CEUR-WS.org/Vol-2568/paperl0.pdf

Data-Driven Powertrain Component Aging
Prediction Using In-Vehicle Signals

Andreas Udo Sass!, Enes Esatbeyoglu!, and Till Iwwerks'

Volkswagen AG, Brieffach 17772, 38436 Wolfsburg, Germany

Abstract. Predictive maintenance has become an important tool to
avoid unplanned downtime of modern vehicles. The exchanged data be-
tween Electronic Control Units (ECU) is simultaneously increasing with
the functionality. A large number of in-vehicle signals are provided and
facilitate the monitoring of physical component aging processes. In this
work, we generated a training dataset and observed aging of a selected
powertrain component.

First, we preprocessed in-vehicle signals to generate a time equidistant
signal database. Furthermore, the signals were segmented in various time
periods and subsequently aggregated to statistical features. Second, the
signal associated aging information were synchronized to an equal time
frame. We investigated several signals preselection approaches to pre-
dict an aging-value for the powertrain component with machine learning
methods. These approaches differ in the count of selected in-vehicle sig-
nals for the aging-value prediction.

Our results show that in-vehicle signals can be used to predict power-
train component aging. The quality of estimation differs with respect to
the selected regression methods. In this work we present an approach to
narrow down the prediction quality of different preselection approaches
for the estimation of a powertrain component aging.

Keywords: Predictive maintenance - feature extraction - signal prese-
lection - time series - machine learning.

1 Introduction

Various amounts of time-resolved data is recorded in the life-cycle of vehicles.
This data is transmitted from Electronic Control Units (ECU) via an Control
Area Network (CAN) bus of the vehicle. The complexity of modern vehicles
grows rapidly. Many components in the vehicle communicate with each other. A
reliable diagnosis of an potential aging of a component is complex.

Predictive maintenance in a commercial mobility context let the customer know
the current status of his vehicle(s). There is no extensive definition of predictive
maintenance. Hence, it is defined in various ways according to its use in litera-
ture [1]. On the one hand, predictive maintenance estimates a possible system
or component failure. On the other hand, the Remaining Useful Life (RUL) can
be predicted as a health management.
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In our paper we implemented a health management or Remaining Useful Life
(RUL) prediction. The RUL prediction with provided raw monitoring data is pre-
sented in [2] or with additional sensors in [3-5]. Instead of estimating a RUL the
condition-based maintenance (CBM) gives recommendations concerning main-
tenance decisions [6]. We estimate a degree of aging of an Exhaust Gas Recircu-
lation (EGR) cooling system. In sense of predictive maintenance the RUL can
be derived from a given aging degree. Different vehicles are equipped with CAN-
Loggers to record the in-vehicle signals. These information are the results of
the communication from different ECUs and contain sensors readings, actuators
readings and internal parameters of control models. The transferred information
on the CAN bus is not equidistant. Because of the arbitration, various messages
have different priorities. The requested CAN information is related to the actual
driving state. The real-time performance of the CAN bus is analyzed by com-
parison between the time-triggered and event-triggered protocol in [7].

The paper is structured as follows. Section 2 describes various data-driven diag-
nostic applications in the literature. Moreover, the physical EGR cooling system
aging effect is introduced and data preprocessing workflow is explained in detail.
Section 3 presents the result for modelling the aging-value of the given powertrain
component. We compare the quality of different signal preselection approaches
and different regression methods. Section 4 concludes with a discussion and gives
an outlook of future work.

2 Background

In this section, we provide background information to predict the aging degree of
a selected powertrain component by using different regression methods. We use
machine learning algorithms to create a model of the aging degree. The training
set’s target value (ground truth) is given by observing the fouling of the Exhaust
Gas Recirculation (EGR) cooler components in certain intervals in a workshop.
Data-driven diagnostics is applied in the automotive domain to analyze vehicle
components and support manufacturer and vehicle driver decision making. For
example, the On-board Diagnostics (OBD) system monitors fault diagnosis of
vehicle components and notifies the driver regarding the possible malfunction of
vehicle component. This is initially designed to keep the vehicle emissions within
statutory thresholds [8].

Besides the monitoring of emission limits with OBD systems, other authors use
machine learning algorithms to apply data-driven diagnostics in the automotive
domain. Machine learning algorithms within the context of regression problems
generate a functional dependency between input data and target values, without
explicit being programmed for it. Training data based on in-vehicle signal log-
ging is used to fit a machine learning model. The learned model is subsequently
applied to make predictions on new datasets.

The data-driven diagnostics for component aging prediction presented by sev-
eral papers differ in the source and amount of data used for training the model.
On one hand, models are trained with data from special sensors. For that pur-
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pose some authors use vibration sensors or acoustic emissions [4, 5,9, 10]. On the
other hand, some works use a dataset without adding special sensors. To reduce
the whole input data and for optimizing the models results, some authors select
a subset of the most relevant information [11,12]. Instead of using in-vehicle
data or data from additional sensors, some authors [13] use maintenance meta-
information of a vehicle fleet for forecasting.

Different machine learning algorithms are used for fault diagnosis. The input
data is labeled concerning a fault state or normal state. Support Vector Ma-
chines (SVM) are used to predict the fault state [14]. The authors of [15] use
Bayesian Networks for the same purpose. Some authors use simple Neural Net-
works (NN) to predict failures within the given input data [16-18]. Wolf et al.
combine several Neural Networks to predict the preignition of high-pressure tur-
bocharged petrol engines [19]. Instead of an offline calculation of the models,
a cloud can calculate complex machine learning algorithms of the transmitted
data [20]. Because of a limited transfer rate between the car and the cloud, only
a reduced information amount is transmitted [16]. Some authors apply predic-
tive maintenance methods in the industrial sector [21]. Automotive components
like bearings, gears and shafts are analyzed regarding their common features [22,
23]. Instead of detecting fault states, some authors search healthy representa-
tives in the data. These representatives are used for monitoring, diagnostics and
prognostics. This is exemplified for an automotive braking system in [24].

2.1 EGR Component

The specific vehicle component investigated in this work is analyzed with the
help of in-vehicle date from several vehicle prototypes with diesel engines. To
keep the legal pollutant emission limit a recirculation of exhaust gas is applied
in these prototypes.

At an ideal combustion of sulfur-containing diesel fuel carbon dioxide (CO2), wa-
ter (H20) and sulfur dioxide (SO2) are released as resulting products. The air
conditions are fluctuating strong locally. Due to a non-ideal combustion, nitro-
gen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC) and particulate
matter (PM) are created. The EGR valve controls the recirculating exhaust gas
of the engine back into the intake tract.

Nitrogen oxides (NOx) emissions can be reduced by increasing the EGR rate.
In addition to that the implemented system uses a cooler to decrease the gas
temperature. Therefore the peak temperature can be reduced. Another benefit
is the possibility to control and reduce NOx emissions from diesel engines by
decreasing the combustion temperature [25,26]. However, a higher EGR rate
promotes an increased fouling in EGR coolers [27,28]. This fouling affects the
cooler performance negatively. A built-in bypass switch controls the exhaust gas
flow to be cooled, if necessary. This can influence the hydrocarbon and carbon
monoxide emissions positively [29].

The EGR cooler fouling consists of HC and PM deposits. Due to these deposits,
the flow resistance rises. To reduce the quantity of deposits an additional cat-
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alyst in the EGR line can be implemented [30]. The EGR cooler fouling is a
complex process and also dependent on the engine operating state [31].

2.2 Data Description

The following explanations describe the two data sources used for further anal-
ysis and model prediction. The first data source includes the in-vehicle signals
from several prototypes. The prototypes itself were used for road trails espe-
cially designed to collect data related to the EGR aging process. The second
data source is provided through data collected during workshop visits. This in-
cludes the measured degree of the EGR cooling system aging that was measured
in certain intervals. The two data sources were originally not time synchronized.
The in-vehicle signals from the first source are recorded from the internal ve-
hicle network (CAN bus) of each prototype. The data is recorded in form of
time series containing series of tuples with measurement value and associated
timestamps. As described in section 1, the recorded in-vehicle signals are in-
dependent and have not the same timely resolution. Owing to this, the signals
were synchronized by means of their related time-stamps. We use time-series
data with time resolution of 100 ms in time-equidistant form. For some binary
signals (e.g. binary status signals) it is necessary not to interpolate between the
signal values. For this reason the time stamps of the signals are changed to the
given 100ms grid. In order to train a machine learning model, all data vectors
have to be the same size. Thus, the signal length of all analyzed signals has to be
the same. At the recording start the engine could be idle and in-vehicle signals
are not transmitted yet. After turning off the engine, the recording device is still
working for some time and collecting all remaining information on the CAN bus.
To secure the same value length over several engine starts, all in-vehicle signals
have to be cut according a trigger signal. The trigger signal should be accessible
on every prototype over the whole analysis period (see fig. 1). The second data
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Fig. 1. Example for cut-off signals based on a trigger signal.

source provides the aging degree of each prototype’s EGR cooling system. The
unevenly spaced time series (target value information) were interpolated to the
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same 100ms grid as mentioned above. But in this case, the aging effect occurs
not only while measuring, but during the whole vehicle usage. At the given pro-
totypes the fouling of EGR cooling system increase due to their usage.
The aging degree is defined as mass flow ratio ni,. between the air mass flows of
different states. While measuring the mass flow ratio the driving state has to be
constant, especially the engine speed and torque. For this reason the measure-
ments are operated in certain intervals workshops. The air mass flow is quantified
while the EGR valve is in a closed and opened state. The equidistant and 100 ms
synchronized aging degree is used as target value (ground truth) for further anal-
ysis.

iy = e (1)

mpy

c

m, : mass flow ratio, degree for EGR cooler aging

my, : mass flow, EGR valve open
my, : mass flow, EGR valve closed
3 Results

In this section, we present results for the aging degree prediction of the proto-
types. We choose different preselection approaches to determine prediction rel-
evant signals (physical and data-driven approach). The modeled aging degrees
were compared to the measured ones. The analyzed signals were segmented ac-
cording different time periods (10 minutes to 15 hours). We used the root-mean-
square error (RMSE) as performance measure to evaluate the models perfor-
mance. The RMSE indicates how well the average modeled aging estimation of
the respective model is compared to the target value. The smaller the RMSE,
the better the model aging estimation.

Data Preselection The in-vehicle signals were preselected regarding three dif-
ferent approaches. The first one is the physical approach. In Section 2.2 the aging
degree is given as a function of the mass flow. In a previous work we show results
concerning selecting the right in-vehicle signals to monitor this powertrain com-
ponent aging in dynamic working conditions for each prototype. Furthermore an
optimal time period for the data aggregation is given in [32]. We use the same
selection of signals described in this work as physical approach. The signals are:
EGR valve position, EGR mass flow and the information about an active EGR
cooling.

The extended physical approach includes the preselection of relevant signals ac-
cording the theoretical information given in Section 2.1. The in-vehicle signal
preselection for the extended physical approach is supplemented by signals of
working conditions and internal cooling temperatures. In total we preselected
ten signals.
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The data-driven approach selects all in-vehicle signals, which are present on all
prototypes. As a reason of having different engine configurations and recording
loggers the signal selection distinguishes. After the signal intersection there are
still more than 130 signals valid for analysis the aging degree.

Data Segmentation In addition to the preselection, the data is segmented in
various time periods from 10 minutes till 15 hours. In each time period an asso-
ciated target value is calculated concerning the given input data. Although the
measured value is not as highly time-resolved as the time period, we interpolate
the target value for the given time period as long as the aging process between
two measurements is continuous. Thus, for each time period the ground truth is
provided as aging value and we calculate a modeled aging value with different
approaches by the given aggregated input data.

Data Aggregation In order to aggregate the data, we evaluate different statis-
tical features for each of the signals used in the given segmentation. The selected
statistical features are: arithmetical mean, 25th and 75th percentile and the stan-
dard deviation of the values in each time period. The statistical features of each
data segmentation were used to train a multiple linear regression, Bayesian linear
regression and Random Forest regression model.

Implementation In order to estimate the aging-value, we implement a mul-
tiple linear regression, a Bayesian ridge regression and a Random Forest re-
gression [33]. A linear regression describes the relation between the dependent
variable Y and the matrix of predictors X. The multiple linear regression returns
the vector 8 of coefficients to be estimated, Y is dependent on the predictors X
[34]. The multiple linear regression determines § as a estimation by minimizing
the error vector € with the least squares method. Y is defined as:

Y=XB+¢ (2)

In contrast to the multiple linear regression, the Bayes regression assumes that
the errors e are independent and normally distributed random variables. The
response Y is estimated not as a single point, but as a result of a probability
distribution.

e~ N(0,0%) (3)

A Random Forest regression is related to the decision tree regression. The de-
cision tree is learning the rules of if-else sequences. At the end of these trees,
numerical predictions are calculated for those leaves. The Random Forest re-
gression combine several tree decision under a certain kind of randomization to
prevent overfitting their training set.

The Figure 2 shows the estimated degree of aging for the three different regres-
sion methods for a selected prototype. For each sample consisting of statistical
features an estimated aging degree is calculated using the mentioned regression
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methods. For the training of the regression model we use the datasets of three
vehicles. The dataset of a fourth and fifth vehicle is used for the inter-vehicle
validation of our approach. The RMSE is calculated for each regression methods
and each data preselection approach. The physical and the extended physical
preselection approach deliver a quite precise degree of aging for the selected
component. The data driven approach is not as good as the other approaches,
especially while using the multiple linear and Bayes regression. Instead of pre-
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Fig. 2. Overview of different in-vehicle data preselection approaches with variation of
target estimators based on data segmentation of 10 hours. Used methods are: multiple
linear regression, Bayesian linear regression and Random Forest regression.

senting the estimated aging degree, we compare different preselection approaches
and various data segmentations in Figure 3. As described above, the model is
trained with the dataset of three prototypes. The model is validated with the
dataset of two separate prototypes. The Random Forest regression has a quite
similar result for both physical approaches for the two selected prototypes. The
Random Forest regression has better predictions than the other two for the given
input.

Furthermore, the physical selection approach provides a lower RMSE for the
multiple linear and Bayesian regression. The RMSE of the extended physical
approach is slightly worse than that. All visible regression methods have in com-
mon, that the estimation quality gets significant higher for a data segmentation
above 2 hours. The data-driven preselection approach is not plotted, because the
RMSE of that approach is not as precise as the other approaches.
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RMSE for various approaches and regression methods
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Fig. 3. RMSE overview regarding different data segmentation and the two physical
preselection approaches. Used methods are: multiple linear regression, Bayesian linear
regression and Random Forest regression.

4 Conclusion and Future Work

In this work we analyzed dynamic in-vehicle signals regarding the aging process
of the EGR cooling system. Our approach enables the possibility to estimate the
aging-value of this structural component using different preselected datasets.
First, the data from dynamic in-vehicle signals are preprocessed to generate a
time equidistant dataset. Thus, it is possible to predict the aging degree by us-
ing unevenly spaced time series. Moreover, several vehicles with a various set
of signals can be utilized to train the model. For each vehicle, the degree of
aging is observed in certain time intervals and a training dataset is generated.
This aging degree is interpolated to the same time grid as the in-vehicle signals.
We provided different data preselection approaches in order to enable the aging
estimation on a reduced dataset. Afterwards, we segmented the data in several
time periods. The aggregated statistical features of the preselected signals were
used to train the models. Figure 2 and 3 show that a prediction of a degree of
aging for a selected component is feasible by using the right amount of signals.
It can be noted that the quality of the prediction evidently depends on the data
segmentation and on the preselected signals used for model training. As shown
in Figure 3, the quality of prediction is dependent on the selected data preselec-
tion approach. The Random Forest regression finds relevant features also in the
bigger dataset for the given vehicle.

The preselection approach of in-vehicle signals can be extended in consideration
of each signal’s relevance for the physical aging process. In this context, the rel-
evance of each signal can be weighted concerning the physical context and used
for the model training. The aim is to train the model with a subset of data to
get an optimal performance.



Data-Driven Component Aging Prediction Using In-Vehicle Signals 117

Our goal was to deliver component aging indicators for the usage of predictive
maintenance. Predictive maintenance comprises not only the prediction of com-
ponent failures. In this context, predictive maintenance tries to define the degree
of aging by using in-vehicle signals. In particular, for predicting this aging degree
relevant signals have to be identified. Besides the determination of the aging de-
gree, predictive maintenance is understood as notification system, in which part
of the vehicle a possible aging process can be detected. For that a list of relevant
in-vehicle signals should be generated.

In the future, the waveform characteristics of various component aging processes
can be stored. With the help of this characteristics the relevant in-vehicle signals
can be detected. Furthermore, the results of the future approach are the list of
in-vehicle signals, which are identified to be relevant for a given aging process.
This signal list indicates, which component aging occurs in the given dataset.
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