. Initially all

qubits are set to 0. Some of them (0, 2, 4 of a and 1, 3, 4 of b) are set to 1 via de x

gate. Thus, the input numbers are those in Figure 3.

 5 4 3 2 1 0

a 1 0 1 0 1
b 0 1 1 0 1 0
c 0 0 0 0 0

Fig. 3. Input qubits

61

Then, the remaining code in the left column is composed by five blocks of three

statements. Each block performs the following:

1. Via the ccx gate, if a[i]=1 and b[i]=1, then it changes the value of c[i+1].

2. With cx, if a[i]=1, then it changes the value of b[i].

3. The third statement changes c[i+1] if b[i]=1 and c[i]=1.

In these blocks of statements, the qubits change according to Figure 4.

 5 4 3 2 1 0

a 1 0 1 0 1
b 0 1 1 0 1 1
c 0 0 0 0 0

After the 1st block

 5 4 3 2 1 0

a 1 0 1 0 1
b 0 1 1 1 1 1
c 0 0 0 0 0

After the 3st block (the 2nd

changes nothing)

 5 4 3 2 1 0

a 1 0 1 0 1
b 1 0 1 1 1 1
c 0 0 0 0 0

After the 4th block (the 3rd

changes nothing)

Fig. 4. First changes of the qubits

OPENQASM 2.0;
include "qelib1.inc";
qreg a[5];
qreg b[6];
qreg c[5];
creg d[6];

x a[0];
x a[2];
x a[4];

x b[1];
x b[3];
x b[4];

ccx a[0], b[0], c[1];
cx a[0], b[0];
ccx b[0], c[0], c[1];

ccx a[1], b[1], c[2];
cx a[1], b[1];
ccx b[1], c[1], c[2];

ccx a[2], b[2], c[3];
cx a[2], b[2];
ccx b[2], c[2], c[3];

ccx a[3], b[3], c[4];
cx a[3], b[3];
ccx b[3], c[3], c[4];

ccx a[4], b[4], b[5];
cx a[4], b[4];
ccx b[4], c[4], b[5];

cx c[4], b[4];

ccx b[3], c[3], c[4];
cx a[3], b[3];
ccx a[3], b[3], c[4];
cx c[3], b[3];
cx a[3], b[3];

ccx b[2], c[2], c[3];
cx a[2], b[2];
ccx a[2], b[2], c[3];
cx c[2], b[2];
cx a[2], b[2];

ccx b[1], c[1], c[2];
cx a[1], b[1];
ccx a[1], b[1], c[1];
cx c[1], b[1];
cx a[1], b[1];

ccx b[0], c[0], c[1];
cx a[0], b[0];
ccx a[0], b[0], c[1];
cx c[0], b[0];
cx a[0], b[0];

measure b[0] -> d[0];
measure b[1] -> d[1];
measure b[2] -> d[2];
measure b[3] -> d[3];
measure b[4] -> d[4];
measure b[5] -> d[5];

Fig. 4. Code for adding two numbers

62

The code in the second column (blocks with five statements of gates cx and ccx)

runs in a very similar way. The final statements (measure) read the qubit values and

pass them to the classical register, d.

 As it is seen, working at bit level is hard and fault prone: the programmer may be

specially tempted to copy and paste for changing later the indexes of the qubits (and

forgetting it), she/he may use a wrong gate, write statements in a different order…

All these possible faults are suitable of being reproduced with mutation operators.

4 Model-based testing

In model-based testing (MBT), the test engineer models test cases with models, typi-

cally using UML. The UML specification includes the UML Testing Profile, an ex-

tension whose metamodel defines all the elements involved in tests definition (Figure

5).

Fig. 5. The UML testing profile metamodel

Given a SUT described with a set of UML models, the tester may describe test cas-

es using a model based on this profile. Then, she/he can get executable test cases, for

example, with an automatic model-to-text transformation [8].

Figure 6 shows the quantum circuit corresponding to the program code of Figure 4:

it includes an horizontal line for each qubit, as well as, in vertical, the corresponding

representation of each operation executed. Actually, a circuit is a quite faithful model

of the program, since each variable (the qubits) and program statement is completely

represented in the circuit.

Then, also quantum testing may take advantage of classic MBT techniques for

proposing novel strategies that lead to generate test cases from circuits. It should be

63

researched, but maybe it is possible to tailor the UML testing profile to this new pro-

gramming paradigm.

Fig. 6. Code for adding two numbers

Acknowledgements

This paper and its associated research is part of the project TESTIMO

(SBPLY/17/180501/000503) that has been funded by JCCM Consejería de Edu-

cación y Cultura y Deportes, y Fondos FEDER.

References

1. ISO/IEC/IEEE. ISO/IEC/IEEE International Standard - Systems and software engineering

– Vocabulary. IEEE Std. 24765, (2017).

2. Glenford J. Myers. The Art of Software Testing, 2nd edition., 2004.

3. DeMillo, R.A., Lipton, R.J. and Sayward F.G. Hints on test data selection: Help for the

practicing programmer. IEEE Computer; 11(4), 34–41, (1978)

4. Hayes, J.H. and Offutt, J. Recognizing authors: an examination of the consistent pro-

grammer hypothesis. Software Testing, Verification and Reliability, 20(4), 329-356,

(2009).

5. Barbosa, E. F., Maldonado, J. C. and Vincenzi, Am.R. Toward the determination of suffi-

cient mutant operators for C, Software Testing, Verification and Reliability, 11(2), 113–

136, (2001).

6. Anagolum, S. Arithmetic on Quantum Computers: Addition. Available at (January 20,

2020): https://medium.com/@sashwat.anagolum/arithmetic-on-quantum-computers-

addition-7e0d700f53ae

7. OMG, UML Testing Profile, Object Management Group, Tech. Rep. formal/05-07-07,

(2013).

8. Pérez Lamancha, B., Polo, M., Caivano, D., Piattini, M. and Visaggio, G. Automated gen-

eration of test oracles using a model-driven approach. Information and Software Technol-

ogy, 55(2), 301–319, (2013).

