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Abstract. This article introduces some ideas and challenges related to the test-

ing of quantum programs. In particular, it approaches functional testing, white 

box testing (specially mutation) and model-based testing. 

Keywords: Quantum programming, quantum testing. 

1 Introduction 

Quantum computers operate on cryogenic environments, at temperatures close to 

absolute zero. One of the characteristics of calculus made with quantum computers is 

the uncertainty of the results, that are not always the same: in fact, the same program 

executed two times may produce different outputs with different probabilities. As the 

number of executions grows up, the program output that could be considered as the 

actual output will be the most repeated one. This uncertainty introduces interesting 

challenges in quantum program testing. The situation is different if the quantum pro-

gram is executed on a simulator, that produce deterministic results. However, the 

complexity of the quantum program may convert testing on a simulator in an unap-

proachable task. 

In classic software engineering, a test case [1] is a “specification of the inputs, exe-

cution conditions, testing procedure, and expected results that define a single test to 

be executed to achieve a particular software testing objective […]”. One of the de-

sired characteristics of test cases is their “repeatability”: this is, the verdict of a test 

must be always the same. The “verdict” is the result of the test execution, usually 

“Pass” (if the test has not found any error in the system under test, the SUT) or “Fail” 

(if the system has shown a behavior different than the expected one). So, a test case 

has three parts: (1) specification of the initial situation, (2) execution of operations on 

the SUT and (3) an oracle, which compares the actual and expected outputs, so de-

termining the verdict. 

Thus, executing a test case on a quantum computer actually requires executing the 

same test case a number of times and, then, to compare the most repeated output to 

the expected output. 

As well as this adaptation is required, quantum software testing requires both the 

adaptation of other techniques, as well as the creation of new ones. In this paper we 

discuss what can researchers do in this sense. 
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2 Functional testing 

In practice, quantum programs provide quantum functionalities to conventional pro-

grams via some kind of interface. In Figure 1, the Functionaly Q calls the quantum 

program, which runs on a quantum computer, to perform some specific calculus.   

 

Fig. 1. A quantum system offers services to a conventional system  

In a functional testing, the test suite (i.e., the set of test cases) checks the different 

functionalities offered by the SUT. Depending on the test level, the test suite usually 

executes on the system the same operations that any of the actors could execute. For 

the system of Figure 1, the Test suite could replace the User, as illustrated on the left 

side of Figure 2. In the same way, a test suite for testing the quantum program will 

substitute the conventional system functionalities’ that require the services offered by 

the quantum program (right-hand side of Figure 2). 

 

  

Fig. 2. A functional test suite plays the role of an external actor 

Going back to the three-parts structure of a test case, and recalling that the uncer-

tainty requires that every test case must be executed several times: (1) the initial situa-

tion of a quantum test case will set up the initial status of the qubits, (2) as in conven-

tional testing, the quantum circuit will be executed, and (3) finally, the test suite will 
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save the obtained result, in order to calculate, in a further step, which is the most 

probable actual result. 

3 White box testing 

In white box testing, the tester is interested in knowing which “fragments” of the pro-

gram are executed by the test cases. Thus, a program is completely tested if the test 

cases have gone through all those “fragments”. Moreover, if the test cases do not 

reveal errors, then the probability that the program is right is very high. The problem 

here is in the granularity of the “fragment”. To measure it, there exist a number of 

coverage criteria [2], such as statements, branches, conditions, decisions, modified 

condition-decision…  

Thus, if a test suite runs all the statements of the SUT, it is said that its coverage is 

100%. Obviously, some coverage criteria are more powerful than others: running all 

the methods is a coarse criterion that is subsumed by, for example, statements because 

if a test suite runs all the program statements, it runs also all its methods. Modified 

condition-decision (MC/DC) is one of the most powerful coverage criteria. It is ful-

filled when every decision (understood as a set of conditions: for example, if A>B or 

B<C is a decision with two conditions, A>B and B<C) is executed in its two branches 

(true and false) thanks to the individual contribution of each individual condition. For 

this example, since the decision is composed by two conditions separated by OR, a 

complete test suite should lead the decision to the true branch thanks to A>B and to 

B<C (first two rows of Table 1), and to the false branch also thanks to each individual 

condition: since the operator is OR, this requires to do false both individual condi-

tions, as shown in the third row. 

Table 1. Modified condition-decision coverage 

A>B B<C A>B or B<C Determinant condition 

true false true A>B (B<C has no influence) 
false true true B<C (A>B has no influence) 
false false false Both conditions influence 

An additional white-box coverage criterion is based on mutation testing. In muta-

tion testing, the tester creates a set of mutants, which are copies of the SUT. Each 

copy contains a syntactic change that, with the adequate test case, may produce an 

output different than the SUT’s output. Thus, the mutant can be seen as a faulty ver-

sion of the original program. In this way, a mutation-based testing process finishes 

when the test suite has found all the faults inserted in the mutants and none in the 

original one. Some of the mutants produced are functionally equivalent, what means 

that it is impossible to find a test case that finding the inserted fault (in practice, this 

means that the change introduced in the mutant is not a fault, bust a code optimization 

or de-optimization). The coverage is measured in terms of the mutation score, which 

is the percentage of faults discovered (excluding equivalent mutants). 

Artificial faults are inserted by means of mutation operators. A mutation operator 

introduces some type of fault: some of the most typical mutation operators (see Table 
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2) are AOR (Arithmetic Operator Replacement), ROR (Relational Operator Replace-

ment) or UOI (Unary Operator Insertion). As it is seen, the artificial faults reproduce 

errors that a competent programmer could commit [3, 4].  

Table 2. A classic program and some mutants 

if (a>b) 
 return a+b; 

AOR 

if (a>b) 
 return a*b;  
if (a>b) 
 return a-b; 

ROR 
if (a==b) 
 return a+b; 

UOI 
if (-a==b) 
 return a+b; 

There are many different types of mutation operators for reproducing many differ-

ent types of faults. There are also specific operators for specific programming lan-

guages (operators on the use of pointers in C and C++, for example) and specific 

technologies, such as mobile software.  

Depending on the goodness of the mutation operators used, a given mutation score 

may subsume other coverage criteria. Mutation testing is quite suitable for quantum 

testing. 

3.1 One example: adding two numbers 

In quantum programming, the programmer writes her/his programs directly using bits 

(actually qubits) and logic gates (actually quantum gates). Thus, the simple operation 

of adding two numbers requires to work at so low abstraction level. 

Anagolum [6] presents an example for adding two integer numbers using the 

IBM’s QISkit simulator. The program code (and its corresponding quantum circuit) 

reproduces the process used by a classical computer (carry bits, etc.). The example 

needs two qubytes for saving the initial numbers, one additional qubyte for the carry 

bits and one classical byte (to save the state of the read qubits). 

The program code, translated into OpenQASM, appears in Figure 3: it reserves 5 

qubits for the first binary number (qreg a), 6 for the second one (qreg b), 5 for the 

carry bits (qreg c) and 6 classical bits (creg d) for saving the results. Initially all 

qubits are set to 0. Some of them (0, 2, 4 of a and 1, 3, 4 of b) are set to 1 via de x 

gate. Thus, the input numbers are those in Figure 3. 

 

 5 4 3 2 1 0 

a  1 0 1 0 1 
b 0 1 1 0 1 0 
c  0 0 0 0 0 

Fig. 3. Input qubits 
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Then, the remaining code in the left column is composed by five blocks of three 

statements. Each block performs the following: 

1. Via the ccx gate, if a[i]=1 and b[i]=1, then it changes the value of c[i+1].  

2. With cx, if a[i]=1, then it changes the value of b[i]. 

3. The third statement changes c[i+1] if b[i]=1 and c[i]=1. 

In these blocks of statements, the qubits change according to Figure 4. 

 

 5 4 3 2 1 0 

a  1 0 1 0 1 
b 0 1 1 0 1 1 
c  0 0 0 0 0 

 

After the 1st block 

 

 5 4 3 2 1 0 

a  1 0 1 0 1 
b 0 1 1 1 1 1 
c  0 0 0 0 0 

 

After the 3st block (the 2nd 

changes nothing) 

 

 5 4 3 2 1 0 

a  1 0 1 0 1 
b 1 0 1 1 1 1 
c  0 0 0 0 0 

 

After the 4th block (the 3rd 

changes nothing) 

Fig. 4. First changes of the qubits 

OPENQASM 2.0; 
include "qelib1.inc"; 
qreg a[5]; 
qreg b[6]; 
qreg c[5]; 
creg d[6]; 
 
x a[0]; 
x a[2]; 
x a[4]; 
 
x b[1]; 
x b[3]; 
x b[4]; 
 
ccx a[0], b[0], c[1]; 
cx a[0], b[0]; 
ccx b[0], c[0], c[1]; 
 
ccx a[1], b[1], c[2]; 
cx a[1], b[1]; 
ccx b[1], c[1], c[2]; 
 
ccx a[2], b[2], c[3]; 
cx a[2], b[2]; 
ccx b[2], c[2], c[3]; 
 
ccx a[3], b[3], c[4]; 
cx a[3], b[3]; 
ccx b[3], c[3], c[4]; 
 
ccx a[4], b[4], b[5]; 
cx a[4], b[4]; 
ccx b[4], c[4], b[5]; 

 
 
 
cx c[4], b[4]; 
 
ccx b[3], c[3], c[4]; 
cx a[3], b[3]; 
ccx a[3], b[3], c[4]; 
cx c[3], b[3]; 
cx a[3], b[3]; 
 
ccx b[2], c[2], c[3]; 
cx a[2], b[2]; 
ccx a[2], b[2], c[3]; 
cx c[2], b[2]; 
cx a[2], b[2]; 
 
ccx b[1], c[1], c[2]; 
cx a[1], b[1]; 
ccx a[1], b[1], c[1]; 
cx c[1], b[1]; 
cx a[1], b[1]; 
 
ccx b[0], c[0], c[1]; 
cx a[0], b[0]; 
ccx a[0], b[0], c[1]; 
cx c[0], b[0]; 
cx a[0], b[0]; 
 
measure b[0] -> d[0]; 
measure b[1] -> d[1]; 
measure b[2] -> d[2]; 
measure b[3] -> d[3]; 
measure b[4] -> d[4]; 
measure b[5] -> d[5]; 

Fig. 4. Code for adding two numbers  
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The code in the second column (blocks with five statements of gates cx and ccx) 

runs in a very similar way. The final statements (measure) read the qubit values and 

pass them to the classical register, d. 

 As it is seen, working at bit level is hard and fault prone: the programmer may be 

specially tempted to copy and paste for changing later the indexes of the qubits (and 

forgetting it), she/he may use a wrong gate, write statements in a different order…  

All these possible faults are suitable of being reproduced with mutation operators.  

4 Model-based testing 

In model-based testing (MBT), the test engineer models test cases with models, typi-

cally using UML. The UML specification includes the UML Testing Profile, an ex-

tension whose metamodel defines all the elements involved in tests definition (Figure 

5). 

 

Fig. 5. The UML testing profile metamodel 

Given a SUT described with a set of UML models, the tester may describe test cas-

es using a model based on this profile. Then, she/he can get executable test cases, for 

example, with an automatic model-to-text transformation [8]. 

Figure 6 shows the quantum circuit corresponding to the program code of Figure 4: 

it includes an horizontal line for each qubit, as well as, in vertical, the corresponding 

representation of each operation executed. Actually, a circuit is a quite faithful model 

of the program, since each variable (the qubits) and program statement is completely 

represented in the circuit.  

Then, also quantum testing may take advantage of classic MBT techniques for 

proposing novel strategies that lead to generate test cases from circuits. It should be 
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researched, but maybe it is possible to tailor the UML testing profile to this new pro-

gramming paradigm. 

 

 

Fig. 6. Code for adding two numbers  
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