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Abstract. The impressive results of deep learning in many different fields, spe-
cifically in remote sensing, together with the growing availability of open Earth 
Observation data creates new opportunities to address global problems. One 
such global problem is associated with the simplification and intensification of 
agricultural systems which threatens the worldwide sustainability of crop pro-
duction.  Despite the fact that a plethora of satellite images describe a given lo-
cation on earth every year, very few deep learning-based solutions have har-
nessed the temporal and sequential dynamics of land use to map sustainable and 
unsustainable cropping practices.  In this paper, we present the preliminary re-
sults of a set of experiments conducted using one-dimensional Convolutional 
Neural Networks (CNN) for classifying multispectral time series derived from 
Landsat satellites constellation. The experimental data is related to agricultural 
practices in Sacramento County, California, United States of America. We dis-
cuss the applicability of this approach for mapping sustainable crop rotation-
based practices which have been proven to mitigate the environmental impact 
of agricultural land use dynamics. 
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1 Introduction 

Confronted with important global problems related to agriculture sustainability, food 
security, climate change, and biodiversity loss, new ecological movements across the 
world are promoting a set of “ecological intensification” principles, as an alternative 
paradigm to mainstream agricultural practices [1–3]. Practices such as intercropping, 
double cropping, crop rotations and the use of cover crops have been shown to in-
crease agriculture sustainability [4]. There is an increasing tendency among farmers, 
decision-makers, and society in general to establish cropping systems that allow, not 
only the maximization of crop yield but also the provision of ecosystem benefits [4]. 
In this regard, the need for spatial information about agricultural practices is expected 
to grow rapidly [5], and remote sensing has been shown to be an effective tool for 
monitoring the land surface properties resulting from human practices. Despite signif-
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icant efforts made in this area, an extensive literature review shows that only 9% of 
the total remote sensing and agriculture publications focus on cropping practices [6].  

Recent applications of deep learning in many fields, including remote sensing, to-
gether with the increasing availability of free satellite images with higher spectral, 
spatial and temporal resolutions, creates new opportunities to tackle global challeng-
es. Deep learning-based models have the ability to learn feature representations exclu-
sively from raw data without the need for domain-specific knowledge.  This fact, 
together with the advances in computational power, has encouraged the use of deep 
neural networks for many tasks, including image classification, object detection, se-
mantic segmentation and anomaly detection [7, 8] in remotely sensed imagery. How-
ever, most recent AI models or classifiers used in operational mapping generally use 
single date spectral data for classification [9] and do not harness the temporal resolu-
tion of remotely sensed time-series images.  

In this work, we present a set of experiments using Convolutional Neural Networks 
(CNNs) with convolutions in the temporal dimension and more than 400,000 remote-
ly sensed time series data to classify land use and agricultural practices.  

2 Related Work 

Zhong, Liheng et al. [10] have exploited the intrinsic characteristics of time-series 
data to describe seasonal patterns and sequential relationships for classifying summer 
crops. They developed different deep neural network architectures and used Enhanced 
Vegetation Index (EVI) calculated from Landsat Level 2 product imagery bands and 
ground in-situ data from California Department of Water Resources. Their results, 
based on an architecture that includes one-dimension convolution and an inception 
module, outperformed traditional algorithms for land use classification including 
XGBoost, Random Forest, Support Vector Machine and recurrent deep neural net-
works. Pelletier et al. [11] proposed a temporal convolutional neural network con-
structed with three convolutional layers, a dense layer and finally, a SoftMax layer. 
Different to [10], the authors of this study used three spectral bands of the available 
satellite imagery. Results show that the proposed architecture outperformed Random 
Forest algorithm by 2 to 3 % and based on the evidence gathered they point out the 
importance of using both spectral and temporal dimensions when computing the con-
volutions. Cai et al. [12] developed a deep learning architecture to train a model able 
to classify corn and soybean fields. They used a combination of Landsat-5, Landsat-7 
and Landsat-8 satellite images time-series covering a period of sixteen years. They 
report an overall accuracy of 97%.  

3 Data  

3.1 Study Area 

The setting of the study is a surface of 4466 km2 or 1724 square miles in Sacramento 
County, in the west part of the United States of America and encompasses a one-year 
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period ranging from January 2015 to December 2015.  Fig. 1 shows the delimited 
surface. The annual mean temperature in this area is 16.1 °C with a monthly daily 
average temperature ranging from 8.0 °C in December and 24.2 °C in July. The wet 
season period extends from October to April. The region of Sacramento has a strong 
agricultural tradition and remains an important economic force not only in California 
but also at a national level [13]. 

 

Fig. 1. Study Area, Sacramento County, United States of America. The red thick line delimits 
the region of interest for this study and the green polygons represent the agricultural fields our 

experiments and analysis will be based on. 

3.2 Ground Truth Data 

In this study, the 2015 Sacramento County land use survey was used as a source of 
“ground truth” data. The Survey was developed by the State of California, Depart-
ment of Water Resources (DWR). The main goal of this survey is to map agricultural 
fields. In this regard, a surveyor visited almost every delineated field, providing a 
high land use assessment accuracy.   

The dataset is distributed in a Shapefile format and consists of a total of 40205 
polygons, each of them containing 29 different attributes that describe the agricultural 
land use practices at the field level. 

3.3 Satellite Imagery 

Different satellite constellations provide freely distributed images of the world surface 
in a continues manner and at different spatial, spectral and time resolutions. For in-
stance, the two Sentinel-2 satellites provide 10m resolution imagery of the planet 
surface every five days, whereas a combination of Landsat-7 and Landsat-8  satellites 
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offer an eight days revisit time with a 30m spatial resolution [14]. Due to the fact that 
satellites have been launched at different dates, a match between the ground truth data 
to be used and the availability of remotely sensed data represents a strong limitation at 
the time of selecting a satellite product.  Considering that the land use survey de-
scribed before is based on the agricultural fields for the year 2015, a combination of 
Landsat-7 and Landsat-8 was deemed as the best option. It offers an eight-days revisit 
time since 2013, whereas Sentinel-2 images only offer five-days revisit time since the 
year 2017.  

Among the available Landsat products, Landsat Level 2 is a research-quality, 
application-ready science product derived from Landsat Level 1 data [15] and can be 
downloaded, on-demand, from USGS webpage1. The selection of this source of 
remotely sensed data is motivated by the fact that these images are radiometric-
calibrated and atmospheric-corrected.  

A total of 178 Surface Reflectance image products were downloaded for the region 
of interest delimited with red in Fig. 1 for the year 2015. From this set, 88 images 
correspond to Landsat-8 and a total of 90 images correspond to Landsat-7. Three 
bands were selected for the application of this study. The green band emphasizes peak 
vegetation, which is useful for assessing plant vigor. Red Band discriminates vegeta-
tion slopes while Near Infrared (NIR) emphasizes biomass 2.  1 summarizes the bands' 
information per satellite.  

Table 1. Spectral bands' information. 

Landsat 7 Landsat 8 
Band # Name Wavelength (μm) Band # Name Wavelength (μm) 

Band 2 Green  0.52–0.60 Band 3 Green  0.53–0.59 
Band 3 Red 0.63–0.69 Band 4 Red 0.64–0.67 
Band 4 NIR 0.77–0.90 Band 5 NIR 0.85–0.88 

 
As we can see from Table 1, the spectral ranges of the different bands are slightly 

different between Landsat-7 and Landsat-8. These differences have been studied in  
[16] suggesting that their impact on a model depends on the sensitivity of the model 
in question. Studies have shown the insignificant impact of these differences on clas-
sification models [10, 12].  

3.4 Data preprocessing 

In order to create pixel-level labeled time-series we followed the pipeline we pro-
posed in a previous paper. In that contribution, we created a set of tools leveraging the 
open-source Orfeo ToolBox (OTB)3 tool and we presented an end to end pipeline that 

 
1  https://earthexplorer.usgs.gov/   
2  https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research?qt-

news_science_products=7#qt-news_science_products 
3  https://www.orfeo-toolbox.org   



5 

can consume a collection of satellite images and a ground in-situ shapefile dataset to 
create labeled, temporal-sampled and linearly interpolated time series at the pixel 
level. The code assets created in that study where made available for others to reuse 
and can be found in https://github.com/agustingp/remoteSensingTimeSeries.  

4 Methodology 

During this study, we designed two experiments to assess the performance of CNNs 
for classifying land-use practices that can inform decision making to achieve a more 
sustainable agriculture. Below, we explain the aim of each experiment and describe 
the process for creating the labeled time-series dataset.  

4.1 Experiment 1 

The first experiment was designed aiming at classifying two agricultural practices: 
single cropping and double cropping, within the same year. Double cropping practice 
is an important sustainable practice that aims at reducing the fallow periods of the 
land, exploiting solar energy to enhance the quality of the soil and preventing soil 
erosion [17]. When introducing the so-called “Cover Crops” into annual crop rota-
tions, double cropping has been shown to improve the provision of multiple ecosys-
tem services in time, such as biomass production, N supply, soil C storage, NO3 re-
tention, erosion control, weed suppression, and beneficial insect conservation [4].  

For the experiment, we first filtered the ground truth data removing classes that 
were not representing agricultural fields. Then we identified the fields where double 
cropping practice and single cropping practice took place during the year. Table 2 
presents the total amount of polygons and the total amount of pixels sampled. For 
each pixel, a labeled time series was created using the three spectral bands from the 
satellite images. This process is explained in Section 3.4. In this case, as the double-
cropping class was under-represented, we selected the total amount of double crop-
ping pixels as the limit to be sampled from the single cropping polygons. The sam-
pling was done randomly, maximizing the diversity of single cropping polygons and 
not exceeding the limit of 29596 pixels. In the end, the total number of pixels sampled 
was 29596 for both classes. 

Table 2. Experiment 1 data details. 

Class name Total polygons Total pixels 

Double cropping 256 29596 

Single cropping 6763 29596 

Total 7019 59192 
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4.2 Experiment 2 

The second experiment consists of the classification of 20 different agricultural land 
use classes. During this practical experience, we focused on the classification of dif-
ferent crops that were grown in a “Single Cropping” approach. The rotation of crops 
across different years often leads to better yields due to soil fertility improvements 
[18], while also reducing the external dependency on agrochemicals [19, 20]. As we 
described in Section 1, crop rotations should follow a set of rules and criteria in order 
to be efficient. In this way, we aim to develop a model that classifies a comprehensive 
list of crops harnessing their temporal growing patterns.  

For the experiment, we first filtered the ground truth data removing all the classes 
that did not represent an agricultural field. Following this, we removed the double-
cropping practice ones, to focus on the fields where only one crop was grown during 
the year. From a list of 47 different crops (also including agricultural classes such as 
“fallow”), we selected the 20 classes that were best represented in terms of the num-
ber of pixels available. However, class imbalances are present in our dataset with the 
highest number of pixels for “Mixed Pasture” class, and the lowest number of pixels 
for “Grain Sorghum” class. Table 3 presents the total amount of polygons and the 
total amount of pixels sampled. Finally, we followed the same criteria for time series 
creation as for Experiment 1.  

Table 3. Experiment 2 data details. 

Class name Total polygons Total pixels 
Eucalyptus 77 5169 

Walnuts 57 4812 
Pears 418 23511 

Almonds 13 2339 
Cherries 85 5258 

Safflower 65 7051 
Corn 774 90805 

Grain sorghum 17 2065 
Sudan 35 4587 
Beans 25 2775 
Hay 26 2246 
Rest 233 11489 

Alfalfa 523 62949 
Clover 38 4576 

Mixed Pasture 1338 101675 
Melons 50 2678 
Potatoes 16 2854 

Tomatoes 102 18203 
Flowers 41 2485 
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Mixed (4+) 221 2758 
Total 4154 360285 

 

4.3 CNN Architecture 

In this study, we employed the CNN architecture proposed by Pelletier et al. [11] and 
implemented using Keras framework. Fig. 2 depicts a general view of the architec-
ture. For simplicity, we excluded from the diagram the Batch Normalization, Activa-
tion, and Dropout layers. This sequence is followed after each 1 Dimension Convolu-
tion and after the Dense layer, as well. Table 4 presents a list of parameters and val-
ues used for the network configuration.  

 
Fig. 2. CNN architecture.  

Table 4.  Architecture parameters. 

  

4.4 Models Training 

The models for both experiments were trained using the Azure cloud infrastructure 
provided by Microsoft AI for Earth grant program. The virtual machine uses an 
NVIDIA Tesla K80 GPU card. Each dataset created for Experiment 1 and Experiment 
2, respectively, was split in two, 80% for the training set and 20% for the testing set. 
The training set was also split in runtime to separate some data for validation. We 
used a validation rate of 0.05, which means that 5% of the training set was used to 
validate the model performance during training. During each partitioning step, the 
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division of data was done at the polygon level, meaning that no pixels from the same 
polygon are in the training, testing or validation set at the same time.   

5 Results 

In this section, we present the results of the data preprocessing pipeline as well as the 
trained models' performance.  

 
5.1 Time-series profiles 

After the preprocessing process described in Section 3.4, we obtained 419,477 pixels’ 
time-series. A sample of this time-series was plotted for both experiments. Fig. 3 
presents the temporal and multispectral timeseries data for two different pixels, the 
left-hand side one corresponds to the “Single cropping” class, whereas the right-hand 
side corresponds to the “Double cropping” class. Fig. 4 presents this information for 
other two pixels classes, “Corn” and “Alfalfa”, respectively.  

 

Fig. 3. The chart on the left presents a pixel-level time series for the class “Single cropping”. 
The right-hand side chart is a representation of a pixel-level time series for the class “Double 
cropping”. In different colors each of the three different spectral bands: Red, Green, and NIR.

Fig. 4. The chart on the left-hand side represents a pixel-level time series for the class “Corn”. 
The right-hand side chart represents a pixel-level time series for the class “Alfalfa”. In different 

colors each of the three different spectral bands: Red, Green, and NIR. 
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5.2 Models Evaluation 

The overall classification accuracy for Experiment 1 was 88% and Experiment 2 was 
89%. To achieve an extra performance verification of the model developed in Exper-
iment 1, we used it to classify the entire dataset from Experiment 2. As we explained 
before, Experiment 2 dataset contains only pixels that belongs to single cropping 
practice. The results of the classification show 97% for this dataset. The highly accu-
rate results can be explained because the model in Experiment 1 was trained with a 
sampling of pixels that maximized the diversity of polygons represented in the da-
taset. Then, most of the polygons in Experiment 2 where sampled in the dataset of 
Experiment 1.  These results show that even the use of a small number of pixels com-
ing from the same polygon are representative enough for the network to learn the 
specific time-patterns of the polygon.   
In Fig. 5 and Fig. 6 we present the recall, precision and F-score for each experiment 
classes. 

 
Fig. 5. Experiment 1 statistics. 

 
Fig. 6. Experiment 2 statistics. 
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Fig. 7. Experiment 1 confusion matrix. 

 
Fig. 8. Experiment 2 confusion matrix 

6 Discussion 

The paucity of up-to-date ground truth data presents a problem for utilizing newer 
satellite imagery with a higher spatial, spectral and temporal resolution for training 
supervised AI models, as it is the European Sentinel constellation. On the other hand, 
initiatives like the Harmonized Landsat and Sentinel-2 [21] by NASA aiming at creat-
ing a virtual constellation of surface reflectance data coming from different satellites, 
should be strongly supported. Currently, this product is not available worldwide, cre-
ating another mismatch with ground truth data. Comparing our experiments with oth-
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er related studies, ours have made use of publicly available satellite imagery, making 
a transfer learning approach that would make the process of fitting the models for 
other geographical locations, viable. We have also utilized convolution layers to learn 
temporal patterns from land-use dynamics. While some studies have only focused on 
the classification of a few agricultural types, we have trained a single model that is 
able to classify 20 agricultural classes with 89% accuracy. None of the studies ana-
lyzed before had classified pure temporal characteristics, as we did in Experiment 1. 
The confusion matrix for Experiment 2 shows that the network is making mistakes in 
classifying classes with similar characteristics. For instance, Grain Sorghum is being 
confused with Corn most of the times. The physiological and developmental similar 
characteristics between this two crops have been well documented [22] and can ex-
plain the network confusion between these two classes. In the case of Mixed Pastures, 
greatest confusion occurs with Alfalfa class, and vice versa (confusion of Alfalfa with 
Mixed Pastures). Alfalfa is a type of pasture, and the confusion can be explained be-
cause of a high concentration of Alfalfa in these pixels, or the presence of other types 
of pastures in Alfalfa fields, respectively. Future work includes finetuning the model 
parameters to improve precision and recall, extending the number of classes to learn, 
and create a more general architecture that is able to handle multiple years of data. 
Further work will also involve evaluation of the transferability of the models learned 
on the Sacramento data to different geographic locations.  

7 Conclusion 

In this paper, we presented a novel approach to processing satellite imagery vali-
dated in a set of two distinct experiments using Convolutional Neural Networks with 
convolutions in the temporal dimension. Most of the recent AI models or classifiers 
used in operational mapping use single date spectral data for classification and do not 
harness the temporal resolution of remotely sensed time-series images. Therefore, we 
argue that our solution provides an important contribution to the domain. Our evalua-
tion showed promising results with our models achieving 88% and 89% accuracy for 
experiments 1 and 2 respectively. Our future work will focus on improving these 
results, covering more classes and with a more general architecture.  
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