
ProCAKE: A Process-Oriented Case-Based
Reasoning Framework

Ralph Bergmann, Lisa Grumbach, Lukas Malburg, Christian Zeyen

Business Information Systems II, University of Trier, 54286 Trier, Germany
{bergmann,grumbach,malburgl,zeyen}@uni-trier.de

http://www.wi2.uni-trier.de

Abstract This paper presents ProCAKE – the process-oriented case-
based knowledge engine of the CAKE framework, which has evolved from
several research projects at the University of Trier over the years. Pro-
CAKE constitutes a domain-independent framework that can be used
to implement diverse structural or process-oriented case-based reasoning
applications for integrated process and knowledge management. This pa-
per gives an overview of the main components and demonstrates their
application by examples.

Keywords: Knowledge Management · Process Management · Case-
Based Reasoning

1 Introduction

Nowadays, workflow technology is widely used in business, scientific, and even
private domains. However, implementing the technology involves a significant
amount of knowledge, which is why integrated process and knowledge manage-
ment is of great importance. Process-Oriented CBR (POCBR) particularly ad-
dresses this integration by applying and extending CBR methods for process and
workflow management [6]. In general, many research prototypes were presented
in the field of CBR but only few frameworks are publicly available for develop-
ing CBR applications. Recent frameworks such as myCBR [1,8] or jColibri [7]
mainly focus on structural and textual CBR. We are not aware of any frame-
work that is particularly tailored to the development of POCBR applications. To
this end, we present ProCAKE, a generic framework for building structural and
process-oriented CBR applications. The software is developed at the Department
of Business Information Systems II at the University of Trier. The source code
is freely available on our website1. ProCAKE constitutes the core of the CAKE
framework [3] and builds the foundation for various past and ongoing research
activities of our research group. The developed prototypes include a broad range
of algorithms for retrieval and adaptation [5].

1 See http://procake.uni-trier.de

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://orcid.org/0000-0002-5515-7158
https://orcid.org/0000-0002-2247-8270
https://orcid.org/0000-0002-6866-0799
https://orcid.org/0000-0001-8444-7245
http://www.wi2.uni-trier.de
http://procake.uni-trier.de

2 Architecture Overview

The ProCAKE framework is written in Java while it uses XML for configura-
tion and persistence. It has a pattern driven architecture and relies heavily on
interfaces and factories. ProCAKE provides its own data type structure (also re-
ferred to as system classes) for defining the domain model and cases. The most
commonly used types are:

Base Classes The base classes include Atomic classes such as Boolean, Nu-
meric, String, Chronologic, and Void. Atomic classes can be combined with
composite classes such as Aggregate, Interval, or Collection. By this means,
cases for structural CBR can be represented.

NEST Classes The NESTGraph class is a specific composite class for repre-
senting workflows or processes as semantic graphs (cf. [4]). It encloses further
composite classes for representing the graph elements. To name just a few,
graph edges are represented by NESTPartOfEdge, NESTControlflowEdge,
and NESTDataflowEdge classes and graph nodes are represented by NEST-
WorkflowNode, NESTTaskNode, and NESTDataNode, respectively. Graph
element classes are linked to user classes that describe their semantics using
custom composite classes.

ProCAKE implements many syntactic and semantic similarity measures for
the various data types. Most of the measures are formally described in [2]. For ex-
ample, measures for Numeric classes use linear, exponential, and threshold func-
tions whereas measures for String classes apply Levenshtein or regular expres-
sions. Several taxonomic measures exist for semantic similarity assessment. For
the NESTGraph class, a measure is implemented that performs graph-matching
with an A* search algorithm [4]. Several algorithms for retrieval are implemented:
Besides a k-NN retrieval, several MAC/FAC approaches and an A* parallel re-
triever are implemented for accelerating retrieval with large case bases. An adap-
tation framework enables the integration and application of domain-dependent
adaptation methods.

Both the user classes and similarity measures can be specified via XML. The
core components for instantiating ProCAKE are:

Configuration A benefit of the pattern driven architecture of ProCAKE is
the extensibility. For instance, the various implementations for persistence,
retrieval, and adaptation are organized in factories. Implementations can be
registered and configured in an XML file (usually named composition.xml)
that is read once at start-up.

Data Model In addition to the system classes, custom-structured classes (re-
ferred to as user classes) can be defined as sub-types of system classes. At
start-up, the system reads the model configuration files. Even though several
custom models can be defined, the usual practice is to use a single model
definition as default (usually named model.xml).

Similarity Model To allow for comparing system and user classes, similarity
measures have to be defined for each class. Analogous to the data model,

several similarity models can be defined while usually a single model (named
sim.xml) is used as default. A similarity measure can be selected as default
for a class, so that the measure is applied for all sub-classes of that class.
It must be ensured that a similarity measure is defined for each system and
user class.

Objects Analogous to the Java perspective, objects in ProCAKE represent the
concrete data. However, object classes are used to explicitly model the re-
lationship to the respective system and user classes. Every data used in a
case or query for retrieval has to be represented by such objects. Conse-
quently, the presented data type structure represents all possible data types
ProCAKE can operate on.

3 Example Application

In the following, we demonstrate an exemplary application of ProCAKE. For
this purpose, we consider cooking recipes as a simple form of workflows. The
case base comprises 40 sandwich recipes2. A cooking workflow is represented as
a semantic graph in which each node is associated with a semantic description
(cf. Fig. 3). Preparation steps are represented as task nodes and ingredients
are represented as data nodes. A workflow node represents general information
about the recipe.

1 <AggregateClass name=”WorkflowSemantic” superClass=”Aggregate”>
2 [. . .]
3 <Attribute name=”preparation time (min)” class=”PreparationTimeType”/>
4 <Attribute name=”calor ies ” class=”CaloriesType”/>
5 </AggregateClass>

7 <AtomicClass name=”CaloriesType” superClass=”Integer”>
8 <ValueInterval lowerBound=”0” upperBound=”1000”/>
9 </AtomicClass>

11 <AggregateClass name=”DataSemantic” superClass=”Aggregate”>
12 <Attribute name=”name” class=”IngredientType”/>
13 <Attribute name=”amount” class=”AmountType”/>
14 </AggregateClass>

16 <AggregateClass name=”AmountType” superClass=”Aggregate”>
17 <Attribute name=”value” class=”ValueType”/>
18 <Attribute name=”unit” class=”UnitType”/>
19 </AggregateClass>

21 <AtomicClass name=”ingredientType” superClass=”String”>>
22 <ValueEnumeration>
23 <TaxonomyOrder name=”ingredientTaxonomy”>
24 <Node v=”ingredients”>
25 <Node v=”cheese”>
26 <Node v=”mozzarella”/>
27 <Node v=”parmesan”/>

Fig. 1. Excerpt from the data model configuration file

2 Recipes were extracted manually from https://allrecipes.com

https://allrecipes.com

For the semantic descriptions of the graph nodes, we define specific attributes
with help of user classes in the data model (see excerpt in Fig. 1). The semantics
of the workflow node is expressed by a class named WorkflowSemantic. It includes
attributes such as name of type string or preparation time and calories, both of
type integer with lower and upper bound (see Fig. 1, lines 1–9). Data nodes
are described by a class named DataSemantic that includes attributes name
and amount (see lines 11–14). The latter is further divided into value and unit
(see lines 16–19). Unit can be one of predefined strings and value is an integer.
Possible values for the name attribute are also predefined and taxonomically
ordered (see lines 21ff.). The description of task nodes consists of a string object
called name whose values are also taxonomically ordered.

1 <AggregateAverage name=”DefaultMeasureWorkflowSemantic”
2 class=”WorkflowSemantic”>
3 <AggWeight att=”name” weight=”1” />
4 <AggWeight att=”preparation time (min)” weight=”1” />
5 <AggWeight att=”calor ies ” weight=”1” />
6 </AggregateAverage>

8 <NumericLinear name=”DefaultMeasureCaloriesType” class=”CaloriesType”/>

10 <AggregateAverage name=”DefaultMeasureDataSemantic” class=”DataSemantic”>
11 <AggWeight att=”name” weight=”2” />
12 <AggWeight att=”amount” weight=”1” />
13 </AggregateAverage>

15 <AggregateMinimum name=”DefaultMeasureAmountType” class=”AmountType”/>

17 <StringEqual name=”DefaultMeasureUnitType” class=”UnitType”
18 caseSensitive=”fa l se”/>

20 <TaxonomyClassicUserWeights name=”defaultMeasureIngredientType”
21 class=”ingredientType” order=”ingredientTaxonomy”
22 innerNodeInQueryStrategy=”optimistic” innerNodeInCaseStrategy=”optimistic”>
23 <Node value=”ingredients” weight=”0.001”/>
24 <Node value=”cheese” weight=”0.5”/>

Fig. 2. Excerpt from the similarity model configuration file

On the basis of this model, the similarity model (see excerpt in Fig. 2) de-
fines similarity measures for comparing the objects. Similarity measures are de-
termined for local attributes as well as for aggregate objects and whole workflow
graphs. For attributes like name, preparation time, or calories, we apply simple
measures such as Levenshtein distance for strings or a linear function for nu-
meric values (see Fig. 2, line 8). Ingredient types are compared on the basis of
the given taxonomy order and manually annotated similarity values (see lines
20ff.). The similarity of aggregate objects is mostly computed by a weighted
average function (see lines 1–6 and 10–13). For the attribute amount, we apply
the aggregate minimum (cf. line 15), because if the unit types are not equal (the
similarity is 0), the value is not directly comparable. In this event, the minimum
function ensures that the similarity of the value attribute is ignored. To compute
the similarity of the workflow graphs, we apply the A* similarity measure.

An exemplary query and the corresponding local similarities to an example
case are depicted in Fig. 3. Workflow nodes are represented as rhombuses, task
nodes as rectangles, and data nodes as ovals. Semantic descriptions of the nodes
are written in grey rectangles. Solid edges with description po indicate part-of
edges whereas cf and df denote control-flow and data-flow edges, respectively.

t1

d1

......

name:	cheese

name:	shred

���(, ()) = 1�1 ���� �1

WQ

mmax(t1)

mmax(d1)

name:	slice

name:	mozzarella
amount:

unit:	piece
value:	1/4

cf cf

df
WC

prep.	time	(min):	20
calories:	1000
[...]

prep.	time	(min):	35
calories:	500

df
���(,) = 0.75�� ��

po

po

po

po

Query Case���(, ()) = 0.5�1 ���� �1

�� (,) = 1����� �� ��

�� (,) = 0.5���� �� ��

Fig. 3. Exemplary graph query and case

The query consists of three constraints: The desired preparation time is set
to 35 minutes, whereas the desired amount of calories is set to 500. This infor-
mation is annotated at the workflow node WQ. Furthermore, shredded cheese
is desired, which is represented by the partial workflow containing a data node
cheese (d1) as input to the task shred (t1). The query graph can be used as
input for retrieving suitable workflow graphs from the case base. For determin-
ing the similarity between two workflow graphs, an A* algorithm searches for
the best mappings between the nodes and edges. Each mapping is rated with a
similarity. Figure 3 depicts the similarities (dashed arrows) of the best possible
mappings (mmax) between nodes. Please note that edges are also mapped and
rated with similarities between the graphs. The global similarity of the work-
flows is obtained by aggregating the local similarities between the mappings of
all elements of the query graph to the elements of the case graph.

The similarities of mapped elements are computed locally by comparing the
semantic descriptions. In the given example, the data nodes are considered to
be equal (sim(d1,mmax(d1)) = 1), as mozzarella is a child node of cheese in the
taxonomy and further semantic attributes are not given in the query. The local
similarity of the task nodes, here shred and slice, originates from the given val-
ues in the taxonomy. In the example, we assume that the common parent node
is annotated with a similarity value of 0.5, i.e., sim(t1,mmax(t1)) = 0.5. The
similarity of the workflow nodes is composed of an aggregated average of sin-
gle similarity values for preparation time and calories attributes. The preparation
time given in the query should not be exceeded. Thus, we apply a threshold mea-

sure, which sets the similarity value to 0, if the limit is reached. Since preparation
time of the case is lower than that of the query, the obtained similarity is 1. To
compute the similarity of the attribute calories, we use a linear numeric measure,
leading to a similarity of 0.5. In conclusion, the overall similarity of the work-
flow nodes results from the sum of single weighted similarities: sim(WQ,WC) =
0.5 ∗ simtime(WQ,WC) + 0.5 ∗ simcal(WQ,WC) = 0.5 ∗ 0.5 + 0.5 ∗ 1 = 0.75.

4 Future Work

We are continuously improving and extending features and the documentation.
Our goal is to integrate domain-independent algorithms into the generic Pro-
CAKE framework. For instance, current work focuses on transferring general-
ization and specialization methods for domain-specific workflow representations
to arbitrary user classes. The latest version of ProCAKE already includes many
features of our research prototypes. It particularly provides various similarity
measures, several retrieval methods, and a generic adaptation manager. The
example application of ProCAKE is publicly available to foster the implementa-
tion of new applications. To further facilitate the development, we are currently
working on a graphical tool for visualizing and creating workflow graphs. We
appreciate any suggestions or feedback and are open to extensions.

Acknowledgements. This work is funded by the German Research Foundation
(DFG) under grant no. BE 1373/3-3.

References
1. Bach, K., Althoff, K.: Developing case-based reasoning applications using mycbr

3. In: Case-Based Reasoning Research and Development - 20th Int. Conf., ICCBR
2012. Proceedings. LNCS, vol. 7466, pp. 17–31. Springer (2012)

2. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications, LNCS, vol. 2432. Springer (2002)

3. Bergmann, R., Gessinger, S., Görg, S., Müller, G.: The Collaborative Agile Knowl-
edge Engine CAKE. In: Proc. of the 18th Int. Conf. on Supporting Group Work,
2014. pp. 281–284. ACM (2014)

4. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Information Systems 40, 115–127 (2014)

5. Bergmann, R., Minor, M., Müller, G., Schumacher, P.: Project EVER: Extraction
and Processing of Procedural Experience Knowledge in Workflows. In: Proc. of IC-
CBR 2017 Workshops. CEUR Proc., vol. 2028, pp. 137–146. CEUR-WS.org (2017)

6. Minor, M., Montani, S., Recio-García, J.A.: Process-Oriented Case-Based Reaso-
ning. Information Systems 40, 103 – 105 (2014)

7. Recio-García, J.A., González-Calero, P.A., Díaz-Agudo, B.: jcolibri2: A framework
for building Case-based reasoning systems. Sci. Comput. Prog. 79, 126–145 (2014)

8. Stahl, A., Roth-Berghofer, T.: Rapid Prototyping of CBR Applications with the
Open Source Tool myCBR. In: Advances in Case-Based Reasoning, 9th European
Conf, ECCBR 2008, Proceedings. LNCS, vol. 5239, pp. 615–629. Springer (2008)

	ProCAKE: A Process-Oriented Case-Based Reasoning Framework

