
Fast-Insertion-Sort: a New Family of Efficient

Variants of the Insertion-Sort Algorithm∗†

Simone Faro, Francesco Pio Marino, and Stefano Scafiti

Università di Catania, Viale A.Doria n.6, 95125 Catania, Italy

Abstract. In this paper we present Fast-Insertion-Sort, a sequence of ef-
ficient external variants of the well known Insertion-Sort algorithm which
achieve by nesting an O(n1+ε) worst-case time complexity, where ε = 1

h
,

for h ∈ N. Our new solutions can be seen as the generalization of
Insertion-Sort to multiple elements block insertion and, likewise the orig-
inal algorithm, they are stable, adaptive and very simple to translate
into programming code. Moreover they can be easily modified to obtain
in-place variations at the cost of a constant factor. Moreover, by further
generalizing our approach we obtain a representative recursive algorithm
achieving O(n logn) worst case time complexity. From our experimental
results it turns out that our new variants of the Insertion-Sort algorithm
are very competitive with the most effective sorting algorithms known in
literature, outperforming fast implementations of the Hoare’s Quick-Sort
algorithm in many practical cases, and showing an O(n logn) behaviour
in practice.

Keywords: Sorting · Insertion-Sort · Design of Algorithms.

1 Introduction

Sorting is one of the most fundamental and extensively studied problems in
computer science, mainly due to its direct applications in almost all areas of
computing and probably it still remains one of the most frequent tasks needed
in almost all computer programs.

Formally sorting consists in finding a permutation of the elements of an input
array such that they are organized in an ascending (or descending) order. In the
comparison based model, it is well-known that the lower bound for sorting n
distinct elements is Ω(n log n), both in the worst case and in the average case.1

A huge number of efficient sorting algorithms have been proposed over the
years with different features.2 There are several factors indeed affecting the selec-

∗ We gratefully acknowledge support from “Università degli Studi di Catania, Piano
della Ricerca 2016/2018 Linea di intervento 2”.
† Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-

mons License Attribution 4.0 International (CC BY 4.0)
1 In this context the average case refers to the random-permutation model where we

assume a uniform distribution of all input permutations
2 See [5] for a selected set of the most considerable comparison-efficient sorting algo-

rithms

37

38 S. Faro et al.

Insert(A, i)
1. j ← i− 1
2. v ← A[i]
3. while (j ≥ 0 and A[j] > v) do
4. A[j + 1]← A[j]
5. j ← j − 1
6. A[j + 1]← v

InsertionSort
1. for i← 1 to n− 1 do
2. Insert(A, i)

Fig. 1. The pseudocode of Insertion-Sort. The algorithm divides the input array in a
sorted portion aligned at the left, and an unsorted portion aligned on the right. At each
iteration, the algorithm removes one element from the right portion, finds its correct
location within the sorted portion, and shifts each element after this location ahead
by one position in order to make room for the new insertion. Iterations repeat until all
elements have been inserted.

tion of suitable sorting algorithm for an application [13]. Among them the time
and space complexity of an algorithm, its stability, its adaptability, its capabil-
ity to work online, the number of elements to be sorted, their distribution and
the percentage of already sorted elements, are considered as direct factors [21]
whereas programming complexity and data type of elements are included among
the indirect factors [20]. In our discussion we will refer to the time complexity
of a sorting algorithm as the overall number of any operation performed during
its execution.

The space complexity of an algorithm concerns the total amount of working
space (in addition to the array to be sorted) required in the worst case. An in-
place algorithm requires only constant additional space, otherwise it is said to
be an external algorithm. However, in literature, many recursive algorithms are
said to work in-place (using ambiguous terminology) even if they do not, since
they require a stack of logarithmic height. In this case we say that the algorithm
is internal [5]. For instance Quick-Sort [11] is an internal algorithm, Merge-Sort
adopts external sorting since it uses a linear amount of working space for merges,
while Insertion-Sort is a real in-place algorithm.

The focus of many sorting algorithms lies instead on practical methods whose
running time outperforms standard techniques even when comparisons are cheap.
In this case expected (rather than worst case) performances is the main concern.
Among this class of algorithms, despite its higher number of comparisons than
for other methods, Quick-Sort and most of its variants are generally considered
the fastest general purpose sorting methods.

The Insertion-Sort algorithm, particularly relevant for this paper, is also con-
sidered one of the best and most flexible sorting methods despite its quadratic
worst case time complexity, mostly due to its stability, good performances, sim-
plicity, in-place and online nature. It is a simple iterative sorting procedure that
incrementally builds the final sorted array. Its pseudocode is depicted in Fig. 1.
The i-th iteration of the algorithm takes at most O(i) time, for a total O(n2)
time complexity in both worst and average case.

Fast-Insertion-Sort: a New Family of Efficient Variants of the Insertion-Sort Algorithm 39

Algorithm twc cwc space tac tbc year

Insertion-Sort O(n2) O(n2) O(1) O(n2) O(n) –
Rotated-IS [22] O(n1.5 logn) − O(w)? O(n2) − 1979
Controlled-Density-IS [18] O(n1.5) − O(n) O(n logn) − 1980
Library-Sort [1] O(n2) O(n logn) O(n) O(n logn)∗ O(n) 2006
Binary-IS [27] O(n2) O(n logn) O(1) O(n2) O(n logn) 2008
2-Element-IS [19] O(n2) O(n2) O(1) O(n2) O(n) 2010
Enhanced-IS [13] O(n2) O(n2) O(n) O(n2) O(n) 2013
Adaptive-IS [23] O(n2) O(n logn) O(1) O(n2) O(n) 2014
Doubly-IS [24] O(n2) O(n2) O(1) O(n2) O(n) 2015
Bidirectional-IS [21] O(n2) O(n2) O(1) O(n1.5) O(n2) 2017
Brownian-Motus-IS [9] O(n2) O(n2) O(1) O(n2) O(n) 2018
Clustered-Binary-IS [9] O(n2) O(n logn) O(1) O(n2) O(n) 2018

Block-Insertion-Sort O(n1.5) O(n logn) O(1)[O(n logn)§ O(n) 2019

Fast-Insertion-Sort(h) O(n1+ 1
h) O(n logn) O(1)[O(n logn)§ O(n) 2019

Fast-Insertion-Sort O(n1+ε) O(n logn) O(1)[O(n logn)§ O(n) 2019

Table 1. Milestones of sorting methods based on Insertion-Sort. Algorithms are listed in
publication time order and are portrayed in terms of worst case (twc), average case (tac)
and best case (tbc) time complexity, worst case comparison number (cwc) and space
complexity. The last three algorithms are introduced in this paper. In (?) w represents
the number of bits in a computer word. In (∗) the given complexity is observed with
high probability. In (§) the O(n logn) behaviour has been observed by experimental
evaluations. In ([) we refer to the in-place variants (see Section 2.1).

The Insertion-Sort algorithm is also adaptive, achieving O(δn) worst case time
complexity when each element in the input array is no more than δ places away
from its sorted position. Moreover it has an enviable linear best case time (which
occurs when the input array is already sorted) and can be immediately translated
into programming code (see Bentley [2] for a simple 3-lines implementation of
Insertion-Sort in the C programming language).

Much more interesting, Insertion-Sort is one of the fastest algorithms for sort-
ing very small arrays, even faster than Quicksort [33]. Indeed, efficient Quick
Sort implementations use Insertion-Sort as a subroutine for arrays smaller than a
given threshold [28, 29, 35]. Such threshold should be experimentally determined
and depends on the machine. However it is commonly around 10 elements.

Due to such many advantages the Insertion-Sort algorithm has inspired much
work and is the progenitor of several algorithmic variants which aim at reducing
comparisons and element moves very efficiently. Table 1 presents a list of most
of effective variants of Insertion-Sort portrayed in terms of several features.

For the sake of completeness we also report the some related algorithms
obtained as the combination of Merge-Sort and Insertion-Sort [6, 5, 34, 17] which,
although not of practical significance, remain of theoretical interest.

In this paper we present a new family of efficient external algorithms inspired
by Insertion-Sort, where each element of the family, named Fast-Insertion-Sort(h)

for h ∈ N, achieves an O(n1+
1
h) worst-case time complexity by nesting previous

40 S. Faro et al.

algorithms of the same family. Although Fast-Insertion-Sort(h) requires O(n1−
1
h)

additional space we show how to translate it into an in-place solution at the
cost of a constant factor. In addition we also devise a purely recursive general-
ized version of our Fast-Insertion-Sort(h) algorithms, which achieves an O(n log n)
worst case time complexity. Like Insertion-Sort our solutions are stable, adaptive
and very simple to translate into programming code.

Surprisingly, it turns out from our experimental results that our variants
of the Insertion-Sort algorithm are very effective in practical cases showing an
O(n log n) behaviour in practice. Their performances are comparable to that
of the most effective sorting algorithms known in literature, overcoming fast
implementations of the Hoare’s Quick-Sort algorithm in many practical cases.

Throughout the paper we will use the following terminology. Given an array
A[0..n−1], of size n, we denote by A[i] the (i+1)-st element of A, for 0 ≤ i < n,
and with A[i..j] the portion of the array contained between the (i + 1)-st and
the (j + 1)-st characters of A, for 0 ≤ i ≤ j < m. We indicate by (A + i) the
array beginning at (i+ 1)-st position of A, so that (A+ i)[0..j] = A[i..j].

2 The Fast-Insertion-Sort Algorithms

In this section we present Fast-Insertion-Sort, a new family of efficient sorting
algorithms obtained as natural generalizations to multiple elements insertion of
the standard Insertion-Sort algorithm. The underlying idea is to extend, at each
iteration, the left portion of the array by means of the insertion of a sorted block
of k elements, with k ≥ 2. Despite its simplicity, this approach surprisingly leads,
under suitable conditions, to a family of very efficient algorithms, both in theory
and in practice, whose behaviour moves close to a linear trend for increasing
values of the input size.

The new family is a sequence of nested algorithms, Fast-Insertion-Sort(h), for
h ∈ N, where the h-th algorithm can be applied when n > 2h. The pseudocode of
the Fast-Insertion-Sort(h) algorithm and its auxiliary procedure Insert-Block
are depicted in Fig. 2.

Each algorithm in the sequence solves the problem by nesting function calls
to previous algorithms in the same sequence and is associated with an integer
parameter h > 0 which substantially represents the depth of such a nesting. For
this reason in the execution of the Fast-Insertion-Sort(h) algorithm it is assumed
that the size of the input array is at least 2h.

The following definition of input size degree is particularly useful for the
characterization of our algorithm.

Definition 1 (Input size degree). Given an input array of size n and a con-
stant parameter c ≥ 2, we say that its input size degree (or simply its degree)
is h, with reference to c, if ch−1 < n ≤ ch. We refer to the constant value c
as the partitioning factor. When c is clear from the context we simply say that
the input size degree is h. We can easily compute the degree of the input n by
h = dlogc(n)e.

41

Insert-Block(A, i, k, T)
1. for j ← 0 to k − 1 do
2. Swap(T [j], A[i + j])
3. `← k − 1
4. j ← i− 1
5. while ` ≥ 0 do
6. while j ≥ 0 and A[j] > T [`]
7. Swap(A[j + ` + 1], A[j])
8. j ← j − 1
9. Swap(A[j + ` + 1], T [h])

10. `← `− 1

Fast-Insertion-Sort(h)(A,n)

1. if n ≤ 2h−1 then h← dlog2(n)e
2. k ← n(h−1)/h

3. T ← array[k]
4. for i← 0 to n (step k) do
5. b← min(k, n− i)

6. Fast-Insertion-Sort(h−1)(A + i, b)
7. Insert-Block(A, i, b, T)

Fig. 2. The pseudocode of Fast-Insertion-Sort(h), with a nested structure of depth h > 0,
and its auxiliary procedure Insert-Block.

Note 1 (Block partitioning). If the the input array has degree h then the algo-

rithm performs a partitioning of the array in at most c blocks of size k = n1−
1
h .

In the worst case, indeed, n = ch and the number of blocks is given by⌈
n

k

⌉
=

⌈
n

n1−
1
h

⌉
=
⌈
n

1
h

⌉
=
⌈ (
ch
) 1

h

⌉
= c

In addition observe that each block of size k represents an array of degree h− 1.
Indeed, if ch−1 < n ≤ ch then k = n1−

1
h is bounded by

ch−2 < ch−2+ 1
h <

(
ch−1

)1− 1
h < k ≤

(
ch
)1− 1

h = ch−1

Observe that if n < ch then the last block has size greater than 0 and less than
k, thus we have no guarantees that such size has degree equal to h− 1.

The algorithm is based on an iterative cycle on the variable i. At the begin-
ning of each iteration, the left portion of the array, A[0..i− 1], is assumed to be
already sorted. Then the algorithm sorts the elements in the block A[i..i+k−1],
of size k, by a nested call to Fast-Insertion-Sort(h−1), and tidily insert all the
elements of the block in the sorted portion of the array by means of proce-
dure Insert-Block. The overall number of iterations is then equal to dn/ke,
where the size of the last block my be less than k and specifically it has size
n− k(dn/ke − 1).

A call to procedure Insert-Block(A, i, k, T) has the effect to insert the
block A[i..i+ k− 1], of size k, into the left side of the array A[0..i− 1], using the
array T as a working area. It is assumed that both A[0..i− 1] and A[i..i+ k− 1]
have both been sorted. During the insertion process elements of the left portion
will be moved over the elements of the right block in order to make room for
the insertions. The additional array T , of size k, is used to temporarily store the
elements of the right block so that they are not overwritten.

Fast-Insertion-Sort: a New Family of Efficient Variants of the Insertion-Sort Algorithm

42 S. Faro et al.

Note 2. Since procedure Insert-Block uses external memory for temporarily
storing the elements of the block A[i..i+k−1], all swap operations (Swap(a, b))
inside the procedure (lines 2, 7 and 9), may be replaced by element moves (a←
b), cutting down the number of assignements of a factor up to 3.

The insertion process iterates over the elements of the right block (now tem-
porarily moved on T) proceeding from right to left (while cycle of line 5). For
each element T [`], with 0 ≤ ` < k, the algorithm iterates over the elements
A[j] of the left block, proceeding from right to left, in order to find the correct
position where T [`] must be placed (while cycle of line 6). If the element A[j] is
greater than T [`] then it is moved of ` position to the right (line 7). Once the
first element A[j], such that A[j] ≤ T [`], is found (or j < 0), T [`] is moved at
position A[j + `+ 1] and ` is decreased (lines 9-10).

Note 3. For simplicity procedure Insert-Block shown in Fig. 2 uses a linear
search for locating the correct position where an element must be placed. It
takes at most O(i) comparisons, if i is the size of the sorted portion of the array.
However it is more favourable to use a binary search [27] which would allow to
reduce the number of comparisons to O(log i).

It is easy to prove that all Fast-Insertion-Sort(h) algorithms maintain all the
features of the standard Insertion-Sort algorithm and specifically they guarantee
a stable sorting and are very simple to implement. However a drawback of this
family of algorithms is that they use additional external memory of size O(k).
In the Section 2.1 we show how to obtain in-place variants of such algorithms.

Observe that Fast-Insertion-Sort(1) corresponds to the standard Insertion-Sort
algorithm where k = n0 = 1 and each block consists in a single element.

The algorithm Fast-Insertion-Sort(2) devises a special mention since it can be
easily translated into a purely iterative in-place online adaptive sorting algo-
rithm. Due to its distinctiveness we give it a special name: Block-Insertion-Sort.
It can be proved that if we set k =

√
n then the worst-case time complexity of

Block-Insertion-Sort is O(n1.5). Although there are few variants [22, 18] achieving
o(n2) worst case time complexity using additional space, to the best of our knowl-
edge this is the first time an iterative in-place online variant of the Insertion-Sort
algorithm achieves a o(n2) complexity in the worst case.

The sequence of algorithms Fast-Insertion-Sort(h), for h ∈ N, converge to a
purely recursive algorithm which could be seen as the representative of the family
and which, for this reason, we name simply Fast-Insertion-Sort. The pseudocode
of the Fast-Insertion-Sort algorithm is depicted in Fig. 4. It maintains the main
structure of the Fast-Insertion-Sort(h) algorithms but dynamically computes the
value of the input size degree h. Specifically, given a partitioning parameter c ≥ 2,
the algorithm computes the input size degree as h = dlogc(n)e. The choice of
the partitioning parameter c could be critical for the practical performances of
the algorithm3. Note that, for c = 2, Fast-Insertion-Sort exactly behaves like

3 As discussed in Section 3 the best choice for the partitioning parameter, leading to
the best performances in practical cases, is to set c = 5.

Fast-Insertion-Sort: a New Family of Efficient Variants of the Insertion-Sort Algorithm 43

A

i︷ ︸︸ ︷ k︷ ︸︸ ︷
w (A)

T s

A

i︷ ︸︸ ︷ k︷ ︸︸ ︷
w

k︷ ︸︸ ︷
s (B)

A

i︷ ︸︸ ︷ k︷ ︸︸ ︷
s

k︷ ︸︸ ︷
w (C)

Fig. 3. Three schemas for the insertion of
a sorted block of size k into A[0..i − 1].
Two blocks are involved: the working area
w which represents the block to be in-
serted, and a storage area s, which is used
to temporarily store elements of the work-
ing area. In schema (A) an external storage
area T is used. In schema (B) the contigu-
ous block A[i + k..i + 2k − 1] is used as
storage area. In schema (C) we insert the
block A[i + k..i + 2k− 1] and use the block
A[i..i + k − 1] as storage area.

Merge-Sort, since the process of inserting a sorting block into another one can
be viewed as a merging procedure. It can be proved that the Fast-Insertion-Sort
algorithm has a O(n log n) worst case time complexity. Moreover such algorithm
shows also very good performances in practical cases, as discussed in Section 3.

2.1 In-Place Sorting

In this section we briefly describe how to allow Fast-Insertion-Sort algorithms
to use an internal storage area to temporarily save the elements of the working
area representing the block which should be inserted during the current iteration,
making it an in-place sorting algorithm4.

In order to make sure that the contents of the storage area is not lost, it
is sufficient to guarantee that whenever an element should be moved from the
working area, it is swapped with the element occupying that respective posi-
tion in the storage area. Procedure Insert-Block, shown in Fig. 2, makes this
guarantees.

In this context it should be possible to use the contiguous block A[i+ k..i+
2k−1], of size k, as storage area, as depicted in Schema B of Fig. 3. This could be
obtained by replacing the procedure call Insert-Block(A, i, k, T) (line 6) with
Insert-Block(A, i, k,A+ k). The main advantage of this approach is that the
part of the array that is not currently being sorted can be used as temporary
storage area. This yields a fast variant for the Fast-Insertion-Sort(h) algorithm
which works in-place requiring only constant extra space.

However, since the insertion of a block of size k requires a contiguous block
of k elements, at the last iteration, when i > n−2k, there is not enough space to
allow the algorithm to work in-place. Although many solutions may be adopted
to address such case, we will prove it is enough to insert the elements of the last

4 This idea is not original since it has been successfully used in literature. The first
sorting algorithm which introduced such a technique was the Quick-Heap-Sort algo-
rithm by Cantone and Cincotti [3]. Recently it has been also adopted to obtain fast
internal variants of many recursive external sorting algorithms [5]

44 S. Faro et al.

Fast-Insertion-Sort(A,n)
1. if n ≤ 2 then
2. return Insertion-Sort(A,n)
3. h← dlogc(n)e
4. k ← n(h−1)/h

5. T ← array[k]
6. for i← 0 to n (step k) do
7. b← min(k, n− i)
8. Fast-Insertion-Sort(A + i, b)
9. Insert-Block(A, i, b, T)

Fig. 4. The pseudocode of the Fast-Insertion-Sort algorithm, the purely recursive sorting
algorithm, where the input size degree h is automatically selected as h = dlogc(n)e, for
a given partitioning parameter c ≥ 2.

block, whose size is at most 2k−1, by individual insertions, as done by standard
Insertion-Sort.

Thus at the beginning of each iteration the two blocks A[i..i + k − 1] and
A[i + k..i + 2k − 1] will be swapped. Subsequently, as in the previous case, the
algorithm sorts the block A[i..i + k − 1], of size k, and insert it in the sorted
portion of the array, using the block A[i+ k..i+ 2k − 1], as storage area.

However, since all elements of the array must be inserted, sooner or later, it
is possible to avoid the k swap operation necessary to move the elements in the
storage area (lines 1-2 of procedure Insert-Block) by interchanging the two
blocks involved in the insertion process. Specifically we can directly insert the
block A[i+k..i+ 2k− 1] using the block placed in the middle, i.e. A[i..i+k− 1],
as storage area, as depicted in Schema C of Fig. 3.

It is easy to prove that the resulting in-place variants of the Fast-Insertion-
Sort(h) algorithms maintain most of the features listed above: they work online
and are very simple to implement. Unfortunately, due to the swap operations
performed on the storage area, they don’t guarantee a stable sorting and their
performance are a bit worse than the corresponding external variants.

3 Experimental Evaluation

In this section we present and comment the experimental results relative to a
comparison of our newly presented algorithms against some of the most effec-
tive sorting algorithms known in literature. Specifically we tested the following
algorithms:

– Merge-Sort (MS), the external algorithm with a Θ(n log n) time and O(n)
space complexity. Here we implemented a version using only an array of size
dn/2e as storage space.

– Heap-Sort (HS), an internal algorithm with a Θ(n log n) time complexity.

Fast-Insertion-Sort: a New Family of Efficient Variants of the Insertion-Sort Algorithm 45

– Quick-Sort (QS), an internal algorithm with a O(n2) time complexity and
O(n log n) expected time. Here we implemented the standard Hoare’s algo-
rithm with a random selection of the pivot element.

– Quick-Sort∗ (QS∗), an optimized version of the Hoare’s algorithm [11] which
uses Insertion-Sort for input size less or equal to 10.

– Block-Insertion-Sort (BI), the in-place variant of algorithm described in Sec-
tion 2.

– Fast-Insertion-Sort(h) (FIS(h)), the external variants of the nested algorithms
described in Section 2, for 2 ≤ h ≤ 10.

– Fast-Insertion-Sort (FIS), the external variant of the recursive algorithm de-
scribed in Section 2, for 2 ≤ c ≤ 10.

– Quick-Sort? (QS?), an optimized version of the Hoare’s algorithm which uses
Block-Insertion-Sort for input sizes less or equal to 512.

All algorithms have been implemented in the C++ programming language
and have been compiled with the GNU C++ Compiler 8.3.0, using the optimiza-
tion options -O2 -fno-guess-branch-probability. The codes of tested algo-
rithms are available at https://github.com/ostafen/Fast-Insertion-Sort.
All tests have been performed on a PC with a 3.40 GHz Intel Quad Core i5-
4670 processor, with 6144 KB cache memory, and running Linux Ubuntu 19.04.
Running times have been measured with a hardware cycle counter, available on
modern CPUs. We tested our algorithms on input arrays with a size n = 2i,
with 2 ≤ i ≤ 20. For each value of n we reported the mean over the running
times of 1000 runs.

For each input size n, tests have been performed on arrays of integers and
specifically on random arrays, partially ordered arrays, and reverse order ar-
rays. Random input sequences have been generated with a uniform distribution
in the interval [0 . . . 231], using the C++ random number generator. Partially
ordered arrays have been obtained by sorting random generated arrays and sub-
sequently executing a number of swaps equal to 1/4 of the input size. Fig. 5
summarizes the overall behaviour of the algorithms for the discussed genera-
tion strategies. It turns out that the newly presented algorithms show in all
cases a O(n log n) behaviour in practice, outperforming Merge-Sort and Heap-
Sort (which are asymptotically optimal algorithms). Our new solutions are also
very competitive against the Quick-Sort algorithm, even for large sizes of the
input arrays. It is worth to notice that Fast-Insertion-Sort(h) algorithms show the
lowest running times for 2 ≤ h ≤ 4, while Fast-Insertion-Sort achieves the best
performance for c = 5. For small input size arrays, Block-Insertion-Sort obtains
good results, and this is why QS? turns out to be the Quick-Sort-based algo-
rithm with the best performances, outperforming the Quick-Sort implementation
which uses Insertion-Sort as a subroutine. The recursive algorithm Fast-Insertion-
Sort turns out to be faster than standard Quick-Sort in almost all cases, and
the gap turns out to be more sensible for very small and for very large input
arrays. In addition, while reverse order arrays represents the Quick-Sort worst
case scenario, algortithms in the Fast-Insertion-Sort family mantain their optimal
execution time once again, confirming to be among the most fast and flexible
general purpose sorting alghoritms.

46 S. Faro et al.

Random Arrays

10 16 32 64

0.2

0.4

nanoseconds

128 256 512

microseconds

1024 2048 4096 8192

milliseconds

16384 32768 65536

0.2

0.4

0.6

centiseconds

131072 262144 524288 1000000

deciseconds

MS

QS

QS∗

QS?

BI

FIS(h)

FIS

Partially Sorted Arrays

10 16 32 64

0.2

0.4

nanoseconds

128 256 512

microseconds

1024 2048 4096 8192

milliseconds

16384 32768 65536

0.2

0.4

0.6

centiseconds

131072 262144 524288 1000000

deciseconds

MS

QS

QS∗

QS?

eBI

FIS(h)

FIS

Fig. 5. Running times obtained on partially sorted arrays of size 2k, with 3 ≤ k ≤ 20.
Reported times are the means of 1.000 runs. Plots are divided in classes of sizes, and
specifically: sizes 101-102 (expressed in nanoseconds), 102-103 (expressed in microsec-
onds), 103-104 (expressed in milliseconds), 104-105 (expressed in centiseconds) and
105-106 (expressed in deciseconds). Previous algorithms are depicted in dashed lines,
while new algorithms are depicted in solid lines.

Fast-Insertion-Sort: a New Family of Efficient Variants of the Insertion-Sort Algorithm 47

4 Conclusions

In this paper we presented a new family of efficient, flexible, stable, simple sort-
ing algorithms, named Fast-Insertion-Sort. The algorithms of such a new family
generalize the Insertion-Sort algorithm to multiple elements block insertion and
achieve an O(n1+ε) worst-case time complexity, where ε = 1

h , for h ∈ N. More-
over we generalized the basic idea obtaining a recursive algorithm achieving
O(n log n) worst case time complexity. We also discussed how to obtain in-place
variations of such algorithms by maintaining their main features. From our ex-
perimental results it turns out that our solutions are very competitive with the
most effective sorting algorithms, outperforming fast implementations of the
Hoare’s Quick-Sort algorithm in many practical cases.

References

1. M. Bender, M. Farach-Colton, and Mosteiro, M. Theory Comput Syst, 39: 391
(2006). https://doi.org/10.1007/s00224-005-1237-z

2. J. Bentley, Programming Pearls, ACM Press/Addison-Wesley, pp. 116, 121 (2000)
3. D. Cantone and G. Cincotti, QuickHeapsort: an efficient mix of classical sort-

ing algorithms. Theoretical Computer Science, 285(1) pp. 25-42 (2002) DOI:
10.1016/S0304-3975(01)00288-2

4. P. S. Dutta, An approach to improve the performance of insertion sort algorithm,
International Journal of Computer Science and Engineering Technology, 4, 503-505
(2013).

5. S. Edelkamp, A. WeiB, S. Wild, QuickXsort - A Fast Sorting Scheme in Theory
and Practice. CoRR abs/1811.01259 (2018)

6. L.R. Ford and S.M.Jr. Johnson, A tournament problem, American Mathematical
Monthly, 66: 387-389 (1959), doi:10.2307/2308750

7. R. M. Frank and R. B. Lazarus. A High-Speed Sorting Procedure. Communications
of the ACM. 3 (1): 20-22 (1960) doi:10.1145/366947.366957.

8. V. Geffert, J. Katajainen, T. Pasanen. Asymptotically efficient in-place merg-
ing. Theoretical Computer Science. 237: 159-181 (2000). doi:10.1016/S0304-
3975(98)00162-5.

9. S. Goel and R. Kumar. Brownian Motus and Clustered Binary Insertion Sort meth-
ods: An efficient progress over traditional methods. Future Generation Computer
Systems, vol.86, pp. 266-280 (2018)

10. T. N. Hibbard, An Empirical Study of Minimal Storage Sorting. Communications
of the ACM. 6 (5): 206-213 (1963) doi:10.1145/366552.366557.

11. C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321-322, July 1961.
URL: http://doi.acm.org/10.1145/366622.366647, doi:10.1145/366622.366647.

12. B. Huang and M.A. Langston, Practical In-Place Merging. Communications of the
ACM. 31 (3): 348-352 (1988). doi:10.1145/42392.42403.

13. M. Khairullah, Enhancing worst sorting algorithms, International Journal of Ad-
vanced Science and Technology, 56, 13-26 (2013)

14. F. Lam, R. K. Wong, Rotated library sort, Proceedings of the 19th Computing: The
Australasian Theory Symposium, Volume 141, Australian Computer Society, Inc.,
pp. 21-26, 2013

15. J. Katajainen, T. Pasanen and J. Teuhola, Practical in-place mergesort. Nordic J.
Computing. 3 (1): 27-40 (1996)

48 S. Faro et al.

16. P. Kim and A. Kutzner. Stable Minimum Storage Merging by Symmetric Compar-
isons. European Symp. Algorithms. Lecture Notes in Computer Science 3221. pp.
714-723 (2004). doi:10.1007/978-3-540-30140-0 63. ISBN 978-3-540-23025-0

17. A. Kutzner, P. Kim, Ratio Based Stable In-Place Merging. Lecture Notes in Com-
puter Science, 4978. Springer Berlin Heidelberg. pp. 246-257 (2008)

18. R. Melville and D. Gries. Controlled density sorting. In Information Processing
Letters,10:4,pages169-172,1980.

19. W. Min, Analysis on 2-element insertion sort algorithm. Proceedings of Interna-
tional Conference on Computer Design and Applications (ICCDA), Vol. 1, IEEE,
pp. 143-146 (2010). doi:10.1109/ICCDA.2010.5541165.

20. A. D. Mishra, D. Garg, Selection of best sorting algorithm, International Journal
of Intelligent Information Processing, 435 2 (2) (2008) 363-368.

21. A. S. Mohammed, S. E. Amrahov, F. V. Celebi, Bidirectional conditional insertion
sort algorithm; An efficient progress on the classical insertion sort, Future Gener-
ation Computer Systems, 71, pp.102-112 (2017). doi:10.1016/j.future.2017.01.034.

22. J. I. Munro and H. Suwanda, Implicit data structures, in STOC 79, Proceedings
of the eleventh annual ACM symposium on Theory of computing, ACM Press,
pp.108-117 (1979)

23. K. Nenwani, V. Mane, S. Bharne, Enhancing adaptability of insertion sort through
2-way expansion, Proceedings of 5th International Conference on Confluence The
Next Generation Information Technology Summit (Confluence), IEEE, pp. 843-847
(2014). doi:10.1109/CONFLUENCE.2014.6949294.

24. S. Paira, A. Agarwal, S. S. Alam, S. Chandra, Doubly inserted sort: A partially
insertion based dual scanned sorting algorithm, Emerging Research in Comput-
ing, Information, Communication and Applications, Springer, pp.11-19 (2015).
doi:10.1007/978-81-322-2550-8 2.

25. A. A. Papernov and G. V. Stasevich. A Method of Information Sorting in Computer
Memories. Problems of Information Transmission. 1 (3): 63-75 (1965).

26. V. R.Pratt. Shellsort and Sorting Networks (Outstanding Dissertations in the Com-
puter Sciences). Garland (1979). ISBN 978-0-8240-4406-0.

27. B. R. Preiss, Data Structures and Algorithms with Object-oriented Design Patterns
in C++, John Wiley & Sons, 2008.

28. Robert Sedgewick, The analysis of Quicksort programs, Acta Inform. (ISSN: 0001-
5903) 7 (4) (1977) 327-355. Available on http://dx.doi.org/10. 1007/BF00289467.

29. Robert Sedgewick, Implementing Quicksort programs, Commun. ACM (ISSN:
00010782) 21 (10) (1978) 847-857. http://dx.doi.org/10.1145/359619.359631.

30. R. Sedgewick. A New Upper Bound for Shellsort. Journal of Algorithms. 7 (2):
159-173 (1986). doi:10.1016/0196-6774(86)90001-5.

31. D. L. Shell, A High-Speed Sorting Procedure. Communications of the ACM. 2 (7):
30-32 (1959) doi:10.1145/368370.368387.

32. T. SinghSodhi, S. Kaur and S. Kaur, Enhanced insertion sort algorithm, Int. J.
Comput. Appl. 64 (21) (2013) 35-39.

33. R. Srivastava, T. Tiwari, S. Singh, Bidirectional expansion - Insertion algo-
rithm for sorting, Second International Conference on Emerging Trends in En-
gineering and Technology, ICETET, ISBN: 9780769538846, pp. 59-62 (2009).
http://dx.doi.org/10.1109/ICETET.2009.48.

34. G. van den Hoven. Binary Merge Sort. https://docs.google.com/file/d/0B8KIVX-
AaaGiYzcta0pFUXJnNG8/edit

35. S. Wild, M. E. Nebel, R. Neininger, Average case and distributional analysis of
dual-pivot quicksort, ACM Trans. Algorithms, 11 (3) 22 (2015)

