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Abstract. This paper proposes a Case-based Reasoning (CBR) and Ar-
tificial Neural Network (ANN) hybrid solution for dynamic problems. In
this solution, a CBR system chooses between several expert neural net-
works for a given case/problem. These neural networks are Recurrent
Neural Networks, which are trained using Deep Q-Learning (DQN). The
system was tested on the game Mega Man 2 for the NES, and is com-
pared to how a single recurrent neural network performed. The results
collected outperforms the basic ANN that it was compared against, and
provides a good base for future research on the model.
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1 Introduction

The suggested method in this paper is a CBR-ANN hybrid that is supposed to
work under dynamic, continuous problems. It aims at learning different behaviors
for different scenarios, without running the risk of forgetting how to act in a
certain way later on during the training section. To test this, the game Mega
Man 2 is used, as this is both dynamic and continuous as well as having the
possibility of having many, natural cases to take from during testing. The CBR
section of the system will decide which neural network a given case should use
as its solution, while the ANN chosen will decide what behavior is appropriate
for the current scenario. The active neural network will control the behavior
continuously until a new case is discovered, at which point the CBR takes over
again. The problem that it tries to solve can be seen in the video by Seth Bling
[2], with his NEAT approach for Super Mario World.

In order to evaluate the proposed method, the following research question
was made:

RQ: How will a CBR system choosing between several expert Artificial Neu-
ral Networks perform compared to a single Artificial Neural Network in a
dynamic, continuous system.
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To answer this, the CBR-ANN hybrid system is compared against how a
single ANN did on the same levels in Mega Man 2. The evaluation criteria is
the accumulated rewards from the reward function that is used for training the
system with Q-learning. The behavior is also compared. This should answer the
question sufficiently, and the differences should become bigger the more cases
are added.

While answering this question, the paper goes through the motivation for
the method as well as lists some previous CBR-ANN hybrids in section 2. Then
the model is explained in section 3, and the experiment in section 4. The results
are then explained in 5, with discussion around them, as well as future work in
6. Finally there is a conclusion in section 7.

2 Background

The method proposed was inspired by the work by Seth Bling [2]. His NEAT
approach to Super Mario World could do very well in single levels, but had trou-
ble both when trying other levels, as well as forgetting previous good behavior
when learning how to cope with new, but similar scenarios in the same levels.
Because of the single neural network solution having trouble with different cases,
a CBR-system was thought of that could be on top of several neural networks for
the different situations, possibly making several neural networks together able
to solve these problems that the single network could not.

The literature however does not have a lot of examples on using CBR and
ANNSs together in this way. The most common ways to combine these two meth-
ods in the literature was to either use ANNs as part of the retrieval process (see
e.g. [7,9,4]) or to alter the solution to a problem [5]. These could be possible
extensions to the proposed method, but not much more. Using neural networks
as the reuse phase, like in the proposed method, seems rather rare, but not unex-
plored. The ones that did, reported good results, and outperformed the methods
they were tested against [13,12,17,3]. None of these uses the same approach to
using several networks though, and none use Q-learning as the revise phase. The
approaches already explored are more for prediction/classification of a single or
cluster of instance/case, before moving on to the next one, instead of the con-
tinuous approach done by the proposed system, where it has an active neural
network that makes all decisions, until a new case appears and the CBR-section
of the system changes the active neural network. Considering the positive results
of previous work done on CBR-ANN hybrids the proposed method should do
well, even if there is little to no research on this exact hybrid system previously.

3 Model

The model suggested here uses a rather simple version of a CBR system, following
the traditional CBR cycle [1]. The task of the CBR-part of the system is to
chose the best neural network to play a case/level, which is trained for each new
level/case it encounters, using Deep Q-learning. During training, it uses the most
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similar case it has already seen as the base, or makes a random neural network
if it has not seen any cases before. It uses a lookup table for the comparison
of the levels (see Fig. 1), which is used for case retrieval. This section of the
system is used at each new case encountered, which happens at set intervals
of predicted actions in the experiments in this paper. After retrieving the most
similar case it has previously seen, it reuses the neural network of this case for
the new problem. During the training process it also has the revise step in the
form of the Q-learning algorithm, to alter the neural network weights to better
fit the current case. Lastly it has the retain step of the cycle active while it is
training, and saves every new case it encounters in this mode. When it is in pure
inference mode (while testing), it does not use the revise and retain steps.

1.0 0.9 0.0 0.4 0.3 0.1 0.4 0.7
0.9 1.0 0.0 0.5 0.6 0.4 0.7 0.6
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2
0.4 0.5 0.0 1.0 0.3 0.1 0.5 0.8
0.3 0.6 0.0 0.3 1.0 0.2 0.4 0.3
0.1 0.4 0.0 0.1 0.2 1.0 0.0 0.1
0.4 0.7 0.0 0.5 0.4 0.0 1.0 0.5
0.7 0.6 0.2 0.8 0.3 0.1 0.5 1.0

Fig. 1. The similarity measure used for the CBR part of the system.

The neural network architecture used is a recurrent neural network (RNN),
which has backwards pointing weights into other nodes, so that it can remember
previous experiences [10]. There are many ways to this, both comparetively sim-
ple and rather advanced, following is one of the simpler ways to make an RNN.
These values from the backwards pointing weights into the recurrent nodes are
then used as an extra input at the next time frame during the forward pass of
the network, as well as being able to point to another recurrent node, making
it remember several steps back in time. When these recurrent nodes point to-
wards “regular” nodes, it behaves almost like a bias node, but one which has an
updated value after each timestep, instead of a constant value. An example of a
simple neural network can be seen in Figure 2. This is a rather strong architec-
ture when it comes to sequential tasks, which playing a game is, and can also be
seen with the LSTM architecture that is often used for other sequential tasks,
like natural language processing [6]. All networks used in this paper has the
same structure and parameters. The networks use 5 recurrent levels, meaning it
remembers the last 5 inputs it has seen. They are places between the input and
the first hidden layer. 242 input nodes were used, representing what the player
sees on the screen in addition to the player’s and the boss’ remaining health
points. There are 3 hidden layers of 1000 nodes each. It then ends in 14 input
nodes, representing all the possible actions the agent can take.



4 S. Hegdal and A. Kofod-Petersen

Recurrent node

Input  Hidden  Qutput
Fig. 2. A simple recurrent neural network.

The reinforcement learning approach taken is Deep Q-learning, which has
been used for learning Atari games previously [11], with some modifications to
fit this problem. DQN differentiates itself from regular Q-learning by having the
neural network both do the prediction in the current timestep, and use it to
calculate the predicted best value in the next step, instead of having a set func-
tion that can calculate the expected best value in the next timestep. The result
is then used to change the weights of the neural network, using the predicted
reward for the current time step up against the actual reward it got added with
the predicted reward for the next timestep. The weights are updated using the
backpropagation algorithm for deep neural networks [10]. This has to be done
because the system does not have perfect understanding of the environment,
and therefore can not calculate the possible rewards at every timestep, without
doing the action and getting the reward. This approach does have a problem of
overestimating the predicted value, and therefore eventually only do one action.
To combat the overestimation problem, this paper uses a Double DQN approach,
this means there is a target network used while training that predicts the next
state, instead of using the same network that also predicted the current state
[15]. This network is periodically updated to become the same as the network
doing the action predictions, but much less frequently than the more simple
approach.

The agent is rewarded for:

— Movement horizontally. 10 points per unit moved right, and -10 for each unit
moved left. In addition it gets extra 10 points for each position it improves
its best position.

— No movement gives -250 points, and eventually kills the player. An extra
chance of random actions is added if there is no movement for a while.

— A death gives -510 points.

— Hurting the boss gives it 1 point for each health point the boss loses.

— Killing the boss gives 1020 points.

In the end, the reward is divided by 210 to keep the values slightly smaller, to
avoid overflows. These values were the best ones found while testing parameters.
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The agent(s) seemed to get better results when having big punishments for
undesirable behavior, and only get a small amount of points for the desired
behavior. This because otherwise it would find some place it could go back and
forth to get a lot of points, but at the same time not progress in the level. The
goal is to maximize the amount of points given by the reward function per level.

The agent(s) learn by collecting the input, input in the next timestep, output
and reward at every timestep into a list. This is then used to calculate the
data needed to do backpropagation and update the weights of the active neural
network, by comparing what the network thinks the reward is for a given action,
with what it actually got. The CBR-part of the system learns by saving the
neural network it adapts to every new case it sees.

4 Experiment

The testing was done on the 1989 game Mega Man 2 for the NES. The agents
played on normal difficulty on the American version of the game. This game,
and other classic Mega Man game, was determined to be a fitting game for a
CBR system to be tested on, because of how naturally you can make different
cases with the level select screen.

There are 8 levels, where each one gives you a unique powerup for beating it,
and it lets you choose any of them at any time, as long as you did not already
beat it. The two figures below depict the level select screen of Mega Man 2, and
how this works in the game. Fig. 3 shows the screen with no levels beaten, Fig.
4 shows it with Bubble man defeated.

There are 8! possible scenarios/cases including both the levels and the pos-
sible powerups that could be used, however only the 8 levels with no powerups
are used in this experiment. The levels share the same goal of going to the right
and kill the boss of the level at the end. The structure of the levels are unique
for all of them outside of these general guidelines, including the boss fights at
the end, which builds into it fitting well with a CBR system, and the goal is
potentially rather simple for a Neural Network to learn.

This paper does not use the entire case-base mentioned above. The powerups
are not used in this test, which then gives eight different cases used. Five of them
are used in training, while all the levels are used for the testing stage. This was
done to have it simpler in the early stages of research, as this is a rather untested
method, especially in a continuous environment like this game is. The game also
provided checkpoints at certain places, this experiment however made the agent
play the entire level over again if it died, ignoring the checkpoints entirely.

For this experiment, the five levels Quick man, Wood man, Metal man, Flash
man and Air man was used for training. The three levels Heat man, Bubble man
and Crash man was then added during the testing stages. For the training part,
the agents both started on Wood man’s stage, but otherwise did training on the
levels in random order. For testing, the levels were ordered the same for each
agent, which is the same order as the levels were listed, but with Heat man and
Air man switching places. Wood man was chosen as the starting point because
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PRESS START ==——-—7 PRESS START

BUBBLE GUICK
MAN MAN

4l

Fig. 3. No beaten levels Fig. 4. Bubble man beaten

it is the most basic/simple of the levels, both considering the layout of the level
and in its use of gimmicks compared to the rest. The other levels were chosen to
have one of each “Level type”, as they are rather unique, but still have a similar
level in the test cases. The exception is Crash man, which is so different from the
rest that the reward function does improve performance of the agents no matter
how long they train.

After the training on the levels were completed, two tests were done. The
first test with only the agents themselves choosing what action to take, and the
other with 0.1 chance of a random action being taken instead. The full list of
parameters, as well as all the code used for the training and testing can be found
online3.

5 Results

The complete training and testing used in the experiment is available online®.

Fig. 5 shows the data that each agent accumulated during training. As can
be seen here, they both follow the same patterns and end up at almost the same
spot. Which levels were the same is also not hard to spot in these as the patterns
are almost the same for each level in the two different agents. The baseline ANN
does get slightly more points in total compared to the CBR-ANN hybrid during
training though.

The two figures (Fig. 6 and Fig. 7) depict the accumulated rewards of the
two agents during testing. Fig. 6 shows the data with no random actions, whilst
Fig. 7 shows the data with 0.1 chance of random actions.

Unlike the training data there is a big difference in the two agents when
testing. The patterns still seem similar for the data, but the CBR-ANN hybrid
collects almost twice as many points with the 0.1 chance of random actions. It
also gets more points with no random actions, but the difference isn’t as big.

3 https://github.com/imaltont/MasterCode/tree/paper-code
4 https://www.youtube.com /playlist?list=PL76UkDpbLSScNASm93c5WTFeVmjT6aB1T



A CBR~ANN hybrid for dynamic environments 7

0

Baseline ANN global rew ——
-10000 CBR-ANN hybrid global rew ——— _|

-20000 - B
-30000 - B
-40000 - -

-50000 - B

Reward

-60000 - B
-70000 - B
-80000 - B

-90000 - B

-100000 L L L L
0 100000 200000 300000 400000 500000 60000C

Timestep

Fig. 5. Data collected from the agents while training.

The reason can be seen in the previously linked videos. Both agents try to
just hold right and jump for the most part, but they didn’t seem to learn that
you need to release jump sometimes to actually get a jump from it.

The performance with no random actions was therefore not very different in
the two agents, with the exception of Quick man’s stage with no random actions,
as the baseline ANN still did the same behaviour as it did in all the other levels,
while the CBR-ANN hybrid still remembered what it did during training, and
did the right/left pattern needed to get slightly further.
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Fig. 6. No random actions Fig. 7. 0.1 chance of random actions

With the 0.1 chance of random actions there were bigger differences between
the two. When the agents got to have random actions intercept the holding jump
and right action that it got stuck in in the beginning of the stages, the CBR-
ANN agent showed a lot more advanced behaviour later in the levels compared
to the baseline ANN. With different inputs from just the beginning, the CBR-
ANN agent could still remember the less seen instances where it might have to
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e.g. do big jumps (Metal man) and press down (Wood man) to advance further.
Even with this though, neither agent made it really far into the levels with the
given time to train.

6 Discussion and future work

6.1 Results

The results for the CBR-ANN hybrid is rather disappointing, as it did not get
far into the levels, and it was still in negative points in total over all the levels,
though it did gain points in some of them.

However, when compared to the baseline ANN it starts getting interesting.
They had the same pattern in all the levels during training, suggesting that
they managed to learn the same patterns for the different levels. During testing
however, the CBR-ANN hybrid outperformed the baseline ANN by a lot, simply
by not forgetting the behaviour patterns of the previous levels.

The difference becomes even more visible when the chance for a random
action is added, as it slightly worked against what seemed to be either not
enough training to learn that it needed to alternate between pressing the jump
button and releasing it to jump, or a case of overestimation. The random actions
worked for both the agents, but the baseline ANN did not remember the more
advanced movement later in the levels.

Their performance on the unseen cases was however very similar. Without
the random chance, the main difference was the Quick man’s stage, while the
others got stuck at the same spot for both the CBR-ANN hybrid and the baseline
ANN agent.

As for the research question presented in section 1, the CBR-ANN hybrid
seems to be performing well compared to an established method like a single
neural network.

It performs the same for unseen cases in this experiment, and outperforms the
single ANN in most cases that both have already seen. The results are however
very preliminary, and needs more research to be able to state that it is better
where applicable with confidence.

Some ways to make both the results of this experiment stronger, as well
as possible extensions to the dataset and the model will be discussed in the
following subsection.

6.2 Future work

Both the model and the problem, as well as just having more data would be
beneficial for this, therefore this subsection will discuss some ways that research
could be continued on the CBR-ANN hybrid.

The simplest way to extend it could be to have more runs to compare with,
instead of just a single play through, as well as comparing to more methods
than just against an ANN. Tuning parameters more, especially the training
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time and amount of training examples seen, could prove to improve the results.
Other parameters for the model itself could also be tuned, e.g. the number of
hidden nodes or the number of recurrent nodes. Another rather simple way to
improve the system could be to have a smarter random chance, so that it gets to
experience being stuck more often, and just gradually add more random actions
if it can’t find a way out.

Extending the number of cases should better demonstrate the differences
between this system and other methods it could be compared to. Two ways to
possibly do this could be to have each level divided into several cases instead
of just one case per level, as well as starting to use the powerups. Using the
powerups should be the easiest way to extend the dataset, as you can still keep
the similarity measure relatively simple. This because you can keep the same
type of input, just add one for which levels has been beaten beforehand rather
than just which level is currently being played. It does however require some
changes to make the agent able to change which powerup it is using, which
is not possible with the current setup. With the dataset becoming bigger, it
could also be beneficial to use some form of CBR-maintenance [8]. In this case,
grouping cases together could also be beneficial, having one solution answer to
a group of cases rather thanjust a single case, if possible.

A problem that could arise when using a bigger amount of cases than this is
that some of them could potentially learn something that is useful in the other
cases. The different solutions to cases however does not communicate in any
way between each other, and might therefore the other cases will not learn this,
even if another case can do this. It did not become an issue in this rather small
experiment. Another challenge for future research could be to make the system
change when to be in the CBR section of the system and when it should be
selecting actions for the ANN part. Some possible extensions could be to train
up a neural network on when it should switch between the two systems, or some
other image recognition system to make the decision. This could however extend
the training period by a lot, if you need to train this up either as the system is
learning, or beforehand. It could potentially allow for more advanced behaviors
compared to the more static approach used in this paper.

Improvements could also be made by changing the model with new meth-
ods/strategies. One possibility could be to change the similarity measure for the
CBR section of the system to something like an ANN, which has shown good
results previously [7,9]. Another possibility to improve the CBR section with
bigger changes could be to abuse the CBR properties even more, with e.g. being
able to have different reward functions for the Q-learning part or different ANN
topologies, depending on the properties of the case. This could potentially make
it vastly superior to a model that uses only a single reward function/topology, or
one that forgets what was good in the previous cases it has seen because of the
updated reward function. Another possible change could be to pre-train neural
network(s) to be used as the base networks for some cases, through supervised
learning. The neural networks and the Q-learning could also see some changes,
independent of the CBR part of the system. Adding convolutional layers to the
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neural networks is one such possibility, that could improve performance [11].
Another change that should be beneficial to the performance is to adapt the
dueling Q-learning approach rather than the double deep Q-learning approach
used in this paper, which should fight overestimation better [16]. A more radical
change could be to abolish the Q-learning approach entirely and instead use an-
other approach to learning instead. One such possibility is to use an evolutionary
algorithm, like NEAT, which was used in the work that inspired the proposed
method in the paper [2]. Lastly a way to combat the agent forgetting previous
experiences would be beneficial [14], both to the system itself and for creating
stronger evidence by improving the methods it is compared against.

7 Conclusion

The experiment yields good results for the CBR-ANN compared to the baseline
ANN, but it still needs more work and research to be able to compete properly.
The system can still be improved by a lot with both changing parameters and
problems and with bigger changes to the model itself. The evidence shown is not
very strong, but it is promising for future research on the model.
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