MaLARea: a Metasystem for
Automated Reasoning in Large Theories

Josef Urban
Dept. of Theoretical Computer Science
Charles University
Malostranske nam. 25, Praha, Czech Republic

Abstract

MaLARea (a Machine Learner for Automated Reasoning) is a simple metasystem
iteratively combining deductive Automated Reasoning tools (now the E and the SPASS
ATP systems) with a machine learning component (now the SNoW system used in
the naive Bayesian learning mode). Its intended use is in large theories, i.e. on a
large number of problems which in a consistent fashion use many axioms, lemmas,
theorems, definitions and symbols. The system works in cycles of theorem proving
followed by machine learning from successful proofs, using the learned information to
prune the set of available axioms for the next theorem proving cycle. Although the
metasystem is quite simple (ca. 1000 lines of Perl code), its design already now poses
quite interesting questions about the nature of thinking, in particular, about how (and
if and when) to combine learning from previous experience to attack difficult unsolved
problems. The first version of MaLARea has been tested on the more difficult (chainy)
division of the MPTP Challenge solving 142 problems out of 252, in comparison to
E’s 89 and SPASS’ 81 solved problems. It also outperforms the SRASS metasystem,
which also uses E and SPASS as components, and solves 126 problems.

1 DMotivation and Introduction

In the recent years there has been a growing need for Automated Reasoning (AR) in
Large Theories (ARLT). First, formal mathematical libraries created by proof assistants
like Mizar, Isabelle, HOL, Coq, and others have been growing, often fed by important
challenges in the field of formal mathematics (e.g. the Jordan Curve Theorem, the Ke-
pler Conjecture, the Four Color Theorem, and the Prime Number Theorem). At least
some of these proof assistants are using some automated deductive methods, and some of
these libraries are (at least partially) translatable to first-order format [MP06b, Urb06]
(like the TPTP language [SS98]) suitable for Automated Theorem Provers (ATPs). Also,
when looking at the way how some of the hard mathematical problems like Fermat’s last
theorem and Poincare’s conjecture were solved, it seems that difficult mathematical prob-
lems quite often necessitate the development of large (sometimes even seemingly unrelated)
mathematical theories, which are eventually ingeniously combined to produce the required
results. An attempt to create a set of notrivial large-theory mathematical problems as
an initial benchmark for ARLT systems is the MPTP Challenge' (especially its chainy
division), consisting of 252 problems (some of them with quite long human-written formal
proofs) in a theory with 1234 formulas and 418 symbols which represents a part of the
Mizar library.

Mttp://www.cs.miami.edu/~tptp/MPTPChallenge/

Today, there also seems to be a growing interest in using Automated Reasoning meth-
ods (and translation to TPTP) for sufficiently formal large “nonmathematical” knowledge
bases, like SUMO [NPO01] and CyC [MJWDO06]. It seems that semantic ontologies and
semantic tagging and processing e.g. for publications in natural and technical sciences are
currently taking off, creating more and more applications for ARLT.

On the other hand, it seems to be quite a common thinking that the resolution-based
ATP systems using usually some complete combination of paramodulation and resolution
are easily overwhelmed when a large number of irrelevant axioms are added to the prob-
lems. Sometimes (actually surprisingly often in the Al and Formal Math communities)
this is even used as an argument attempting to demonstrate the futility of using ATPs for
anything “serious” in formal mathematics and large theories in general. There have been
several answers to this problem (and to the general problem of the fast growing search
space) from the ATP community so far. Better (i.e. less prolific while still complete)
versions of the original calculi, and their combinations with even more efficient special-
purpose decision procedures, have been a constant research topic in the ATP field. More
recently, a number of heuristical approaches have appeared and been implemented. These
methods include strategy scheduling (competitive or even cooperative, see e.g. [Sut01]),
problem classification and learning of optimal strategies for classes of problems, lemmati-
zation (i.e. restarting the problems only with a few most important lemmas found so far,
see also [Pud06]), weakening [NWO04] (solving a simpler problem, and using the solution
to guide the original problem), etc.

The metasystem for ARLT which is described here falls into this second category of
heuristical additions governing the basic ATP inference process. It is based on an assump-
tion (often spelled-out by the critics of uniform ATP) that while working on problems in a
particular domain, it is generally useful to have the knowledge of how previous problems
were solved, and to be able to re-use that particular knowledge in a possibly nonuniform
and even generally incomplete way. Again, this idea is not exactly new, and not only in the
world of “very-Al-but-very-weak” experimental AR systems implemented in Prolog. At
least the very efficient E prover [Sch02] has the optional capability to learn from previous
proofs, and to re-use that knowledge for solving “similar” problems. In comparison to
this advanced functionality of E, the first version of MaLARea is quite simple, and more
suitable for easy experimenting with different systems. The machine learning is done by
an external software, and one can imagine any reasonable learning system to take the place
of the currently used SNoW [CCRR99] system. The features used for learning should be
easy to extend, as well as the whole learning setting. It is quite easy to change the param-
eters of how and when particular subsystems are called, and to experiment with additional
heuristics. In the next section we describe the structure of the metasystem in more detail,
and then we show its current performance on the chainy division of the MPTP Challenge.

2 How MaLARea works

2.1 Basic idea

The basic idea of the metasystem is to interleave the ATP runs with learning on successful
proofs, and to use the learned knowledge for limiting the set of axioms given to the ATPs
in the following runs. In full generality, the goal of the learning could be stated as creating
an association of some features (in the machine learning terminology) of the conjecture
formulas (or even of the whole problems when speaking generally) with proving methods
which turned out to be successful when those particular features were present. This
general setting is at the moment mapped to reality in the following way: The features

characterizing formulas are just the symbols appearing in them. The “proving method” is
just an ordering of all available axioms. So the goal of our learning is to have a function
which when given a set of symbols produces an ordering of axioms, according to their
expected relevancy with respect to that set of symbols. One might think of this as the
particular set of symbols determining a particular sublanguage (and thus also a subtheory)
of a large theory, and the corresponding ordering of all the available axioms as e.g. a
frequency of their usage in a book written about that particular subtheory. There are
certainly many ways how this setting can be generalized (more term structure and problem
structure as features, considering ATP ordering and literal selection strategies as part of
the “proving method”, etc.). The pragmatic justification for doing things in the first
version this way, is that while this setting is sufficiently simple to implement, it also
turned out to be quite efficient in the first experiments with theorem proving over the
whole translated Mizar library [Urb06, Urb04].

This central “deduce, learn from it, and loop” idea is now implemented using a simple
(one might call it “learning-greedy”) “growing axiom set” and “growing timelimit” policy.
The main loop first tries to solve all the problems “cheaply”, i.e., with the minimal allowed
number of the most relevant axioms and in the lowest allowed timelimit. Each time there
is a success (i.e. a new problem is solved), the learning is immediately performed on
the newly available solution, and the axiom limit and timelimit drop to the minimal
values (hoping that the learning has brought a new knowledge, which will make some
other problem easily solvable). If there is no success with the minimal axiom and time
limits, the system first tries with a doubled axiom limit until a certain maximal threshold
(currently 128) on the number of axioms is reached. If there is still no success, the time
limit is quadrupled, and the axiom limit drops to a small value again, etc. The system
is now limited by the minimal and maximal values of the axiom and time limit, and also
by a maximal number of iterations (currently 1000). That means that the system stops
if either all the problems are solved (unlikely), or the maximal values of the limits are
reached without any new solution, or the maximal number of iterations has been reached.

2.2 Detailed implementation

The first version of MaLLARea is available at http://lipa.ms.mff.cuni.cz/~urban/
MaLARea/MaLARea0.1.tar.gz. The distribution contains a main Perl script (TheoryLearner.pl),
and a number of ATP and other tools used by the main script. These tools currently are:

e the E (version 0.99) prover, and the tools epclextract and eproof needed for getting
a detailed TPTP proof from E

e the SPASS (version 2.2) prover [Wei01]
e the SNoW (version 3.0.3) learning system

e the tptp4X utility from the TPTPWorld distribution for transforming the TPTP
format to other ATP formats (like DFG)

e the GetSymbols utility from the TPTPWorld distribution for extracting symbols
and their arities from formulas written in the TPTP language

The set of theorem provers could be larger, the constraints that we use is that

e the provers should be reasonably efficient and reasonably orthogonal

e it has to be possible to run the prover in a “proof mode”, getting from it the list
of axioms which were actually used in the successful proof (this is necessary for the
learning phase, and it is the main reason why Vampire [RV02] with its undocumented
and hardly parsable proof output cannot be used)

e a future requirement might be that the provers should be easily parameterizable,
making learning over their strategies possible (this is definitiely the case for E)

The input to the system is a set of files (problems in the FOF TPTP format, the system
probably would not handle the CNF format now). The following two “large theory”
assumptions are made about the input problems:

e that the names of formulas in the files are stable (i.e. one name always denotes the
same formula in all files in which it appears)

e and that the symbols are stable (the same symbol in two files has the same intended
meaning).

So far, the system has always worked with problems where each conjecture was assumed
to be provable from its axioms (assumed SZS status [SZS04] Theorem), however it seems
that having some possibly countersatisfiable problems would not hurt the system. For
simplicity of the Perl processing, we require that each formula is written on just one line
in the input file (this can be achieved by preprocessing with tptp4X), and that each file
is named after its (exactly one) conjecture, by adding certain prefix and certain suffix
(specified as parameters to the main script) to the conjecture’s name. As an example (and
the main target of the system so far), the 252 problems from the chainy division of the
MPTP Challenge are included in the distribution.

Given a set of problems, the system starts by creating a main “specs” file, containing
for every conjecture the names of the axioms which are available (in its problem file) for
its proving. Similarly, the system creates (using the GetSymbols utility) a “refsyms” file,
containing for each formula appearing in some problem the set of symbols appearing in
it. These files are actually kept in memory (as hashes) during the whole processing. The
formulas and the symbols are disjointly numbered. This later serves for communicating
with the SNoW system, which assumes the features over which it learns to be represented
as numbers.

One of the main data structures which the system maintains is a hash (%gresults)
which for each conjecture (problem) keeps the list of all proof attempts conducted so far,
and their results. The data which are exactly kept for one proof attempt are following:

[SZSStatus, NumberOfReferences, CPULimit,
ListOfReferences, ListOfNeededReferences]

Where the SZSStatus tells the result of the proof attempt, CPULimit is the limit with
which the proof attempt was run, ListOfReferences are the axioms used for that par-
ticular proof attempt, NumberOfReferences is their number, and in case of a successful
proof (SZSStatus Theorem), the List0fNeededReferences tells which of the axioms were
actually used in the proof.

Before we start explaining how the ATP proof attempts and machine learnings are
organized, we first note what is exactly meant by the term “running ATPs on a problem”
in the rest of this paper, and what exactly is meant by machine learning in the current
version of the system.

2.2.1 Running ATPs

All the available ATPs (now just E and SPASS) are run on a problem in order of their
expected performance (that now means E first, SPASS second) with the given timelimit.
They are run only in the fast “assurance mode”, i.e. not with the slowdown caused by
doing the additional bookkeeping necessary for printing the proof. As soon as one of
the provers solves the given problem (this means that it determines that the problem’s
status is either Theorem or CounterSatisfiable), the “assurance mode” processing stops.
If the result status is Theorem, the successful system is re-run in a “proof mode” with
a timelimit of 300 seconds. The reason for raising the timelimit so much is that at this
point we know that the system is capable of solving the problem, and we want to know
the solution so that we can learn from it for solving the rest of the problems. This
procedure could be in the future modified e.g. by quite standard strategy scheduling, i.e.
running only those provers (with those strategies, and possibly appropriately modified
timelimits) which seem (again from previous experience) to be most likely to succeed
on the problem. Another useful extension (suggested by Geoff Sutcliffe) motivated by
the experience with the SRASS system [SY07] would be addition of the Paradox [CS03]
system to the chain of ATP systems, especially in the proof attempts when the number of
axioms is decreased to minimum. That’s because in these very incomplete specifications
the frequency of the CounterSatisfiable result is quite high, and Paradox seems to be
currently the strongest system for determining CounterSatisfiability. After the procedure
stops (either successfully, or unsuccessfully, with all ATPs resulting in timeout), the result
is recorded in the results hash (%gresults) in the format described above (that means in
case of successful proof also recording the names of the axioms which were exactly needed
for the proof). The format now does not keep the information about particular ATPs
(and possibly particular strategies). This is not needed as long as some smarter machine
learning for selection of ATPs and strategies is not done, however the information about
which ATP solved which system can still be retrieved from the metasystem’s standard
output.

2.2.2 Machine Learning in MaLARea and its use for selection of axioms

As noted above, the SNoW system is used in the naive bayes mode for all learnings, mainly
because of its speed and relatively good previous experience on the whole Mizar library
(thousands of symbols and tens of thousands of formulas). After each ATP run on all
(unsolved) problems, the information about all successful proofs found so far is collected
in a format suitable for the SNoW system. As explained above, our goal is to learn the
association of symbol sets to axiom orderings. This in practice means that one training
example contains all the symbols of a solved conjecture, together with the names of axioms
needed for its proof (the symbols are in the machine learning terminology the “input
features”, while the names of the axioms are the “output (or target) features”, i.e. those
features that a trained classifier will try to assign to a test example consisting of the input
features). Then the classifier (a bayes network) is trained on this set of examples. This
procedure is very fast with the SNoW system (seconds or less for the number of features
and examples available in the MPTP Challenge problems). It is technically possible just to
add the new examples to an existing bayes network trained on the results of the previous
ATP runs, however until really large time-consuming learnings (this means really large
theories like the whole Mizar library) are needed, this is not necessary. The trained
classifier is then used to prune the axiom sets for the next runs. It means that we take
all the unsolved conjectures, and create a testing example from each by taking all its
symbols. The classifier is run on this set of test examples, printing for each example the

list of target features (axiom names) in order of their likelihood to be useful (as judged
from the training examples, i.e. previous proofs). This order of axioms is then used to
select the required number of axioms for the next run on the unsolved problems. I.e.,
provided that the next run will limit the number of axioms to n, we are looking for each
problem for n axioms from the problem’s specification whose ranking by the classifier is
highest.

2.2.3 Initial proof attempts in MaLARea

Before the system enters the main loop it first does two special proving attempts, in order
to generate the “initial knowledge”. The motivation for both of them is quite heuristical,
and both have been subject to experimenting.

The first proof attempt is quite expensive: it tries to solve all the problems in their
original form (that means without restricting the axioms in any way) with the maximum
timelimit (now 64 seconds). The motivation for these settings is to allow the ATPs to
consider the full axiom space for each problem, giving a chance to ATPs internal “large
problem” strategies. The heuristical justification for the high timelmit is that any proof
found at this point is a proof considering all the available axioms, which is not true for the
rest of the proof attempts done by the metasystem. Therefore the information obtained
from this proof attempt is in a certain way fresh and unbiased by solutions already found.
It can be compared to the mode of work of some mathematicians, who when entering a
new field, first try to think about the field themselves, possibly creating fresh insights, and
only after that consult other experts in the field and the available literature. It should be
noted that this approach probably would not be feasible for an order of magnitude larger
theories (e.g. for the ca. 40000 theorems and definitions in the whole Mizar library). On
the other hand, there seems to have been progress in this capability of ATP systems in
the recent years: several years ago one might have claimed that already 1000 axiom gives
to any resolution-based ATP system no hope.

The second proof attempt is cheap: it uses the minimal timelimit (1 second), and
a purely symbol based similarity measure to cut the number of axioms to the maximal
axiom limit (now 128). The symbol based measure is now just for simplicity achieved again
through the SNoW’s bayesian classifier: For each formula (all axioms and conjectures) one
training example for SNoW is created from the list of the formula’s symbols, and from the
formula’s name (this can be explained by saying that each formula is useful for proving
itself, or more precisely, for proving something with a similar set of symbols). The classifier
is trained on these examples, and then evaluated on the symbols of each conjecture formula,
providing for each conjecture the ordering of axioms according to their symbol overlap with
the conjecture. A possible future extension could be to employ more elaborate similarity
measures at this point, possibly also with a higher timelimit. One reason why we are not
here as aggressive with the timelimit in comparison to the previous pass, is that the symbol
based measure is taken into account in all the following passes, i.e. for all the learnings
on successful proofs explained in Section 2.2.2, we also add the training examples saying
that each formula can be proved by itself.

2.2.4 The main loop

After the two initial proving passes the system performs first learning (Section 2.2.2) on
the successful proofs, and enters the main loop with the initial timelimit set to minimum
and axiom limit set to maximum (this is quite arbitrary, it might as well be the minimal
axiom limit). The main loop is now limited to a certain number (default 1000) of iterations
(passes) (this is probably a bit redundant, but good for fast testing), and it will also stop

when the maximal time and axiom limits are reached without finding any new proof.
Obviously, as is the case for the MPTP Challenge, it can also be stopped by a user or
operating system after a certain overall timelimit (252 problems times 300 seconds for
the Challenge, i.e. 21 hours). The loop starts by an ATP run (see Section 2.2.1) on all
unsolved problems with the given axiom and time limits. Then the loop branches.

If no problem was solved by the ATPs, no new learning is done, the axiom limit is
doubled (if it is smaller than the maximal axiom limit), and for each unsolved conjecture
a new specification is created using the last learning results and the new axiom limit. In
case the axiom limit is already maximal, we instead quadruple the timelimit, and set the
axiom limit to the double of the minimal value (the minimal value seemed a bit too useless
when running with higher timelimits). If both the axiom and time limit are maximal, we
stop.

If a problem was solved during the last ATP run, learning immediately follows (in
order to take advantage of the newly available knowledge). The time and axiom limits are
reset to the minimal values (hoping that the new knowledge will allow us to solve some
more problems quickly), and the loop continues.

2.2.5 Usage of previous results

As described above, the system keeps the data about all previous proof attempts. This
is mainly used to avoid the proof attempts which do not make sense in the light of the
previous results. The current implementation recognizes three such situations for a given
unsolved problem:

e the suggested set of axioms is a subset of a previously tried set of axioms, whose
result was CounterSatisfiable

e the suggested set of axioms is equal to a previously tried set of axioms, whose result
was ResourceOut, and the suggested timelimit is less or equal to the timelimit of
the previous attempt (note that this practically interprets ResourceOut as running
out of time, which is the vast majority of cases especially with the low timelimits,
however the implementation could be improved in this respect)

e all ATPs have previously unexpectedly failed (status Unknown) on the suggested set
of axioms (regardless of timelimit)

Note that for checking the last two conditions it would be good to keep already now the
detailed information about each ATP system’s result, not just one summarized version for
all ATPs as is being done right now. In the current implementation this is temporarily
worked around by using the Unknown status only if it was the result of all (both) ATPs. If
at least one system ended with the ResourceOut status, this is the status recorded in the
result datastructure. Another practical problem is that the status Unknown is currently
used also if an ATP does not obey the timelimit (specified to it as a parameter) with
which it is run, and has to be killed by using the operating system’s limit. Given the three
policies described above, it seems better to use ResourceOut in such situations, which
would make it possible to re-run the system with higher timelimit later. Fortunately, it
happens only very rarely that both ATPs have to be killed by the operating system.
Especially the first condition is fulfilled quite often when the axiom limit is in its
lower values (the minimum is four axioms). Since the goal of the system is to try as
many reasonable axiom subsets as quickly as possible, we try to repair the “subsumed”
axiom specifications by adding additional axioms (again according to their rating by the
last learning) when the timelimit is minimal (1 second), and the additional check is thus

cheap. So in such cases, the advertised system’s axiom limit is not observed (though the
correct data are obviously kept in the results datastructure). It could be argued that this
should also be done for the higher timelimits. This is quite hard to decide, and hopefully
not much relevant to the overall performance of the metasystem. The current heuristical
reason for not doing it, is that we are happy to “shake abundantly” the set of axioms when
it is cheap (i.e. low timelimit), while we are trying to limit the higher timelimit runs only
to the combinations of axioms which make most sense. On the other hand, since we grow
the timelimit exponentially, it could be argued that the notion of cheapness applies to all
but the highest timelimits.

2.2.6 More questions on MalLARea policies

The previous paragraph actually shows some of the hard (and interesting) heuristical
choices which one has to make when experimenting even with such a simple kind of com-
bined deductive/inductive reasoning system. Why do we (after the first two passes) “learn
greedily”, and always prefer learning and low timelimit to more ATP with higher timelim-
its? Would not the “tabula rasa mathematician” argument used for the initial expensive
pass also justify a less greedy approach to learning (i.e. let the system learn something,
but not all others’ inventions at once, the ATPs might still come up with something rel-
atively new)? Or wouldn’t it pay to have even much more of the fast “reasonable axiom
shaking” attempts instead of the later and expensive higher timelimit attempts? Why do
we double the axiom size, and quadruple the timelimits, and why are their minima and
maxima set to their current values? Some explanation of this is the experience with the
(super)exponentially behaving ATPs that are used, however one might conjecture that
the system should be relatively robust to small changes of these values and policies. Even
more of such interesting questions are likely to appear if new components (lemmatization,
weakening, conjecturing, defining, etc.) are added, and if the learning component becomes
more sophisticated. Even now, simple as the whole setting is, it sometimes gives a strange
impression of conducting a bit of exploratory Artificial Intelligence.

3 Results

As noted above, the system’s main target so far has been the chainy division of the MPTP
Challenge. This is a set of 252 related mathematical problems, translated by the MPTP
system from the Mizar library. The conjectures of the problems are Mizar theorems, which
were recursively needed for the Mizar proof of one half (one of two implications) of the
general topological Bolzano-Weierstrass theorem. The whole problem set contains 1234
formulas and 418 symbols. Unlike in the “less AI” bushy division of the Challenge, where
the goal is just to reprove the Mizar theorems from their explicit Mizar references (and
some background formulas used implicitly by Mizar), the problems in the chainy division
intentionally contain all the “previous knowledge” as axioms. This results in an average
problem size of ca. 400 formulas. The Challenge allows an overall timelimit policy, i.e.,
instead of being forced to solve the problems one-at-a-time with a fixed timelimit of 300
seconds, it is allowed to use the overall timelimit of 21 hours in an arbitrary way for solving
the problems.

The system was run on this set of problems in five differently parameterized instances,
on a cluster of 3056MHz Pentium Xeons each with 1GB memory (the memory limit for
all the ATP runs was always 800MB). Before these instances were run, E version 0.99 and
SPASS version 2.2 were tested on the cluster in the standard 300 seconds timelimit setting.
E has solved 89 problems, and SPASS has solved 81. This is quite similar to the MPTP

Challenge measurements® on Geoff Sutcliffe’s cluster, which claim 36% (91) problems
solved by E 0.99, and 31% (78) problems solved by SPASS 2.2 (the relative differences
might be caused e.g. by different memory limits). The total number of problems solved
by either E or SPASS is 104.

All the five instances of MaLARea shared the minimal timelimit set to 1 second, and
the minimal axiom limit set to 4 axioms. The instances differed in the values for the
maximal timelimit, and maximal axiom limit, which were as follows:

e 128 4s: maximal axiom limit set to 128, maximal timelimit to 4 seconds

e 128_16s: maximal axiom limit set to 128, maximal timelimit to 16 seconds
e 128 64s: maximal axiom limit set to 128, maximal timelimit to 64 seconds
e 64 4s: maximal axiom limit set to 64, maximal timelimit to 4 seconds

e (64_64s: maximal axiom limit set to 64, maximal timelimit to 64 seconds

The last instance unfortunately crashed (for unknown, probably cluster-related issues)
after 18 hours. The 128_64s version was let to run even beyond the timelimit of 21 hours
for a total of 30 hours (when it was stopped by the operating system), to see if there is any
improvement in the later stages (which was not the case). The 4 second and 16 second
instances have stoped themselves before the timelimit of 21 hours, because they reached
their maximal axiom and time limits. The reason for running the very low (4 seconds)
maximal timelimit instances was to find out how important is the long initial pass, and
how the system performs in a “shallow thinking only” mode.

The following Table 1 summarizes the main results (the times are in minutes, last
successful iteration is the last iteration in which a problem was solved). The Figures 1

description | solved | iterations | last successful iter. | time to stop | time to solve last
128 _4s 131 73 62 300 270
128_16s 141 137 121 930 810
128_64s 142 127 108 1800 1160
64 _4s 130 44 35 240 210
64_64s 136 77 62 1080 900

Table 1: Statistics for the five instances of MaLARea fighting the MPTP Challenge

and 2 show the iterations for all five instances and the gains in terms of solved problems.
To make the scale readable on these figures, the timelimit is encoded as a letter (a,b,c,d),
corresponding to the exponentially grown timelimits (1,4,16,64). The numbers (2,3,4,5,6,7)
are the powers of 2 that should be used to get the axiom threshold (i.e. 4,8,16,32,64,128).
The first pass in each figure uses an underscore instead of the threshold exponent, which
means that the axioms were not limited in that pass. Instead of scaling the Y axis
logarithmically, the value of the first most successful pass is cut on the figures, and given
in their captions. Also note that the second and third passes are not the same, even though
they have the same time and axiom limits. The second pass is the “symbol similarity only”
pass, while the third one is the first in the main loop, i.e. the first which uses learning on
previous successful proofs.

2http://www.cs.miami.edu/~tptp/MPTPChallenge/Results/SVGResults.html,
miami.edu/~tptp/MPTPChallenge/Results/ChainyResults.data

http://www.cs.

Iterations of 128 4s

14

12

10

0 rrrrrrrrrrrrrrrrrrrrrrrrrrrirrrrrrirrrrrrrrrrrrrrrrrrr T rrr T T T T T rTT
baabaaaaaabbbbbaaaaaabbbaaaaaabbbbb
_772232323234234234523452345623456723456732345673456723456734523456734567

lterations of 16_4s

o n

| |
wo
oo

Figure 1: The first pass (cut) value for 128_4s is 71, and 72 for 64_4s

S99 J0 suoeId)|
SVPEL9SVYELISYELOSGYETLOGYELISYELOGYECELOGYELOSGYELOGYECYECYECLOGYELOGVYELISYECYELIGYELISYESYELOGYEZISYECSYEZSYECZSPYECYECYECZECTECZTLL
RS M A HAM T T AR
T I A A] 0] B] T Y LLllll L1 Ll Ll L] L 0

2
14
9
8
ot
2z
143
9l
S9 8z 10 suolesa)|
L9SVEL9SYELOGYEZLI9GYELIGYELOS Y EZSYELOGVE LOGYECIGYECPELOGPELOGPEZELOSPELOGYEZYEZOSYE2L9GVEL9GPECYEL9GVECVECZYE2ZO9GvEaSPEgZShegeaveaeaeeegall
LLL il Ll Ll L1 I Ll LIl] I | LUl L]
L I |

S91 82} Jo suonelal|

The first pass (cut) value for 128_16s is 85, 96 for 128_64s, and 93 for 64_64s

Figure 2

One easy observation made on the results, is that the combinations of time limit and
axiom limit which have not been tried yet usually produce some new proofs. This could
be explained by the fact that the relative gain from learning is in those situations much
bigger (involving all the previously found solutions) than in the later runs, when only a
few new solutions found in the meantime are used to modify the axiom relevancy. On the
other hand, it is also interesting how sometimes a solution which was obtained in quite
a difficult way and at quite late stage (e.g. the one b7 solution in 128_16s, and the one
c7 solution in 128_64s) can make previously difficult problems quite easy to solve (the b7
solution is followed by two a6 and that in turn by one more a4 solutions, i.e. a series of
solutions found in 1 second timelimit, similarly for the c¢7 solution in 128_64s). A bit closer
analysis of some of the runs seems to suggest that using smarter learning could make this
effect even more frequent. E.g. in some cases it seems that if the classifier knew more
about the relationships between some symbols (e.g. that one is a predicate implying the
other one, or that they are nearly equivalent predicates or functors), it could draw better
analogies and give better advice.

4 Related Work

A very good overview of the field of “machine learning for automated reasoning” is given
in the technical report[DFGS99]. The learning capability of E prover mentioned above is
today probably the most sophisticated implementation existing in the field. There is quite
a lot of related work on symbol-based and structure-based filtering of axioms, a recent one
(done for the Isabelle system) is [MP06a], which also cites some more work.

Generally, it is a bit hard for the author to compare related (meta)systems with
MaLARea. Quite often that would require further work on those systems, or their reim-
plementation, which could be criticized as “not being the original system”. The point of
creating the MPTP Challenge problems in the most standard FOL syntax available today
(i.,e. TPTP) is to allow everyone to test their system under very clear conditions, and
report their results for comparison. It is currently also quite hard to test MalLARea on
other than MPTP problems, since it is quite difficult to determine to what extent a given
set of large theory problems satisfies the “large theory” criteria needed for MaLARea’s ma-
chine learning, i.e., consistency of symbol and formula naming. This unfortunately seems
to apply also to the set of Isabelle problems included in TPTP and used for evaluation
in [MPO06a).

5 Future Work and Conclusions

Although MalLARea’s current performance is quite encouraging, it is still in a very early
stage, and quite a lot of its possible extensions are mentioned above. The machine learning
framework could be extended and improved, taking e.g. more relationships among the
symbols (and other formula features) into account. Lemmatization could be also quite
helpful, and while its addition should not be difficult, it would make the whole theory
evolving, not static like so far. The same could be said about defining new useful notions,
and possibly reformulating parts of the theory with them. Quite a strong method seems
to be weakening, and its extreme version using completely instantiated models. A good
database of models for a theory could be also used just as another simple way to classify
formulas (adding more features to the learning). Shortly speaking, it seems that with rich
theories the AT methods useful for Automated Reasoning can also get quite rich.

One thing that should be noted about the current version of the system is that it

does not use any Mizar-specific knowledge. There are two reasons for it. One is that
the system is intended to be generally useful, not just Mizar-specific. The second reason
is that re-using Mizar-specific knowledge requires some additional work on the system.
But it is quite possible, that e.g having the standard MPTP algorithm for adding the
background (e.g. Mizar type) formulas to the axiom set would sometimes be more useful
than relying only on learning. Because particularly type hierarchies are quite likely to
appear also in all kinds of non Mizar large theories, it would however be preferable to
have a more general (quite likely heuristic, and possibly to some extent also governed by
learned previous experience) methods for such “rounding-up” of axiom sets.

6 Acknowledgments

This work was supported by a Marie Curie International Fellowship within the 6! Eu-
ropean Community Framework Programme. The resources for the reproving experiments
were provided by the Czech METACentrum supercomputing project.

References

[CCRR99] A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth. Snow user’s guide.
Technical Report UTUC-DCS-R-99-210, UTUC, 1999.

[CS03] Koen Claessen and Niklas Sorensson. New techniques that improve MACE-
style model finding. In Proc. of Workshop on Model Computation (MODEL),
2003.

[DFGS99] J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from Previous Proof
Experience. Technical Report AR99-4, Institut fiir Informatik, Technische
Universitat Miinchen, 1999. (also to be published as a SEKI report).

[MJWDO06] C. Matuszek, Cabral J., M. Witbrock, and J. DeOliveira. An Introduction
to the Syntax and Content of Cyc. In Baral C., editor, Proceedings of the
2006 AAAI Spring Symposium on Formalizing and Compiling Background
Knowledge and Its Applications to Knowledge Representation and Question
Answering, pages 44-49, 2006.

[MP06a] Jia Meng and L. C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. In Geoff Sutcliffe, Renate Schmidt, and
Stephan Schulz, editors, ESCoR: Empirically Successful Computerized Rea-
soning, volume 192 of CEUR Workshop Proceedings, pages 53—69. CEUR,
2006.

[MPO6b] Jia Meng and L. C. Paulson. Translating higher-order problems to first-order
clauses. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors,
ESCoR: Empirically Successful Computerized Reasoning, volume 192 of CEUR
Workshop Proceedings, pages 70-80. CEUR, 2006.

[NPO1] Tan Niles and Adam Pease. Towards a standard upper ontology. In FOIS ’01:
Proceedings of the international conference on Formal Ontology in Information
Systems, pages 2-9, New York, NY, USA, 2001. ACM Press.

[NW04] Monty Newborn and Zongyan Wang. Octopus: Combining learning and par-
allel search. J. Autom. Reasoning, 33(2):171-218, 2004.

[Pud06]

[RV02]

[Sch02]

[SS08]

[Sut01]

[SY07]

[SZS04]

[Urb04]

[Urb06]

[Weil1]

Petr Pudlak. Search for faster and shorter proofs using machine generated
lemmas. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors,
ESCoR: Empirically Successful Computerized Reasoning, volume 192 of CEUR
Workshop Proceedings, pages 34-52. CEUR, 2006.

Alexandre Riazanov and Andrei Voronkov. The design and implementation
of VAMPIRE. Journal of AI Communications, 15(2-3):91-110, 2002.

S. Schulz. E — a brainiac theorem prover. Journal of AI Communications,
15(2-3):111-126, 2002.

G. Sutcliffe and C.B. Suttner. The TPTP problem library: CNF release v1.2.1.
Journal of Automated Reasoning, 21(2):177-203, 1998.

G. Sutcliffe. The Design and Implementation of a Compositional Competition-
Cooperation Parallel ATP System. In H. de Nivelle and S. Schulz, editors, Pro-
ceedings of the 2nd International Workshop on the Implementation of Logics,
number MPI-I-2001-2-006 in Max-Planck-Institut fiir Informatik, Research
Report, pages 92-102, 2001.

G. Sutcliffe and Puzis Y. SRASS - a semantic relevance axiom selection system.
In Pfenning F., editor, CADE 2007, Lecture Notes in Artificial Intelligence.
Springer, 2007. To appear.

G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for
Automated Theorem Proving Tools. In V. Sorge and W. Zhang, editors,

Distributed and Multi-Agent Reasoning, Frontiers in Artificial Intelligence and
Applications. IOS Press, 2004.

Josef Urban. MPTP - motivation, implementation, first experiments. Journal
of Automated Reasoning, 33(3-4):319-339, 2004.

Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J.
Autom. Reasoning, 37(1-2):21-43, 2006.

C. Weidenbach. Handbook of Automated Reasoning, volume I, chapter SPASS:
Combining Superposition, Sorts and Splitting, pages 1965-2013. Elsevier and
MIT Press, 2001.

