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Abstract Sleep spindles occurrence correlates with the consolidation of recently acquired
information. The memory consolidation literature supports that there are more sleep spindles

after a learning task. Thus, the detection of them does not only allow the classification of the N2

sleep stage, further provides a quantification value of memory replay and memory consolidation

during sleep. Event detection is an important processing step performed in the analysis of diverse

kinds of waveforms. The short and long term average ratio is the most widely used event detection

approach to analyze passive seismic data and trigger the storing or discarding of data. Its

popularity comes from its simplicity and the usage of a fixed threshold determined by the intention

of the data usage and not based on the signal dynamics. This work explores the usage of this event

detection approach on the online detection of sleep spindles. The advantages of the detection

performance with this feature over using the same binary classification method using other fast

calculation features come from its statistical properties. The classification features compared are

the root mean square amplitude, relative spindle power, and the Teager-Kayser energy operator.

Introduction
Sleep spindles are short-duration events (0.5-2 s) in the specific frequency range of 11-16 Hz that

occur during the NREM sleep and they are detectable in EEG registers. The principal characteristic

of the N2 sleep stage is the high presence of these events Devuyst et al. (2011). The ratio of
occurrence and other characteristics of the spindles could indicate some health or sleep disorders

(De Gennaro and Ferrara, 2003), also is known that burst on the hippocampus, slow oscillations
and spindles has a time order in occurrence and are related to memory consolidation (Sara, 2017)
making the spindles a marker of the capacity of learning and memory processing (Cairney et al.,
2015). Then, find spindles with accuracy and precision could help to evaluate differences in the
sleep after learning or memory tasks and to detect pathologies. The human visual sleep scoring

usually employs the power in the spindle frequency range as a helper for the experts (Purcell et al.,
2017). Another manual method is the use of crowd-sourced annotations from non-experts (Zhao
et al., 2017). Event detection is an important processing step performed in waveform analysis. In
particular, in seismology from the appearance of digital signal acquisition systems, there was a

need to reduce the length of recordings to improve the storage and data transmission capabilities

of the electronic devices Akram et al. (2019).
Classification algorithms have the assumption that there is some space of features where the

patterns are separated. Online or real-time applications require fast computation of these features.

Thus, it is a great achievement if this separation is notorious in a small dimensional space or even

in just one dimension.

This work takes this last approach. The proposed algorithm does a binary classification (spindle
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or not spindle) using only an extracted feature from the input signal. Then it also annotates the

time of occurrence of each spindle to make a detector.

Related works
This work uses a single feature from the EEG signal as many previous methods of spindles detection

(Devuyst et al., 2011) (O’Reilly and Nielsen, 2015). This work is also similar to works that perform
statistical analysis of spindles to obtain a Bayesian detection algorithm (Babadi et al., 2012) or an
HMM-SVM detection scheme (Mporas et al., 2013). Other works used features of more computa-
tional demand as wavelets (Al-Salman et al., 2019), a combination of features (Liu et al., 2017) or
the non-negative matrix factorization (NMF) periodogram of the correntropy function (Ulloa et al.,
2016).
The use of a public database is important to compare the results of different methods. In that

sense, this work use the same dataset used by (Devuyst et al., 2011), O’Reilly and Nielsen (2015),
(Liu et al., 2017) and (Al-Salman et al., 2019).
Methods and Materials
Data
The event detection methods were evaluated over a synthetic EEG signal and also in a real EEG

dataset. The baseline of the synthetic signal has a frequency spectrum slope of ∼ f 3 typical of

slow-wave sleep. It is generated with a sum of sinusoidal signals:

xEEG(t) =
1

498

∑n=499
n=2

1
(0.1n)3∕(fs )

{cos((2�(1 + (�f )rf )(0.1n)t + (1 + �rp(t))), (1)

where fs = 100Hz is the sampling frequency, �f = 0.01 is the standard deviation given to the
central frequencies of the expression 1, rf is a random number, and rp(t) is a random time series
generated from a normal Gaussian distribution. The baseline signal adds with a spindles signal:

xspindle(t) =
1
6

(
∑

k fspindle(t) ∗ p(t − k)
)

xsigma(t),

xsigma(t) =
∑

m={−1,0,1}

(

(1 − |m|da)cos(2�(12 + 0.5m)(1 + �sf1)t) + ( 1
√

(2)
− |m|da)cos(2�(24 + m)(1 + �sf2)t)

)

,
(2)

where da is the amplitude difference of the main lobe with the lateral lobes, �sf1 and �sf2 are random
deviations for the main frequency of 12Hz and its first harmonic for spindles. fspindle(k) is a triangular
envelope defined by the expression (3) with a duration tspindle = 0.75s. Expression (4) defines the
probability of occurrence of spindles where U (t) is a random time series uniformly distributed
between [0,1].

fspindle(t) =

⎧

⎪

⎨

⎪

⎩

tspindleaspindle
2

+ aspindlet t < tspindle∕2

tspindleaspindle − aspindlet t ≥ tspindle∕2
, (3)

p(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 U (t) > 0.998

0.01 0.99 < U (t) < 0.998

0 U (t) ≤ 0.99

, (4)

The tested synthetic EEG signal has 8 segments of 300s with different values for aspindle: 0.125, 0.250,
0.375, 0.5, 0.625, 0.750, 0.875, and 1.0.

The real EEG signals come from the DREAMS dataset (Devuyst and Dutoit, 2011). This dataset
consists of eight registers of 30-minutes. The data were sampled at frequencies of 50, 100, and 200

Hz. The dataset includes the visual scoring of spindles from two experts. They marked the start

time and the duration of spindles. A duration of 1-second is annotated for many of the spindles

but they have another time length. This work uses annotations without modification from just one

expert.
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Spindles detection
General Procedure

The event detection methods in this work use a general framework of a single dimension signal

and a single threshold to classify a sample as forming part of an event occurrence. Consecutive

samples classified as spindles must exceed the minimum duration to finally designate a section of

the input signal as an event. A time for possibles gaps is also included to actuate as replace of an

hysteresis mechanism.

A common procedure before any step is to obtain the z-score value of the signal. Given that

there is not any assumption about the signal properties, the mean value and the standard deviation

are calculated at each sample, then there is the need of advance in various samples to achieve

consistency in these statistical estimators. The z-scored signal x(t) is band-pass filtered in the sigma
band (11-16Hz) with a Chebyshev type I fourth order filter to obtain x�(t). The calculation of features
at each sample uses both signals. The detection follows the procedure show in Algorithm 1.

Algorithm 1 Spindle Detection Algorithm
Inputs: feature(t), tmin, tgapOutputs: tℎresℎoldfeature(t = tfinal), is_spindle(t), count_spindles
1: if feature(t)>tℎresℎoldfeature(t) then ⊳ The threshold could be time dependent
2: if ℎold==False then
3: start=t;
4: end if
5: ℎold=True;
6: else if ℎold==True then
7: gap=gap + 1;
8: if gap>tgap then
9: gap=0;
10: ℎold=False;
11: if t − start>tmin then
12: count_spindles=count_spindles + 1;
13: is_spindle(start ∶ t)=1;
14: end if
15: end if
16: end if

Features calculation

The short and long term ratio was compared with other features. The short-time and the ratio

were predefined for calculation of each feature. ST is the length in samples of selected short-time,

LT = ST
ratio
is the length in samples of selected long-time. STA0(n) is the ratio feature using as

long-time all past samples, STA1(n) uses as short-time a single sample. STA0(n), STA1(n), and
T eager(n) pass through a moving average filter of length ST .

Root mean square (RMS) value

RMS(n) =

√

∑n
k=n−ST x�(k)2

ST
, (5)

Short and long-time average ratio (STA/LTA)

STA0(n) =
|x�(k)|

1
n

∑n
k=0 |x�(k)|

STA1(n) =
|x�(k)|

1
LT

∑n
n=n−LT |x�(k)|

STA∕LTA(n) =
1
ST

∑n
k=n−ST |x�(k)|

1
LT

∑n
k=n−LT |x�(k)|

,

(6)



Proceedings of the 5th Congress on Robotics and Neuroscience

Relative spindle power (RSP)

This version of RSP is different of the based in Discrete Fourier Transform bins used by (O’Reilly
and Nielsen, 2015).

RSP (n) =
∑n

k=n−ST x�(k)
2

∑n
k=n−ST x(k)2

, (7)

Teager-Kaiser energy operator

T eager(n − 1) = (x(n − 1)2 − (x(n − 2)x(n))), (8)

Detection metrics
The detection metrics employed here are the same as used by (O’Reilly and Nielsen, 2015). An
additional metric of distribution separation, d� , uses the probability distributions (pdf) of the feature
signals in the search for a threshold value.

d� =
P {ȳ ≤ �} − P {y ≤ �} + P {y > �} − P {ȳ > �}

P {ȳ ≤ �} + P {y > �}
=

2(P {ȳ ≤ �} − P {y ≤ �})
1 + (P {ȳ ≤ �} − P {y ≤ �})

, (9)

where � is the threshold value, y is the distribution of the detection feature when there is a spindle
and ȳ the distribution of feature values when there is not a spindle. The best threshold, known the
probability distributions fy and fȳ, is which maximizes this metric. The maximum value is 1 and it is
achieved only if the pdf’s have disjointed domain and the threshold value is in the gap between

them.

Results
Statistical analysis
The probability density function (pdf) of samples of an EEG signal is assumed to be Gaussian and
reinforced by the histograms in Figure 1 C. Thus, the features calculations perform those operations

to a normal aleatory variable. Then, the root mean square (RMS) should have a Chi pdf, short and
long-time average (STA/LTA) and relative spindle power (RSP), as calculated here, should have a

Fractional Gamma pdf, and the Teager-Kaiser energy operator should have a Chi-squared pdf.
The probability density function of samples of an EEG signal is Figure 1 D shows the histogram

of the values of the features calculated from spindles and not spindles samples. The first 3 seconds

of the synthetic signal were removed because the z-score is badly estimated for the first samples.

The mean and standard deviation are still not consistent. The first 30 seconds, the first epoch,

are removed from real signals for the same reason. The distance between the means of each

distribution and the length of the tails say something about the classification difficulty using a

single threshold. The metric d� allows the selection of a better threshold. However, it needs caution
because the features depend on the length of the time window and the metrics are threshold

dependent (Figure 2). Figure 1 E shows the classification performance with different thresholds. The

most classical performance metrics have their best value at threshold values above the preferable

threshold selected with d� .

Detection results
Figure 2 A presents ROC curves that are another perspective of the results of Figure 1 C. An

additional short-time value and an additional ratio were included to show the different behavior of

the detection performance. Figure 2 B shows the maximum value achieved for d� occurring with
STA/LTA at the short-time window of 0.05 seconds and a ratio equal to 0.001.

Discussion
The proposed spindle detection method considers a single EEG channel and a single extracted

feature. This consideration could be a weakness in typical EEG studies where multiple channels

are recorded and more sophisticated analyses could be performed (Mucarquer et al., 2019). On
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Figure 1. A. The spectrums of a real signal and a synthetic signal (Welch method, Hamming 10s windows with 80% of overlap). B. A portion of a
real signal with two sleep spindles and the calculated features. C. Histogram of z-scored real signals in the left and synthetic signals in the right.
Samples marked as spindles in a darker color and as not spindle in a lighter color. Mann-Whitney U test was performed with 500 randomly

selected samples of each class to test if without any feature extraction there is possible that a sample of the not-spindles signal is lesser than a

spindle sample. The t and p values of the Shapiro-Wilk test for normality are also annotated. D. Histograms of detection features from real signals
in the left and from synthetic signals in the right. The filled line is the mean of features for spindle samples. The dotted line is the mean of not

spindle samples (�). The metric of distribution separation d� is annotated for �=� and �=1. E. Detection metrics overall real signals in the left and
overall synthetic signals in the right. STA∕LTA and STA1 have similar behavior with small ratios. STA0 has very long tails for the synthetic signals.
*In C y-axis for STA0 has a range of [0,80].
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Figure 2. A. ROC curves overall real signals. Each row has different short-time value and every column a distinct
ratio value. The triangle markers show the points in the ROC curves when the threshold (� = 1.4) is selected for
the maximum value of d� for the STA/LTA feature. The diamonds markers are the points when the threshold
(� = 0.2) is selected for the maximum value of d� for the RMS feature. Both thresholds selected at the smallest
short time and the smallest ratio. B. Value of max{d�} along different thresholds for different short-times and
ratios. Note that RMS, RSP and, Teager-Kaiser are ratio independent features but all plotted in all cases to

compare with STA/LTA.

the other hand, it is a necessary alternative in studies where recording devices of few channels are

available like the OpenBCI, Emotiv EPOC (Xu and Zhong, 2018) or single channel as the Neurosky
MindWave device (Torres et al., 2014; Avendaño et al., 2018). In the framework of educational
research, these devices known as portable EEG technology (PEEGT) are not appropriate for their

single-use. These are the present alternatives to include electrophysiological data (Xu and Zhong,
2018) in addition to other data and tools. Sleep research uses polysomnography for electrophys-
iological data acquisition, but PEEGT could be an advantage to include more subject samples

(Debellemaniere et al., 2018).
The STA/LTA feature performs better with the smallest ratios for the real signals dataset. That

does not occur in the synthetic signals, where the Teager-Kaiser energy operator features performs

the better. This could indicate that there is a need for more pre-processing of the input signal to

remove noise and other physiological artifacts not considered in the construction of the synthetic

signals like ECG, EMG and, ocular movements. Without any other pre-processing another good

performance feature is RMS.

The accuracy metric goes near to 1 with higher thresholds due to the best classification of

True Negatives samples that are much higher in quantity than True Positive samples. Interestingly,

Cohen-� and F1 metrics have better values for higher thresholds than for the d� metric (Figure 1
E). Furthermore, all metrics are consistent in performance between cases. The ROC curves allow

having another perspective than a simple value, although they represent the same information,

and clarifies why the common choice of the RMS feature over another feature in the task of spindle

detection. The maximum of the d� metric occurs at a similar threshold value for the RMS feature in
any combination of short-times and ratios. The threshold value that gives the best d� metric for
STA/LTA is more variable across cases (we do not show but the behavior of probability distributions

in Figure 1 D explain it).
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