
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

Development of Client-Server Technology for Access to

the Database of Algorithms on the Vue.Js Platform in

Educational Process

Alexander Tarasyev1, Victoria Turygina1, Mark Pavlov 2, Yuriy Kharitonov2 and

Danil Soltys1

1 Ural Federal University, 620002, 19 Mira street, Ekaterinburg, Russia
2 Donetsk National Technical University, 83015, 58 Artema Street, Donetsk, Ukraine

v.f.volodina@urfu.ru

Abstract. In this paper, the creation of an information system is considered, the

main task of which is to provide information on algorithms in a form accessible

for training, namely a general description of the algorithm, examples of imple-

mentations in programming languages, links to sources with additional infor-

mation, visualization of their work. In addition, there are tasks to develop such

functions: comparing performance algorithms, step-by-step execution of the al-

gorithm with reference to its visualization. The methodology for developing a

client-server application is demonstrated, the architecture of the system as a

whole is described, and its individual elements are described in detail: the client

part is the Vue.js framework, as well as its add-ons: for rapid prototyping of the

user interface (Vuetify), for managing the global state of the application (Vuex);

the server part, which is a H2 relational database, as well as a server application

written in the Java programming language using the Spring MVC framework,

which involves the allocation of layers such as controllers responsible for redis-

tributing requests from clients to services that have access to special repositories

that , in turn, refer to the layer that implements the database interaction interface

(DAO). The result was a prototype application in which the basic functions are

implemented, divided into two roles: a regular user with the rights to view con-

tent, and an administrator who has the ability to both view materials, and create,

edit and delete them; as well as directions for the further development of this

information system, including for educational purposes..

Keywords: educational information systems, information system development

methodology, algorithms, client-server application, Vue.js, Vuetify, Vuex, H2,

Spring MVC, Java.

1 Introduction

The internet and the World Wide Web today contain many useful and interesting tools

for solving various problems. Such sites are notably different from ordinary information

resources. One difference is the interaction with the user, which appears in the request

and processing of data transmitted by the client to solve a specific problem. The content

193

of the pages may depend on the data presented. Another difference is dynamism, ob-

taining up-to-date data without the need to reload the page. The above provisions con-

stitute the essence of the web application.

Web application development is a multi-step process. Their number and content de-

pends on the specific architecture. Consider the option of developing a knowledge base

on algorithms [1].

2 Theoretical background and hypotheses

We will go through the entire architecture from the bottom up (Fig. 1), starting with the

database. Its tasks will include the storage of data, as well as their provision upon re-

quest from the server. Given the features of the subject area, the classical relational data

storage model fully satisfies all the needs of the system, therefore, the structural query

language (SQL) will act as a means of communication between the server and the da-

tabase [2]. In a specific implementation, the H2 DBMS is used, which is characterized

by wide functionality with a compact size and low resource requirements.

Fig. 1. The architecture of the developed application.

Based on the above factors and additions, we will develop a system-dynamic data man-

agement model in the Powersim Studio 7.0 application software package that will in-

clude the ability to connect and provide additional services and activities that will affect

profit (Fig 2) [1].Subsequent paragraphs, however, are indented.

194

Fig. 2. Visitor homepage.

The server component of the application serves clients, accepting requests from them,

responds to them, wherein connects to the database to synchronize the state.

The server is divided into three layers, each of which performs a specific set of

functions. We characterize them, indicating the practical application for our work.

The first layer is an interface for working with data. It is built in such a way that a

possible switch to another database does not have any effect on other parts of the ap-

plication. Using this approach, this layer is called a DAO (Data Access Object) or class

level.

Work with each of the subject area entities is carried out by creating a special re-

pository that implements the corresponding DAO and has a set of methods for selecting,

creating, modifying, or deleting certain data.

The second layer is a set of services. They represent the core business logic of the

application. This is where requests from users are processed. Each of the services per-

forms a separate task, while it is granted access only to those repositories that are really

needed.

The created application will have the following services: authorization, registration,

interaction with the catalog, obtaining information on a separate algorithm, working

with sources, administration and others.

The next level is called the controller layer. This is where the primary processing of

client’s requests is performed. When he accesses the server by calling a specific API

method, the request comes to a special dispatcher that has information in the form of a

map, in which each existing path corresponds to a method of a controller, and also the

availability of this resource for the user is checked.[6]

On the other hand, each method included in the application API has the ability to

receive data and send it as a result of the request. In its implementation are calls to

individual services, with the transfer of individual information. In the created applica-

tion there are many controllers, matching in name with services, as a rule.

Thus, the server component plays an important role in the operation of the applica-

tion. To interact with clients, a special API is provided that describes all the methods,

their parameters (which will be returned upon completion of the request processing), as

well as its availability.

195

3 The method and the empirical results

In structure, the client is divided into individual components. Each of them has its own

fields, methods in which events from the user are processed and notifications from other

components are received. They can be nested in each other, forming various hierarchies

[3].

The structure of each component consists of three parts: a template written in HTML

and defining the general structure of the component, that is, how it will be displayed;

its state variables, methods, handlers, etc. are described below; the last part, optional,

describes the visual component, can be implemented both on pure CSS, and on any

preprocessor.

For working with data, or rather their synchronization between components and the

server, a special extension is used, the Vuex state manager. In fact, it is a local storage

into which data is downloaded from the server, and then distributed to components

upon request. For each entity, a special class is created containing four sections. The

first section (state) describes what the structure of the stored data will be. The second

section (mutations) defines a set of modifications that can be applied to data. It is worth

noting that it is impossible to change the data in any other way. The third section (ac-

tions) contains descriptions of events that may occur when working with this entity. It

is recommended to cause mutations precisely from under the events, which is per-

formed in this work. The fourth section (getters) defines methods for obtaining this or

that information on essence has the caching property, that is, the method is executed

once, and its result is saved and returned every time the getter is called. If the data on

which the result depends has changed, the method is recalculated. Thus, this extension

coordinates the work of all components, providing relevant information.[5]

When creating the application, an approach was implemented when everything is in

the root component, and the remaining elements that display the different parts of the

application are displayed using routing, where a specific address is set for each compo-

nent. We give examples of various components in the figures below (see Fig.3 and Fig

4).

Fig. 3. Administrator homepage.

196

Fig. 4. View information on a specific algorithm.

As we see, the distribution of roles is also implemented in the application, according to

which a user who has certain privileges has various functionalities available.

Thus, an application that interacts with the database, has functionality divided into

two roles: administrator and regular user is derived. The server part is made according

to the architecture: DAO - services - controllers, where each layer does its job, starting

from connecting and interacting with the database, ending with the processing of user

requests. The implementation of the client part is written on the Vue.js framework in

the ideology of component construction of the interface, as well as with the presence of

the Vuex application state manager, which ensures data synchronization and dynamic

user interaction. The application of this project can be integrated in various spheres

such as educational, commerce and statistical forecasting purposes [4].[7]

4 Conclusion

There are many tasks in the development prospects of this application. Some of them

are an animation of the algorithms for greater clarity, the possibility of step-by-step

execution of algorithms, as well as custom data sets for testing the application, along

with comparing different algorithms according to specified criteria.

One practical implication of this study is the inclusion of this framework in higher

educational learning management systems (LMS) for e-learning purposes.

References

1. Filipova O: Software Development From A to Z. Springer Science, Berlin, Germany (2018).

2. Karpova I.: Databases: A tutorial for the course "Databases". PD MSIEM, Moscow, Russia

(2009) (in Russian).

3. Callum Macrae: Vue.js: Up and Running. O’Reilly, Sebastopol, USA (2018).

4. Tarasyev, A. M., Vasilev, J., Turygina, V. F.: Statistical analysis and forecasting of extrac-

tion and use of natural resources. AIP Conference Proceedings 2040, 050011 (2018).

197

5. Lapshina, S. N., Romanovskaia E. M.: The relevance of the use of electronic educational

resources in professional education. AIP Conference Proceedings 2116, 430004 (2019).

6. Shangina E.I., Shangin G.A., Ilysheva N.N., Lapshina S.N., Parusheva S.S.: Model of mo-

bile learning and its application in the educational process. AIP Conference Proceedings

1978, 440017 (2018).

Berg, D. B., Zvereva, O. M., Nazarova, Y. Y., Chepurov, E. G., Kokovin, A. V., Ranyuk, S.

V.: Educational network comparative analysis of small groups: Short- and long-term com-

munications. AIP Conference Proceedings 1906, 070012 (2017).

https://elibrary.ru/item.asp?id=35759663
https://elibrary.ru/item.asp?id=35759663

