
A Framework for Generating Aviation Risk Information 

Mobile User Interfaces from Knowledge Graphs 

Junli Liang1, Yalemisew Abgaz2, Rob Brenan2 

1School of Computing, Dublin City University, Dublin Ireland 
junli.liang4@mail.dcu.ie 

2ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland 
yalemisew.abgaz@adapatcentre.ie, rob.brennan@dcu.ie 

Abstract. In this paper, we introduce a new framework called Flight Planner 
for generating Aviation Risk Information mobile-compatible user interfaces 
from Knowledge Graphs. The framework is divided into three components, a 
templating engine, a Linked Data Knowledge Graph and a mobile app. 
Traditional Linked Data frameworks provide poor support for user interface 
generation and common web frameworks do not natively support Linked Data-
based Knowledge Graphs. Moreover, Aviation Risk Information systems is 
specialised area mainly studied by organisational psychologists or experts in 
human factors and it has received little attention by computer scientists. Thus, 
a  flexible, efficient, and usable framework for Aviation Risk Information is 
needed. A comparative evaluation was done with Linked Data Reactor 
framework as a benchmark. It is observed that Flight Planner produces 
equivalently flexible and efficient, but less usable results despite being an early 
prototype. 

Keywords: Linked Data. Templating engine. Mobile apps. SPARQL. UI 
generation. Aviation Safety Management Systems. 

1 Introduction 

Aviation Risk Information provides pilots and aviation operation staff with warnings 
of potential hazards or risks on their schedule. Aviation Risk Information is generated 
every day in huge amounts by many different data publishers [4]. Due to the 
heterogeneity of Aviation Risk Information, it is challenging to fuse many different 
sources. This leads to the issue that Aviation Risk Information is difficult to be 
generated in a human-readable form. Such information can be created in different 
standards or forms. Aviation Risk Information is also dynamic. Such information in the 
industry can be represented as a report e.g. flight safety report. Different types of reports 
are dynamically linked together by some specific relationships. Generating such types 
of reports are critical. Knowledge Graphs can be used for data fusion in this situation. 
However once the information is in the Knowledge Graph, role or task-specific sections 
needs to be presented to users in a way that is easy to interpret. Mobile devices are the 
most flexible way to display this information to staff who are not often at a traditional 
computing terminal. 

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License 
Attribution 4.0 International (CC BY 4.0).



 Templating engines provide an approach to flexibly combine data for users. From 
the state of the art, researches are ongoing into templating engines, Linked Data and 
mobile apps. However, Aviation Risk Information is a specialised field with specific 
established ontologies and this could be exploited by a domain-specific templating 
engine. Web-based, flexible and efficient mobile user interface tools for aviation 
Knowledge Graphs are immature. Therefore, a new framework for Aviation Risk 
Information needs to be developed.  
 The research question explored in this paper is “to what extent a framework can be 

developed to generate Aviation Risk Information user interfaces from Knowledge 

Graphs in terms of flexibility, efficiency and usability”. The developed framework is 
called Flight Planner, which addresses issues: (i) dynamic and heterogenous Aviation 
Risk Information, (ii) generation of Aviation Risk Information and (iii) immature UI 
tools for Knowledge Graphs. Three general technical approaches are used: (i) the 
NASA Air Traffic Management ontologies and graph-based database, (ii) a flexible 
templating engine and (iii) mobile-compatible user interfaces powered by web 
technologies. The paper offers a couple of contributions listed below: 

• An efficient and flexible templating engine for flexibly generating Aviation 
Risk Information user interfaces from Knowledge Graphs 

• A usable and professional aviation-specific user interface element for an 
Aviation Risk Information circulation system.  

• A usable mobile-compatible user interface for browser-based applications. 
 

The remains of this paper is divided into five sections. Firstly, the related work 
section defines the gap addressed in current research about Linked Data, templating 
engines, mobile apps and Aviation Risk Information system. Secondly the use cases 
and requirements section indicates the intended user group for the system and the 
requirements of the framework needs to be met in terms of flexibility, efficiency and 
usability. Thirdly the system design section describes how the framework is 
implemented and constructed. Fourthly, the evaluation section describes a set of 
methods used to evaluate Flight Planner by comparing with  the Linked Data Reactor1 
framework developed by Khalili, Ali, et al [4]. A conclusion and future work are 
provided at the end of paper. 
 

2 Related Work 
 

This section describes related work for four different areas: Linked Data, templating 
engines, mobile apps and Aviation Risk Information circulation systems. The missing 
gap among them is defined at the end of the section. 
 

2.1 Linked Data
 

Linked Data (also known as RDF data) is a technique for publishing structured data on 
the web. It enables data linked with others in the form of subject -> predicate -> object 
called a triple described by Bizer, Christian, et al [2] where predicate is a relationship 
that the subject and object are linked by. An amount of triples forms a graph known as 
a Knowledge Graph and SPARQL is querying language used to manipulate data over 

 
1 Linked Data Reactor: http://ld-r.org/ 

http://ld-r.org/


Knowledge Graphs. One of the implementation of Knowledge Graphs is Apache Jena2, 
which is a graph-based database integrated with SPARQL.  

The challenges described by Keller, et al [4] for Aviation Risk Information could 
be seen such as different data encoding format, different data field naming and data 
semantics (different meanings for two identical labels of aviation risk information), 
which results the heterogeneity to Aviation Risk Information. These issues can be 
addressed by mapping Aviation Risk Information in Linked Data by the NASA Air 
Traffic Management ontologies. Keller, et al have defined a set of ontology 
namespaces3 including, atm, nas, etc. 

For representing Linked data on a UI, one of the ways is to use RDForms.js4, which 
is an open source project designed for representing Linked Data in RDF/JSON5 on a 
form without a huge of amount of semantic web knowledges. 
 

2.2 Templating Engine and UI Generation 
 

A templating engine by definition is a tool to support automatic data generation and 
population into a template (e.g. a form or survey). A templating engine researched by 
Tatsubori, Michiaki, et al [8] is an early developed templating engine used in the web 
development. Tatsubori, Michiaki, et al state that a templating engine is mostly used in 
the web development or browser-based application. An approach of a templating engine 
for generating questions and answers in Linked Data was introduced by Unger, 
Christina, et al. [9]. It is an approach to generate questions and matching answers based 
on parameterised triples in SPARQL queries. 

UI generations are related to templating engine. However, templating engines 
mostly are for developers, which is  an obvious difficulty for non-developers to use. 
Palmieri, Manuel, et al [7] introduced a semi-automatic framework for UI generation 
for Linked Data. It is a framework producing UI components by selecting required 
Linked Data over the Web. There is a templating engine handling Linked Data 
population and UI generation. Linked Data Reactor (LD Reactor) developed by Khalili, 
Ali, et al [5] is also a framework designed for managing and generating UIs for Linked 
Data. It provides a templating engine that allows UI designers to generate UIs by 
modifying configuration files. The Linked Data Reactor has already been used by a 
couple of companies (RISIS6 and Open PHACTS7). 
 

2.3 Mobile Apps 
 

Mobile developments have been seen a huge increase since Android and iOS were 
released. According to M.S Ferreira, Cristiane, et al [6], there are three types of mobile 
applications: native mobile apps, cross-platform apps and mobile web apps. A mobile 
web app can be referred as the browser-based app. One of the browser-based app in the 
Linked Data area is DBpedia mobile developed by Becker, Christian, et al [1], which 

 
2 Apache Jena: https://jena.apache.org/  
3 The NASA ATM: https://data.nasa.gov/ontologies/atmonto/ 
4 RDForms.js: https://rdforms.org/#!index.md 
5 RDF/JSON: https://www.w3.org/TR/rdf-json/ 
6 RISIS: http://risis.eu/  
7 Open PHACTS: http://openphacts.org/  

https://jena.apache.org/
https://data.nasa.gov/ontologies/atmonto/
https://rdforms.org/#!index.md
https://www.w3.org/TR/rdf-json/
http://risis.eu/
http://openphacts.org/


is a mobile app using semantic and web technologies (i.e. DOM) to provide location-
based services on mobile devices.  
 

2.4 Aviation Risk Information System 
 

The Alitalia app [11] is an Aviation Risk Information circulation system case-studied 
by the airline Alitalia and conducted by the Centre for Innovative Human Systems in 
the School of Psychology, Trinity College Dublin. It describes a number of professional 
UI element designs specified by EREA, the association of European Research 
Establishments in Aeronautics about aviation reporting systems called flight block 
reports (a form of risk information circulation). Blocker Reports record information 
(e.g. incidents, safety, action preceded for the report, etc.) for flights. This is an 
inflexible, siloed and brittle system that cannot easily adapt to changes in the sources 
of risk information or the user interface changes requested by psychology researchers 
as they gradually adjust the interface to improve understandability. Hence a much more 
flexible approach is needed to enable rapid interface change over a flexibly represented 
knowledge graph that performs a data fusion function. Despite these demands, the 
performance of the system must not be compromised. 
 There is a significant gap for quickly building Aviation Risk Information mobile 
apps. The dynamic and heterogeneity of Aviation Risk Information is suitable to be 
dealt with by Knowledge Graphs. However, there is a missing framework for 
dynamically and flexibly generating aviation risk information mobile-user interfaces 
from these Knowledge Graphs. 
 

3 Use Case and Requirement 
 

In this section, use cases and associated requirements are described. The users for the 
framework are identified as developers and aviation risk domain experts. Use cases for 
the target users are listed below. In order to provide use cases below, the framework 
needs to meet requirements in terms of flexibility, efficiency and usability. 
 

Use Case 1: A UI for Aviation Risk Information can be configurable. 
Use Case 2: The features of a sample aviation-risk information app (Blocker 

Reports [11]) developed for safety experts must be supported. 
Use Case 3: A UI produced by the framework is mobile-compatible. 

 

3.1 Flexibility 
 

The flexibility implies whether the framework provides specific requirements defined 
as follows. A UI is configurable: a template defines UI structure for data. UI generations 
of Khalili, Ali, et al [5] and Palmieri, Manuel, et al [7] are based on a template. For the 
use case 1, the framework needs to be flexible to provide configurable UIs, which 
means that the framework needs to make a template configurable. For example, the 
framework should allow users to configure a template to be able to configure the UI1. 
There are two ways to implement the configurable UIs. (i) The first one adapted by LD 
Reactor  Khalili, Ali, et al [5] is to provide a configuration file, which can be treated as 
a template. (ii) The second way adapted by Palmieri, Manuel, et al [7] is to provide 
clickable UI components for users to define a template. 

A SPARQL query is configurable [9]: a configurable UI generation is based on 
SPARQL query generation. A template as described above can define the structure of 



UIs, while a query template defines what data to query from e.g. a database. The 
approach by Unger, et al [9] states that a generation of SPARQL queries is based on a 
SPARQL query template with slots. A slot is defined as a triple of parameters that can 
be dynamically set. The triple of subject, predicate and object can be treated as 
parameters in the string format which then this SPARQL query as a template could 
possibly generate different values. 
 

3.2 Efficiency 
 

The efficiency implies how easy the functionalities are performed by users which define 
as follows. UI generation is efficient:  Bizer et al [2] state that UI generation is one of 
the challenges for the current state of Linked Data Applications. The framework should 
provide an efficient and easy way for users to generate data on UIs. The efficiency is 
the level of resources consumed in performing tasks stated by Brooke, John [10], where 
resources include the amount of time and iterations. A preferred way adapted by 
Pazienza, et al [7] is to provide clickable UI buttons.  
 

3.3 Usability 
 

According to the Alitalia app [11] described in the section 2.4, an Aviation Risk 
Information circulation system needs to provides aviation-specific UI elements. 
Referring the use case 2, the Flight Planner framework is required to implement the 
Blocker Report functionality adapted from [11] for the aviation risk domain experts. 

For the use case 3, the Flight Planner framework is to provide mobile-compatible 
UIs, which is a factor to affect the usability level. The precise usability level of a system 
is affected by the intended users, and the measurement of usability can vary widely. 
But the general usability of a system can be measured by the effectiveness and 
satisfaction in System Usability Scale (SUS) described by Brooke, John [10]. 
Effectiveness [10] means “the ability of a user to finish tasks, and the quality of the 

outputs generated from tasks”. Satisfaction [10] means “a user’s subjective reaction to 

using a system”. To meet usability requirement, Flight Planner needs to have significant 
scores in SUS. 
 

4 System Design 
 

This section describes in detail the implementation and technical design of the Flight 
Planner framework which is shown in the design Fig. 2. Screenshots of two 
implementation apps, flight reports on the left hand side and Blocker Reports on the 
right hand side show in Fig. 1. The Flight Planner framework is constructed by a server 
and client side described in two subsections below respectively. 



  
Flight Report List of Blocker Reports 

Fig. 1. Flight Planner Interface 
 

4.1 Server Side 
 

The server side is constructed by the Apache Jena and a server written in Node.js. The 
Node.js sever shown in the Fig. 2 consists of a SPARQL module, UI generator, and 
request and response handlers. The general process of UI generation is that when the 
request handler receives a request to generate a UI, the Template Analyser is told to 
generate a template (a file having empty entries to be filled with data), and the SPARQL 
module is told to query requested Aviation Risk Information from Jena via SPARQL. 
After that, a template and queried data are passed to the UI generator, which is for 
composing the template and Aviation Risk Information into a UI template. It is a 
template populated with data. The UI template is defined as a configuration file by 
RDForms.js. Once the UI template is composed, the client side could use it to render a 
UI on a mobile device by RDForms.js APIs. 



 
Fig. 2. Templating-based System Design Diagram 

 

To make the UI configurable, the generation of a template by the Template Analyser 
and queried Aviation Risk Information need to be based on the request, and be matched 
in order to generate a correct UI template. For example, the Fig. 3 shows the snippet of 
a UI template/configuration file where flightInfo is the type of Aviation Risk 
Information containing elements actualArrivalTime and arrivalAirport as data labels. 
An initial template generated by the Template Analyser contains only data labels 
(actualArrivalTime, etc). The values and types under data labels are to be queried from 
Jena. Both data  labels and queried data (types and values) need to be matched. More 
specifically, the SPARQL module provides a SPARQL query template adapted from 
Uger, et al [9] that is to be dynamically filled with triples (based on a request) as 
parameters. The generated UI template can be manually modified by users as to change 
the UI representation. 
 

 
Fig. 3. A snippet of a UI template/configuration file 

 

4.2 Client Side 
 

For the client side, it is a browser-based app launched on mobile devices’ browser tested 
in the Google Chrome web browser. A UI template generated by the server is compiled 
into human-readable forms displaying on devices. According to stated requirements, 
the framework needs to provide a mobile-compatible UI. The Google Material Design 
for Bootstrap8 theming framework is used to provide UI components  that are styled 
and shaped into mobile native UI components. Slider and menu components can 
provide mobile app behaviours. To make the UI more usable in terms of effectiveness 
and satisfaction,  a traditional web UI component is avoided such as selection with large 

 
8 Bootstrap for Google Material Design: https://fezvrasta.github.io/bootstrap-material-design/ 
 

retrieve query 

Jena 

TDB2 

Communicate 
via SPARQL 

Template 

Analyser 

Response 
Handler 

RDForms.js 

SPARQL 
Module 

UI Generator 

Node.js Server 

Client 

Queried 
data UI 

Template 

Render 

Request 
Handler 

https://fezvrasta.github.io/bootstrap-material-design/


amount of data, datetime picker, breadcrumbs navigation, etc, as they belong to desktop 
UI components illustrated by the Google Material Design guide. 
 

5 Evaluation 
 

To answer the research question and evaluate the Flight Planner framework, the 
framework is compared to Linked Data Reactor. This section firstly introduces the 
dataset and the participants, then followed by hypotheses. Secondly, experimental 
design and interpretation are described in terms of flexibility, efficiency and usability. 
Lastly, based on the results, suggested changes are discussed at the end. 
 

5.1 Dataset and Participants 
 

The dataset contains 100 sample flight instance data that have been converted into 
Linked Data using the NASA ATM ontologies. 10 participants from the IT background 
and 2 Aviation Risk Information experts from Trinity College Dublin who have more 
than 20-years’ experience in Aviation Risk Information area are invited to evaluate the 
Flight Planner framework. 
 

5.2 Null Hypotheses 
 

Flexibility: Flight Planner can provide at least as many flexibilities as LD Reactor 
provides, including a configurable UI and a configurable query. 

Efficiency: There is no significant difference between two frameworks, in terms 
of the amount of time spent and trials for participants to perform tasks. 

Usability: Flight Planner can score above 68.2, an average score in SUS. 
 

5.3 Flexibility 
 

Experimental Design 
 

Flight Planner was compared with LD Reactor in terms of the following flexibility 
requirements: 

• A configurable template: two frameworks are tested whether providing a 
configuration file or clickable UI components by examining the code level. 

• A configurable SPARQL query: two frameworks are tested whether they can 
dynamically generate SPARQL queries based on requests by examining their 
SPARQL modules and generated SPARQL queries. 

 

Results and Interpretation 
 

Two frameworks are equivalently flexible. By examining two frameworks’ code levels, 
two frameworks can provide configurable UI generation. Flight Planner provides a 
configuration file (called a UI template described in section 4) and clickable UI buttons 
to achieve the configurable UI generation, while LD Reactor provides multiple 
configuration files. Also, both frameworks can provide configurable SPARQL query 
generation. A query from LD Reactor’s SPARQL module is created by several blocks 
of statements and each block can be dynamically generated. The query template from 
Flight Planner is created by a number of pre-defined SPARQL sub-queries. Two 
SPARQL generations are based on a configurable triple similar to Unger, et al [9]. 
 
 
 
 



5.4 Efficiency 
 

Experimental Design 
 

10 participants (5 participants to test Flight Planner and another 5 participants to test 
LD Reactor) were invited to perform two sets of tests listed in Fig. 4. Two sets of tasks 
are not totally identical due to different use cases of two frameworks, but they are 
managed to be as related as possible. The equal division of 10 participants can produce 
records used by a t-test at the last step of procedure. The testing procedure is listed 
below: 

• A single evaluation test of a participant is limited up to 30 minutes, including 
introduction and presentation, 2-3 minutes getting familiar with and the tasks.  

• The “think aloud” methodology [12] was used to let participants speak 
whatever they are thinking while they are performing the tasks. 

• The number of iterations a participant used to get correct answers, the total 
time spent, and their thoughts and comments were recorded. One iteration is a 
failed execution including a navigation to an incorrect page, a click on an 
incorrect functional button, incorrect operation even on a correct functional 
UI (e.g. typing in an incorrect format for searching on a searching field), etc. 

• An independent t-test was conducted on two sets of results to determine 
whether the null hypothesis can be accepted or not by calculating a p-value. 

 
Task Id Common Tasks 

1 Query a flight with flight number UAL1479 and find the arrival airport for that flight. 
2 Query a flight with flight number WJA1212 and find the airline for that flight. 
3 Query a flight with a flight number DAL1776 and find its arrival airport IATA code. 
 Flight Planner LD Reactor 

4 Configure the flight report showing the following 
information: 
- The flight and flight callsign 
- The arrival airport name and airport FAA code 
- The departure airport name and airport ICAO code 
- The airline name and the headquarter 

Query the CEO (a key people) of an airline called 
Aer Lingus. 

5 Sort the list of Blocker Reports by the created date 
and find the latest submitted report. 

Sort the list of airlines by year founded and find 
the latest founded one. 

6 Search the list of Blocker Reports for a created 
date 2019-7-20U17:50:37. 

Search the list of airlines for a founded year 2002. 

 Fig. 4. Task table 
Results and Interpretation 
 

Two sets of results are recorded shown in Fig. 5 below. The columns named “ldr” and 
“fp” represent LD Reactor and Flight Planner, respectively. Each cell represents data 
of time spent or the number of trials for an individual participant. 
 

UID ldr fp  ldr fp  ldr fp 

1 11.26 14.58  8 9  2 5 
2 21.39 7.42  17 5  10 5 
3 6.02 6.26  13 6  2 3 
4 10.54 14.26  6 5  2 3 
5 14.17 19.04  8 7  3 3 

a. Time spent  b. # Trials for 6 tasks  c. # Trials for first 3 tasks 
 

Fig 5. Time spent and trial results 
 



The t-test results for time spent and the number of trials with significant level 0.05 is 
shown in Fig. 6. According to two sets of tasks stated in the analysis methods, the t-test 
can be conducted for first 3 identical tasks and for all tasks. Comparing to the significant 
value 0.05, the p value for time spent is greatly high which there is no significant 
difference between two frameworks in terms of time spent to perform tasks. The p value 
for first 3 tasks is relatively high and the one for all tasks shows less significance due 
to last 3 nonidentical tasks, but it still can deliver high enough significance. Thus, the 
null hypothesis for efficiency can be accepted. 
 

 ldr mean fp mean d.o.f T statistic P value 

Time spent 12.585 12.52 8 0.96633 0.925395 
All tasks 10.4 6.4 8 1.860968 0.099782 

First 3 tasks 2.6 3.8 8 1.784436 0.813118 
Fig. 6. T-test results 

 

5.5 Usability 
 

Experimental Design 
 

For usability, after an efficiency test finishes, participants were given a SUS survey9 to 
test Flight Planner's and LD Reactor’s usability. Feedback and suggestions were also 
be obtained from participants in terms of whether the Flight Planner app is able to 
provide a mobile-compatible user interface. Two Aviation Risk Information experts 
were invited to an interview to evaluate whether the Flight Planner framework is able 
to provide sample aviation-specific app. Introduction slides, app demo and questions 
were conducted for 30 minutes. Comments and suggestions were recorded during the 
interview. 
 

Results and Interpretation 
 

After participants finish SUS survey, two sets of scores can be calculated shown in Fig 
7 by the formula provided by Brooke, John [10]. According to the benchmarks 
conducted by Bangor, et al [18] shown in Fig 8, the total mean of the SUS scores is 
69.5 collected from 3463 SUS surveys and the interface type suitable for two 
frameworks is Web with the mean score 68.2. The SUS means of both frameworks are 
greater than 68.2, which means that the null hypothesis for usability can be accepted. 
Additionally, the SUS mean of ldr is greater than Flight Planner’s. And, mobile-
compatible UIs are accepted by 5 participants who evaluated Flight Planner framework.  
 

 Sus1 Sus2 Sus3 Sus4 Sus5 Mean 

ldr 72.5 90.0 77.5 75.0 87.5 80.5 
fp 75.0 67.5 82.5 87.5 72.5 77.0 

Fig. 7. SUS score results 
 

 
9 SUS template: https://www.usability.gov/how-to-and-tools/methods/system-usability-
scale.html 
 

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html


 
Fig. 8. The overall SUS scores table 

 

 

5.6 Assessment by Aviation Risk Information Circulation System Domain 

Experts 
 

According to the comments from two experts with over 40 years combined experience, 
the implementation of Blocker Reports is acceptable for safety event reporting and 
mobile-compatible UIs are also accepted by two experts. However, there are two 
missing functionalities in terms of aviation-specific elements. The first one is an 
integration with predictive data analytic engine. The second one is a second-layer 
interface for Blocker Reports, which is a receiver of Blocker Reports provides action 
recommendation by (1) tracking a flight safety issue, (2) reviewing the issue, (3) 
analysing the issue and (4) suggesting a solution. This functionality requires different 
types of reports to handle phases (1) – (4) and they would be then linked together. 
Safety reports’ status are monitored in phase (1) and (2). The analytics engine would 
be used in phase (3) and (4). Thereby, the UI generation needs to circulate the process 
from reporting a Blocker to suggesting a solution, which is missed in Flight Planner 
considered by experts.  
 

6 Conclusion and Future Work 
 

The Flight Planner is a framework for generating Aviation Risk Information user 
interfaces from Knowledge Graphs in terms of flexibility, efficiency and usability. It 
fills in the missing gap among Linked Data, templating engines and mobile apps. With 
a comparative evaluation to the LD Reactor, the Flight Planner is able to be equivalently 
flexible and efficient but less usable.  Also, UIs produced by the framework are mobile-
compatible accepted by invited participants.  
 However, the framework has not fully meet the circulation described in the section 
5.6, which is significant for an Aviation Risk Information circulation system. The first 
layer has been implemented, which is reporting safety information. Thus, our plan for 
the future work is to implement the second layer, an action recommendation consisted 
of phases (1) – (4) described in the section 5.6. Besides, we plan to make two layers 
working in a circulation way, which a suggested solution in phase (4) may have impact 
for a safety issue in the safety reporting layer of other circulation processes. More 
importantly, the whole process needs to be integrated into the mobile-compatible UI 
and Knowledge Graphs.  
 

Acknowledgement 
 

This research has received funding from the Enterprise Ireland Commercialisation 
Fund (CF2018-2012) and co-funded by the European Regional Development Fund 
under Ireland’s European Structural and Investment Funds Programme 2014-2020. 
 



References 
 

1. Becker, Christian, and Christian Bizer. ‘Exploring the Geospatial Semantic Web 
with DBpedia Mobile’. Journal of Web Semantics, vol. 7, no. 4, Dec. 2009, pp. 
278–86. doi:10.1016/j.websem.2009.09.004. 

2. Bizer, Christian, et al. ‘Linked Data - The Story So Far’: International Journal on 

Semantic Web and Information Systems, vol. 5, no. 3, July 2009, pp. 1–22. 
doi:10.4018/jswis.2009081901. 

3. Hartig, Olaf, et al. ‘Executing SPARQL Queries over the Web of Linked Data’. 
The Semantic Web - ISWC 2009, edited by Abraham Bernstein et al., vol. 5823, 
Springer Berlin Heidelberg, 2009, pp. 293–309. doi:10.1007/978-3-642-04930-
9_19. 

4. Keller, Richard M. ‘Ontologies for Aviation Data Management’. 2016 IEEE/AIAA 

35th Digital Avionics Systems Conference (DASC), IEEE, 2016, pp. 1–9. 
doi:10.1109/DASC.2016.7777971. 

5. Khalili, Ali, et al. ‘Adaptive Linked Data-Driven Web Components: Building 
Flexible and Reusable Semantic Web Interfaces’. The Semantic Web. Latest 

Advances and New Domains, edited by Harald Sack et al., vol. 9678, Springer 
International Publishing, 2016, pp. 677–92. doi:10.1007/978-3-319-34129-3_41. 

6. M. S. Ferreira, Cristiane, et al. ‘An Evaluation of Cross-Platform Frameworks for 
Multimedia Mobile Applications Development’. IEEE Latin America 

Transactions, vol. 16, no. 4, Apr. 2018, pp. 1206–12. 
doi:10.1109/TLA.2018.8362158. 

7. Pazienza, Maria Teresa, et al. ‘Semi-Automatic Generation of GUIs for RDF 
Browsing’. 2010 14th International Conference Information Visualisation, IEEE, 
2010, pp. 267–72. doi:10.1109/IV.2010.47. 

8. Tatsubori, Michiaki, and Toyotaro Suzumura. ‘HTML Templates That Fly: A 
Template Engine Approach to Automated Offloading from Server to Client’. 
Proceedings of the 18th International Conference on World Wide Web - WWW ’09, 
ACM Press, 2009, p. 951. doi:10.1145/1526709.1526837. 

9. Unger, Christina, et al. ‘Template-Based Question Answering over RDF Data’. 
Proceedings of the 21st International Conference on World Wide Web - WWW ’12, 
ACM Press, 2012, p. 639. doi:10.1145/2187836.2187923. 

10. Brooke, John. “SUS-A quick and dirty usability scale.” Usability evaluation in 

industry. CRC Press, 1996. Available: 
https://www.crcpress.com/product/isbn/9780748404605. 

11. A FAA Exploitation Plan For Case Study In ALITALIA, a document describing an 
Aviation Risk Information circulation application.  

12. Krahmer and N. Ummelen, "Thinking about thinking aloud: a comparison of two 

verbal protocols for usability testing," in IEEE Transactions on Professional 

Communication, vol. 47, no. 2, pp. 105-117, June 2004. 

doi:10.1109/TPC.2004.828205 

https://doi.org/10.1016/j.websem.2009.09.004
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1109/DASC.2016.7777971
https://doi.org/10.1007/978-3-319-34129-3_41
https://doi.org/10.1109/TLA.2018.8362158
https://doi.org/10.1109/IV.2010.47
https://doi.org/10.1145/1526709.1526837
https://doi.org/10.1145/2187836.2187923

	2 Related Work
	3 Use Case and Requirement
	3.1 Flexibility
	3.2 Efficiency

	3.3 Usability
	4.1 Server Side

