

Proceedings of the CADE-21 Workshop on

Empirically Successful
Automated Reasoning

in Large Theories

Bremen, German, 15th July 2007

Editors: Geoff Sutcliffe, Josef Urban, Stephan Schulz

 ESARLT

 ESARLT

Empirically Successful Automated Reasoning

in Large Theories

Geoff Sutcliffe
University of Miami

Josef Urban
Charles University in Prague

Stephan Schulz
Technische Universität München

The CADE-21 Workshop on Empirically Successful Automated Reasoning in Large
Theories (ESARLT) brings together practioners and researchers who are concerned with
the development and application of automated reasoning in large theories. These are
theories in which:

• There are many axioms
• There are many predicates and functors
• There are many theorems to be proved from the axioms
• There are many theorems that are provable from a subset of the axioms

In large theories it is useful to develop and apply intelligent reasoning techniques that go
beyond ”black box” reasoning, to include techniques for selecting axioms, using proved
theorems as lemmas, etc. Reasoning in all forms (automated, interactive, etc) and all
logics (classical, non-classical, all orders, etc) is of interest to the workshop. The workshop
discusses only “really running” systems and applications, and not theoretical ideas that
have not yet been translated into working software.

The workshop has two main topic areas:

Systems

• Implementation techniques and comparisons
• Data structures and formats for the representation of proof tasks and derivations,

proof and lemma storage, etc.
• Algorithms and techniques for selecting and using axioms and lemmas
• Implemented and evaluated heuristics
• Implemented and evaluated user interfaces

Applications

• Descriptions of automated reasoning solutions in large theory domains
• Experiences with practical applications
• Encoding of domain problems into logic, and decoding of logic solutions into the

domain
• User interfaces
• System integration

Additionally, the workshop includes system and application demonstrations.

i

Participants come from several sources:

• Researchers who have developed and implemented successful automated reasoning
techniques and systems for large theories.

• Practioners who have deployed automated reasoning systems in large theories.
• Users who have already attempted to apply automated reasoning in their large theory

domains, and now wish to learn more.
• Potential users who are interested in learning how automated reasoning may be used

in their large theory domains.

The concrete application areas include the fields of verification, deductive databases,
mathematics, knowledge representation, semantic web, etc. The workshop provides a
forum for discussion of the techniques necessary to take automated reasoning from the lab
and into the “real world” of large theories. The workshop enables the attendees to learn
from each others’ practical experiences, and documents their state-of-the-art techniques.

Schedule

• 9:00-10:00am - Systems Papers
– Invited talk: Developing Efficient SMT Solvers

Leonardo de Moura, Microsoft Research - Software Reliability Research

• 10:30-12:30pm - Systems Papers
– Extensional Reasoning

Tim Hinrichs and Michael Genesereth
– Semantic Selection of Premisses for Automated Theorem Proving

Petr Pudlák
– MaLARea: a Metasystem for Automated Reasoning in Large Theories

Josef Urban

• 2:00-3:00pm - Applications Papers
– Invited talk: Cyc Design Challenges and Solutions

Keith Goolsbey, Cycorp

• 3:30-4:50pm - Applications Papers
– First Order Reasoning on a Large Ontology

Adam Pease and Geoff Sutcliffe
– Guest speaker: Michael Witbrock, Cycorp

• 5:00-6:00pm - Panel Discussion

Acknowledgement: Financial support for the invited speakers has been provided by
Microsoft Research.

ii

Developing Efficient SMT Solvers

Leonardo de Moura
One Microsoft Way

Redmond, WA
98052 USA

Abstract

Decision procedures for checking satisfiability of logical formulas are crucial for
many verification applications. Of particular recent interest are solvers for Satisfia-
bility Modulo Theories (SMT). SMT solvers decide logical satisfiability (or dually,
validity) of formulas in classical multi-sorted first-order logic with equality, with
respect to a background theory. The success of SMT for verification applications
is largely due to the suitability of supported background theories for expressing
verification conditions.

In this talk I will discuss how modern SMT solvers work, and the main im-
plementation techniques used. I will also describe how SMT solvers are used in
industry and Microsoft in particular.

1

2

Extensional Reasoning

Timothy L. Hinrichs and Michael R. Genesereth
Stanford University

{thinrich,genesereth}@cs.stanford.edu

Abstract

Relational databases have had great industrial success in computer science, their
power evidenced by theoretical analysis and widespread adoption. Often, automated
theorem provers do not take advantage of database query engines and therefore
do not routinely leverage that source of power. Extensional Reasoning is a novel
approach to automated theorem proving where the system automatically translates
a logical entailment query into a query about a database system so that the answers
to the two queries are the same. This paper discusses the framework for Extensional
Reasoning, describes algorithms that enable a theorem prover to leverage the power
of the database in the case of axiomatically complete theories, and discusses theory
resolution for handling incomplete theories.

1 Introduction

Relational database systems have been built to answer questions about enormous amounts
of data, yet it is rare today for a theorem prover (Cyc’s inference engine [MG03] a notable
exception) to exploit those systems when confronted with large theories. Extensional
Reasoning (ER) is an approach to automated theorem proving where the system trans-
forms a logical entailment query into a database (a set of extensionally defined tables),
a set of view definitions (a set of intensionally defined tables), and a database query.

For example, the map coloring problem is often stated as follows: given a map and a
set of colors, paint each region of the map so that no two adjacent regions are the same
color. One very natural way to encode this problem (according to the introductory logic
students at Stanford who offer up this formulation year after year) centers around the
following constraints.

color(x, y) ⇒ region(x) ∧ hue(y)
color(x, y) ∧ adj(x, z) ⇒ ¬color(z, y)

These constraints are the same regardless the map and the colors, i.e. regardless the
definitions for region, hue, and adj; moreover, the definitions for these three predicates
are often complete. For example, for the graph illustrated in Fig. 1, we would have the
following definitions.

region(x) ⇔ (x = r1 ∨ x = r2 ∨ x = r3)
hue(x) ⇔ (x = red ∨ x = blue)
adj(x, y) ⇔ ((x = r1 ∧ y = r2) ∨ (x = r2 ∧ y = r3))

3

Query: next(x, y) ∧ next(y, z)

Database:
next

red blue
blue red

Figure 1: A 3-node graph and its corresponding database query

It so happens that the database formulation of this problem studied in, for example,
[McC82] is quite different from the one above and is shown in Fig. 1. Given a table,
next, that contains all the possible pairs of adjacent colors, the query for the three
region graph would be

next(x, y) ∧ next(y, z)

where x represents the hue for r1, y the hue for r2, and z the hue for r3.
The key difference between the formulations is that the database version entails all

the valid colorings, whereas the classical version is only consistent with each valid col-
oring individually. In Extensional Reasoning, the transformation from one formulation
into the other happens automatically.

A relational database corresponds to a special kind of logical theory—one that is
axiomatically complete. Such theories are rare, and even when the theory is complete,
recognizing that fact and constructing the appropriate database is nontrivial. Since
the logical formulation of map coloring comprises an incomplete theory, to transform
it into the database formulation we must first complete it. Because theory-completion
in the context of Extensional Reasoning is performed solely for the sake of efficiency, a
theory must be completed so that any entailment query about the original theory can
be transformed into an entailment query about the completed theory where the answers
to the queries are the same, another nontrivial problem.

Sometimes the work is worth the effort. A database can sometimes solve the database
version of the query orders of magnitude faster than traditional techniques solve the
classical version; moreover, the cost of a database query is bounded (polynomial in
the size of the data and exponential in the size of the query), making the performance
more predictable, sometimes an important feature from the users’ perspective. These
benefits appear to have several causes. First, the portion of the logical theory that is
represented extensionally can be indexed very efficiently both for lookup and retrieval.
Second, negation is treated with Negation as Failure, which can cause large reductions
in the search space. Finally, if there is a solution to a problem, the candidates can be
checked one at a time, which is in contrast to the theorem proving environment where
disjunctive answers would require checking each subset of possible answers.

While we hope Extensional Reasoning will eventually be applied to a wide variety
of logics, for the time being we have elected to focus on theories in a decidable logic,
placing the issue of efficiency front and center. The particular logic we are studying
is a fragment of first-order logic that is a perennial problem in the theorem proving
community: it includes the domain closure axiom, which guarantees decidability while
allowing arbitrary quantification. This logic, to which the example above belongs, allows

4

us to avoid issues of undecidability at this early stage in the development of Extensional
Reasoning, while at the same time giving us the opportunity to make progress on an
important class of problems.

Orthogonal to the choice of logic, Extensional Reasoning could be applied in a variety
of settings that differ in the way efficiency is measured. Our work thus far measures
efficiency the same way the theorem proving community does. Once the machine has
been given a premise set and a query the clock starts; the clock stops once the machine
returns an answer. We do not amortize reformulation costs over multiple queries, and
we do not assume the premises or query have ever been seen before or will ever be seen
again.

The bulk of this paper examines Extensional Reasoning in the case of complete
theories and introduces algorithms for recognizing completeness and transforming a
complete theory into a database system. For incomplete theories, some results on theory
resolution are introduced. Further work on the incomplete case can be found in a
companion paper [HG07]. Our technical contributions occur in the sections on Complete
theories (3) and Incomplete theories (4). The necessary background is given in Sect. 2.

2 Background

In our investigations of Extensional Reasoning thus far, the logic we have considered is
function-free first-order logic with equality, unique names axioms (UNA), and a domain
closure axiom (DCA). The UNA state that every pair of distinct object constants in
the vocabulary is unequal. The DCA states that every object in the universe must be
one of the object constants in the vocabulary. Together, the UNA and DCA ensure
that the only models that satisfy a given set of sentences are the Herbrand models
of those sentences, and because the language is function-free, every such model has a
finite universe. We call this logic Finite Herbrand Logic (FHL). It is noteworthy that
entailment in FHL is decidable.

Besides the existence of UNA and a DCA, the definitions for FHL are the same as
those for function-free first-order logic with equality. Terms and sentences are defined as
usual. We say a sentence is closed whenever it has no free variables, and open whenever
it has at least one free variable. The definition for a model is the usual one, but because
all the models of FHL are isomorphic to finite Herbrand models, it is often convenient
to treat a model as a set of ground atoms. When we do that, satisfaction is defined as
follows.

Definition 1 (FHL Satisfaction). The definition for the satisfaction of closed sen-
tences, where the model M is represented as a set of ground atoms, is as follows.

|=M s = t if and only if s and t are syntactically identical.

|=M p(t1, . . . , tn) if and only if p(t1, . . . , tn) ∈M

|=M ¬ψ if and only if 6|=M ψ

|=M ψ1 ∧ ψ2 if and only if |=M ψ1 and |=M ψ2

|=M ∀x.ψ(x) if and only if |=M ψ(a) for every object constant a.

5

An open sentence ψ(x1, . . . , xn) with free variables x1, . . . , xn is satisfied by M if and
only if ∀x1 . . . xn.ψ(x1, . . . , xn) is satisfied by M according to the above definition.

A set of sentences in FHL constitutes an incomplete theory whenever there is more
than one Herbrand model that satisfies it. A set of sentences in FHL constitutes a
complete theory whenever there is at most one Herbrand model that satisfies it. Logical
entailment is defined as usual: ∆ |= φ in FHL if and only if every model that satisfies
∆ also satisfies φ.

The language used in this paper for representing database systems is nonrecursive
datalog with negation, denoted datalog¬ , which is equivalent in expressive power to
relational algebra and SQL. This particular language has been chosen because it is well-
understood and because some of the algorithms for processing it are very similar to
algorithms for processing classical logic, which allows for relatively clean comparisons.

A datalog¬ system consists of (1) a set of tables, named using the Extensional
Database predicates (EDB predicates) and (2) a set of datalog rules whose heads use
the Intensional Database predicates (IDB predicates). The EDB predicates and IDB
predicates are disjoint. A datalog rule is an implication, where :− is used in place of
⇐.

h :− b1 ∧ · · · ∧ bn
h, the head of the rule, is an atomic sentence. Each bi is a literal, and the conjunction
of bis is called the body of the rule. Every rule must be safe: every variable that
occurs in the head or in a negative literal must occur in a positive literal in the body.
Collectively, the rule set must be non-recursive, which can be defined in terms of the
rules’ dependency graph. The dependency graph for a rule set consists of one node per
predicate and an edge from u to v exactly when there is a rule with u in the head and
v in the body, labelled with ¬ if v occurs in a negative literal. To be nonrecursive, the
dependency graph for a rule set must be acyclic.

A model for a datalog¬ system is the same as that for FHL: a set of ground atoms.
We use the standard stratified semantics. A consequence of these definitions is that
every datalog¬ system is satisfied by exactly one Herbrand model, or more precisely,
a database system is a representation of a single model. A database query is true
exactly when the query is true in that model, written Γ ∪ Λ |= φ, where Γ consists
of the extensional tables and Λ the view definitions. When confusion may arise, we
will subscript |= with FHL and D to indicate the semantics for FHL and datalog¬ ,
respectively.

Because every datalog¬ system represents a single model, the logical theory corre-
sponding to a database system is one that is axiomatically complete.

Definition 2 (Axiomatic Completeness). A satisfiable set of sentences ∆ is ax-
iomatically complete with respect to language L if and only if for every closed sentence
s in L, either ∆ |= s or ∆ |= ¬s. ∆ is complete with respect to vocabulary V if and only
if it is complete with respect to the set of all first-order sentences that can be formed
from V .

6

3 Complete Theories

A satisfiable set of sentences in Finite Herbrand Logic can always be transformed into
datalog¬ while preserving logical equivalence if those sentences constitute a complete
theory. In this section, we discuss algorithms for recognizing that a set of sentences is
complete and algorithms for transforming such a sentence set into a datalog¬ system.

3.1 Recognizing Complete Theories

In Finite Herbrand Logic, a satisfiable, complete theory is satisfied by exactly one Her-
brand model—by exactly one set of ground literals. Entailment in FHL is decidable
because there is a fixed, finite bound on the size of the universe. Consequently, checking
whether a satisfiable FHL theory is complete is decidable. For each ground atom a in
the language (of which there are finitely many), check whether ∆ entails a or ∆ entails
¬a. If for some a, neither is entailed, the theory is incomplete; otherwise, the theory is
complete.

This decision algorithm relies on entailment queries to determine whether the the-
ory is complete, but entailment is the very problem Extensional Reasoning is meant to
confront. For this reason we developed an alternate algorithm that has more of a syn-
tactic flavor—one that performs some inexpensive tests that are sufficient for ensuring
completeness.

Complete theories have been studied in the nonmonotonic reasoning literature. Pred-
icate completion, for example, was one of the early techniques used to define the seman-
tics of Negation as Failure in Logic Programming [Llo84]. When applied to a set of
nonrecursive rules, predicate completion produces a set of nonrecursive biconditional
sentences, e.g.

p(x) ⇔ (q(x) ∧ r(x)) (1)
q(x) ⇔ (x = a ∨ x = b)
r(x) ⇔ (x = e ∨ x = f)

With some small caveats, a nonrecursive set of biconditional definitions is guaranteed
to comprise a complete theory.

Definition 3 (Biconditional Definition). A biconditional definition is a sentence of
the form r(x) ⇔ φ(x), where r is a relation constant, x is a sequence of non-repeating
variables, and φ(x) is a sentence with free variables x.

Definition 4 (Nonrecursive biconditional definitions). A set of biconditional def-
initions ∆ is nonrecursive if and only if the dependency graph 〈V,E〉 is acyclic.

V : the set of predicates in ∆

E : 〈u, v〉 is a directed edge if and only if there is a biconditional in ∆ with u in the
head and v in the body.

Theorem 1 (Biconditional Completeness). Suppose ∆ is a finite set of nonrecur-
sive, biconditional definitions in FHL, where there is exactly one definition for each
predicate in ∆ and no definition for =. ∆ is complete.

7

In this paper we examine algorithms that attempt to reformulate a sentence set into
a logically-equivalent set of nonrecursive biconditional definitions. Though incomplete,
these algorithms run in low-order polynomial time, making them practical for certain
classes of theories. These algorithms perform the recognition task by partitioning the
sentence set and examining each partition individually. If each partition can be writ-
ten as a single biconditional then by the way the partitions are chosen, the theory is
guaranteed to be complete.

To partition the sentences, we ask the following question. Suppose the sentence set
were originally written as nonrecursive, biconditional definitions. Further suppose that
each definition were then rewritten independently of all the others without introducing
any additional predicates while preserving logical equivalence. For each predicate p,
how do we find all those sentences that were produced from the biconditional definition
for p?

For example, the following set of clauses were produced by converting the nonrecur-
sive, biconditional definitions for p, q, and r in Formula 1 into clausal form.

p(x) ∨ ¬q(x) ∨ ¬r(x)
¬p(x) ∨ q(x)
¬p(x) ∨ r(x)
q(x) ∨ x 6= a
q(x) ∨ x 6= b
¬q(x) ∨ x = a ∨ x = b
r(x) ∨ x 6= e
r(x) ∨ x 6= f
¬r(x) ∨ x = e ∨ x = f

How does one determine which clause came from which definition?
Because the original biconditionals were nonrecursive, there must be at least one of

them whose body is expressed entirely in terms of equality; call each such biconditional
a base table definition. All those clauses that contain one predicate besides equality
must have originated in base table definitions. Within that set of clauses, all those that
constrain the same predicate must have come from the definition for that predicate.

In the example above, applying this observation selects two sets of sentences.

q(x) ∨ x 6= a
q(x) ∨ x 6= b
¬q(x) ∨ x = a ∨ x = b

and

r(x) ∨ x 6= e
r(x) ∨ x 6= f
¬r(x) ∨ x = e ∨ x = f

The first is the set of sentences that came from the definition for q, and the second
is the set of sentences that came from the definition for r.

The partitioning algorithm recurses on the remaining sentences, this time looking for
sentences with a single predicate besides = and the base table predicates. At iteration i,

8

the sentences that originated from definitions for predicates p1, . . . , pj have been found
and the algorithm looks for sentences with a single predicate besides {p1, . . . , pj ,=}.
This is a variation on the context-free grammar (CFG) marking algorithm: when the
partition is found for predicate p, all occurrences of p in the remaining sentences are
marked, and when a sentence has all but one of its predicates marked, it is added to the
partition corresponding to the remaining predicate.

In the example, the remaining sentences are

p(x) ∨ ¬q(x) ∨ ¬r(x)
¬p(x) ∨ q(x)
¬p(x) ∨ r(x)

and since each contains one predicate, p, besides the predicates {q, r,=}, all of these
sentences are grouped into the partition corresponding to the biconditional for p.

Alg. 1 embodies the approach outlined here. Each recursive call selects all those
sentences with the same unmarked predicate p and calls reformulate-to-bicond on
those sentences. If they entail a biconditional for p, that biconditional is deemed to be
the definition for p, and the algorithm recurses. If no such biconditional is entailed, the
algorithm finds a different unmarked predicate and tries again. If there is no bicondi-
tional entailed for any of the unmarked predicates, the theory is incomplete.

Algorithm 1 to-biconds(∆, basepreds)

1: sents := {〈p, d〉|d ∈ ∆ and p 6∈ basepreds and Preds[d] is p plus a subset of basepreds}
2: preds := {p|〈p, d〉 ∈ sents}
3: bicond := NIL
4: for all p ∈ preds do
5: partition := {d|〈p, d〉 ∈ sents}
6: bicond := reformulate-to-bicond(partition, p)
7: pred := p
8: when bicond then exit for all
9: end for

10: when not(bicond) then return NIL
11: remaining := ∆− partition
12: when remaining = ∅ then return cons(bicond,NIL)
13: rest := to-biconds(remaining, basepreds ∪ {pred})
14: when rest then return cons(bicond, rest)
15: return NIL

to-biconds runs in O(n2(m + r)), where n is the number of predicates in ∆, m
is the size of ∆, and r is the cost of reformulate-to-bicond. Under the conditions
mentioned above, to-biconds is sound and complete as long as reformulate-to-
bicond is sound and complete.

Theorem 2 (Soundness of TO-BICONDS). Under the conditions listed below, if
to-biconds(∆, {=}) returns the non-NIL Γ, then Γ is a set of nonrecursive bicondition-
als with one definition per predicate in ∆ besides equality and ∆ is logically equivalent
to Γ.

9

• ∆ is a satisfiable sentence set in FHL

• reformulate-to-bicond is sound, i.e. if reformulate-to-bicond(Σ, p) re-
turns p(x) ⇔ φ(x) then the result is a biconditional definition for p entailed by
Σ.

Theorem 3 (Completeness of TO-BICONDS). Under the conditions listed below,
if ∆ is a complete theory in FHL then to-biconds(∆, {=}) does not return NIL.

• ∆ is a satisfiable, nonempty sentence set that can be partitioned into sets so that
there is one set per relation constant in ∆ besides equality: Sr1 , . . . , Srn.

• ∆ is logically equivalent to a set of nonrecursive biconditionals with one definition
per relation constant besides equality: {βr1 , . . . , βrn}

• βri is logically equivalent to Sri and Preds[βri] = Preds[Sri], for every i

• reformulate-to-bicond is complete, i.e. if Σ entails some nonrecursive bicon-
ditional definition p(x) ⇔ φ(x) then reformulate-to-bicond(Σ, p) returns an
equivalent biconditional definition for p; otherwise, it returns NIL.

to-biconds relies on reformulate-to-bicond, an algorithm for checking whether
a given set of sentences entails a biconditional definition. There are many such algo-
rithms, which form a spectrum of inexpensive syntactic checks to expensive semantic
checks. Our approach lies closer to the inexpensive end of the spectrum: it attempts
to rewrite the sentences of a partition into sufficient conditions for p, p(x) ⇐ φ(x),
and necessary conditions for p, p(x) ⇒ ψ(x). It then tests whether φ(x) and ψ(x) are
logically equivalent, and again there is a spectrum of algorithms for checking logical
equivalence.

To finish the example, the sentences of the last partition can be written as

p(x) ⇐ (q(x) ∧ r(x))
p(x) ⇒ (q(x) ∧ r(x))

Clearly there is a biconditional definition entailed by these two impications; likewise
for the other partitions in the example. Notice that because of the way the partitions
were constructed, the resulting set of biconditionals must be nonrecursive.

p(x) ⇔ (q(x) ∧ r(x))
q(x) ⇔ (x = a ∨ x = b)
r(x) ⇔ (x = e ∨ x = f)

3.2 Translating Complete Theories into Datalog

One of the benefits of the recognition algorithm described in the last section is that when
successful, the algorithm produces a formulation of the theory, a set of nonrecursive
biconditionals, that is amenable to translation into datalog¬ ; that transformation is the
subject of this section.

The translation takes place in two steps. First, the set of nonrecursive biconditional
definitions is partitioned into the portion that is turned into data (extensional tables)

10

and the portion that is turned into views (intensional tables). Second, the extensional
portion is converted into explicit tables and the intensional portion is converted into
datalog¬ view definitions.

The approach reported in this paper for partitioning the set of biconditionals is a
simple one. As mentioned in the last section, every set of biconditional definitions must
include at least one definition whose body is expressed entirely in terms of equality.
Our partitioning algorithm assigns all such definitions to the extensional portion of the
theory and all the remaining definitions to the intensional portion. More sophisticated
partitioning algorithms are the subject of future work.

Regardless of what algorithm is used to split the set of biconditional definitions
into the extensional and the intensional portions, the algorithms for transforming those
biconditionals into datalog¬ are fairly straightforward.

Turning a biconditional definition into a datalog¬ view definition can be performed
using a typical recursive walk of the sentence and a post-processing step at the end.
The walk turns ∀ into ¬∃¬; it introduces new predicates when negation and ∃ are
encountered; boolean connectives are treated as usual. We demonstrate by showing a
step-by-step transformation of r(x) ⇔ ∀y.(¬p(y) ∨ q(x, y)).

r(x) ⇔ ∀y.(¬p(y) ∨ q(x, y))
r(x) :− ∀y.(¬p(y) ∨ q(x, y)) (⇔ turned into :−)
r(x) :− ¬∃y.¬(¬p(y) ∨ q(x, y)) (∀ turned into ¬∃¬)
r(x) :− ¬∃y.(p(y) ∧ ¬q(x, y)) (¬ pushed through)
(1) r(x) :− not(newreln(x)) (new predicate invented)
where newreln(x) ⇔ ∃y.(p(y) ∧ ¬q(x, y))
newreln(x) :− ∃y.p(y) ∧ ¬q(x, y) (⇔ turned into :−)
(2)newreln(x) :− p(y) ∧ ¬q(x, y) (drop ∃)

The result is two rules (1) and (2), one for r and one for newreln. Notice that
neither rule is safe—there are variables in negative literals that do not occur in positive
literals. To be valid datalog¬ , safety must be ensured. To achieve this, we introduce
a new predicate univ that is true of all the object constants in the vocabulary, i.e. all
the objects in the universe. Then we add univ(x) for every variable x that is not safe
in some rule. The result is shown below.

r(x) :− not(newreln(x)) ∧ univ(x)
newreln(x) :− p(y) ∧ not(q(x, y)) ∧ univ(x)

Because the biconditional definitions are nonrecursive, the algorithm illustrated
above, which we will refer to as views-to-datalog, is guaranteed to produce a set
of safe, stratified datalog¬ rules. The algorithm used for converting the body of the rule
will convert any sentence into datalog¬ ; it will be called sentence-to-datalog.

views-to-datalog can also be used to convert a biconditional into a table of data.
Suppose we convert all the biconditionals, both those destined to become data and those
destined to become views, into datalog¬ views using views-to-datalog, treating = as
an uninterpreted predicate. We can then add in a table for =, which has one row per
element in the universe. Then we can materialize a table by constructing the appropriate
datalog¬ query and running it through a standard deductive database engine. In the
case of very large theories, here again, we are relying on database algorithms to do what

11

they do best—manipulate large amounts of data. We will refer to the algorithm for
converting a biconditional into an extensional table with the name materialize.

The partitioning algorithm, the algorithm for converting a sentence into datalog¬ ,
and the algorithm for transforming biconditionals into views and data are bundled
together into biconds-to-datalog, an algorithm for converting an entailment query
in FHL about a set of nonrecursive biconditionals into datalog¬ .

Algorithm 2 biconds-to-datalog(∆, φ)

Assumes: ∆ is a set of nonrecursive biconditionals and φ is in the language of ∆
1: (D,V) := partition(∆)
2: Γ := materialize(Preds[D], ∆)
3: Λ := views-to-datalog(V)
4: ψ := sentence-to-datalog(φ)
5: return (Γ, Λ, ψ)

biconds-to-datalog ensures that ∆ entails φ under FHL semantics if and only
if Γ ∪ Λ entails ψ under Datalog semantics. biconds-to-datalog ensures something
much stronger as well: ∆ and Γ ∪ Λ have all the same models (under their respective
semantics). This ensures all the logical consequences are exactly the same; the transfor-
mation preserves not only entailment of the query in question but of all queries in the
language.

Theorem 4 (Equivalence Preservation of BICONDS-TO-DATALOG). Let
∆ |=FHL φ be a logical entailment query where ∆ is a set of nonrecursive biconditionals
with one definition per predicate besides equality, and let φ be in the language of ∆.
Suppose biconds-to-datalog produces (Γ,Λ, ψ). ∆ |=FHL φ if and only if Γ∪Λ |=D ψ,
under the following assumptions.

• ψ = sentence-to-datalog(φ)

• If ∆ is a set of nonrecursive biconditionals, then (D,V) = Partition(∆) is a
partitioning of ∆.

• If D is a set of nonrecursive biconditionals for predicates {r1, . . . , rn}, then Γ =
materialize(Preds[D],∆) consists of a table for each ri, i.e. a is a tuple in the
ri table in Γ if and only if ∆ |= ri(a).

• If V is a set of nonrecursive biconditionals, then Λ = views-to-datalog(V)
is a nonrecursive, stratified set of datalog¬ rules such that for every set E of
nonrecursive biconditional definitions for Preds[D],

E ∪ V |=FHL φ if and only if materialize(Preds[D], E) ∪ Λ |=D ψ

3.3 Extensional Reasoning

When given a logical entailment query ∆ |= φ, the recognition algorithm to-biconds
determines whether ∆ is complete and if so uses the transformation algorithm biconds-
to-datalog to turn the query into datalog¬ . Then an algorithm for processing datalog¬ is

12

employed to answer the query. If ∆ is not complete, traditional algorithms are employed
to determine whether entailment holds. The following algorithm, er-entailedp, relies
on db-entailedp to answer the datalog¬ query and fhl-entailedp to answer an ar-
bitrary entailment query in FHL in the case of incomplete theories.

Algorithm 3 er-entailedp(∆, φ)

Returns: T if and only if ∆ |=FHL φ
1: Σ := to-biconds(∆)
2: if Σ then
3: (Γ, Λ, ψ) := biconds-to-datalog(Σ,φ)
4: return db-entailedp(Γ, Λ, ψ)
5: else
6: return fhl-entailedp(∆, φ)
7: end if

The theorems from previous sections ensure er-entailedp is sound and complete.

Theorem 5 (Soundness and Completeness). Suppose φ is a sentence in the lan-
guage of ∆. er-entailedp(∆, φ) returns T if and only if ∆ |=FHL φ.

One of the keys to the proof of this theorem bridges the gap between how the
semantics of logic and the semantics of datalog¬ treat negation. Logic uses classical
negation whereas datalog¬ uses negation as failure. While NAF is often thought of as
a nonmonotonic and therefore unsound inference rule, in the case of complete theories,
NAF is sound.

Theorem 6 (Soundness of NAF). Negation as failure is a sound rule of inference
when it is applied to a closed sentence in the language of an axiomatically complete
theory while using a complete proof procedure.

Proof. NAF is a meta inference rule based on a proof system `. NAF infers ¬φ whenever
∆ 6` φ. Suppose that φ is closed, ∆ is axiomatically complete (entails ψ, ¬ψ, or both for
every closed sentence ψ), and ` is complete (finds a proof whenever entailment holds).
Then, if ∆ 6` φ, by the completeness of `, ∆ 6|= φ. By the completeness of ∆, we have
∆ |= ¬φ. Thus, when ∆ 6` φ, ∆ |= ¬φ, which is the conclusion NAF produces; thus, it
is sound.

3.4 A Comparison of ER and Traditional Techniques

The central claim of this paper is that sometimes answering an entailment query using
algorithms for processing datalog¬ is more efficient than using the typical algorithms for
processing FHL. One of the main benefits of datalog¬ is its use of Negation as Failure,
which happens to be a sound rule of inference in the case of complete theories. This
section compares NAF to traditional treatments of negation from both the theoretical
and the empirical perspective.

Theoretical Comparison

13

To demonstrate the power of NAF, we start by comparing SLDNF resolution and
model elimination on an example, a fair comparison since the two proof procedures differ
mainly in how they treat negation. SLDNF uses NAF, whereas model elimination uses
classical negation. Consider the following biconditional definition for p.

p(x) ⇔

 (p1(x) ∧ p2(x) ∧ p3(x)) ∨
(p4(x) ∧ p5(x) ∧ p6(x)) ∨
(p7(x) ∧ p8(x) ∧ p9(x)))

Converting the biconditional above to view definitions using the algorithms of the last
section basically amounts to dropping the ⇒.

p(x) :− p1(x) ∧ p2(x) ∧ p3(x)
p(x) :− p4(x) ∧ p5(x) ∧ p6(x)
p(x) :− p7(x) ∧ p8(x) ∧ p9(x)

In contrast, converting the biconditional to clausal form produces the implications above
along with implications for ¬p(x). In this example, there are 27 possible ways to prove
¬p(t) for a particular t, which is exponential in the size of the biconditional. The naive
clausal form conversion will construct one clause for each one. (Structure-preserving
clausal form conversion, which can be found in chapters 5 and 6 of [RV01], ensures the
number of clauses is polynomial in the size of the original sentence set, but as we will
see the size of the search space can still be exponential.)

¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p7(x)
¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p8(x)
¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p9(x)

...
¬p(x) ⇐ ¬p3(x) ∧ ¬p6(x) ∧ ¬p9(x)

We compare SLDNF resolution on the datalog¬ with model elimination on the
clauses. For the entailment query ∃x.p(x), the two perform identically (assuming we
turn off the reduction operation [AS92] for model elimination); however, for the query
∃x.¬p(x), the two techniques differ significantly. SLDNF resolution uses the rules with
p(x) in the head to look for a t such that the proof for p(t) fails. Model elimination uses
the rules with ¬p(x) in the head to look for a t such that ¬p(t) has a proof. Depending
on the relative sizes of the universe, the search space for p(x), and the search space for
¬p(x), proving ¬p(t) by exhausting the search space for p(t) can be far less expensive
than finding a proof in the search space for ¬p(t).

Information theoretically, it is not surprising that for complete theories, NAF some-
times answers queries more quickly than methods for classical negation. NAF can be
viewed as a mechanism for reasoning about complete theories, whereas methods for clas-
sical negation are mechanisms for reasoning about incomplete theories. NAF implicitly
leverages the fact that the theory is complete, but methods for classical negation do not.

More tangibly, the tradeoff between NAF and classical negation can be seen as a
tradeoff of search spaces. Often the space for ¬p is larger than the space for p, and
it is this case that NAF takes advantage of. As opposed to classical negation, NAF

14

avoids searching the large space and instead searches just the small space. (We might
additionally consider Truth as Failure to handle the case where the space for p is very
large but the space for ¬p is very small.)

As mentioned earlier, structure-preserving clausal-form conversion will avoid enu-
merating the exponential number of rules with ¬p in the head, but that does not nec-
essarily prevent resolution from enumerating an exponential search space. Moreover,
with certain assumptions placed on what it means to convert to clausal form, one can
show that regardless of which clausal form conversion is used, there is an infinite class
of biconditionals such that resolution has the potential to generate exponentially many
clauses in the size of the biconditional, assuming that the implementation of resolution
is generatively complete.

Lemma 1. Consider the following biconditional β.

p(x) ⇔

 (p11(x) ∧ · · · ∧ p1n1(x)) ∨
...
(pm1(x) ∧ · · · ∧ pmnm(x))

When applying the naive clausal form conversion to β, the number of clauses with a
negative p literal is the product of the lengths of the disjunctions:

∏
i ni.

¬p(x) ∨ p11(x) ∨ p21(x) ∨ · · · ∨ pm1(x)
¬p(x) ∨ p11(x) ∨ p21(x) ∨ · · · ∨ pm2(x)

...
¬p(x) ∨ p1n1(x) ∨ p2n2(x) ∨ · · · ∨ pmnm(x)

Suppose a clausal form conversion algorithm converts β into Γ. Further suppose Γ it
is logically equivalent to β with respect to the predicates in β, i.e. for every sentence
σ whose predicates are a subset of those in β, Γ |= σ iff β |= σ. Suppose Res is an
implementation of resolution that is generatively complete.

Res[Γ ∪ {p(t)}] will produce at least
∏

i ni clauses.

Proof. Here we argue somewhat informally. Consider an arbitrary clause with a negative
p literal.

¬p(x) ∨ p1j1(x) ∨ p2j2(x) ∨ · · · ∨ pmjm(x)

This clause, which is entailed by β, entails

p(t) ⇒ p1j1(t) ∨ p2j2(t) ∨ · · · ∨ pmjm(t)

Consequently Γ entails it as well. Thus, Γ ∪ {p(t)} entails

p1j1(t) ∨ p2j2(t) ∨ · · · ∨ pmjm(t)

Since Res is generatively complete up to subsumption, Res[Γ ∪ {p(t)}] must include
either this disjunction, or some clause that subsumes it. No clause that subsumes this
one is entailed by Γ ∪ {p(t)}; hence, this clause must appear in the closure. Since the
clause was chosen arbitrarily, the same holds for all clauses. Since there are

∏
i ni of

these clauses, the resolution closure must contain at least that many clauses.

15

The above lemma guarantees a local property about resolution—that given a single
biconditional and a query, the resolution closure is exponentially large in the number
of disjunctions. When other sentences are included, the lemma makes no guarantees.
For example, if resolution were given a biconditional for p(x) along with the sentence
¬p(x), resolution could find a proof without enumerating the exponential number of
consequences described above.

To truly understand a technique it is important to find its limitations. Extensional
Reasoning is not always superior to traditional techniques. Consider a satisfiable, com-
plete premise set that consists of a single sentence ∀xy.p(x, y), which when converted
to clausal form is just p(x, y). The query ∀xy.p(x, y) when negated and converted to
clausal form is ¬p(k1, k2). Resolution finds a proof in a single step, regardless of how
large the universe is.

In Extensional Reasoning, if the decision is made to materialize p, the database
includes n2 tuples for p, where n is the size of the universe. Using SLDNF resolution,
the proof attempt ∀xy.p(x, y) is performed by attempting to find elements k1 and k2

such that ¬p(k1, k2) is true. Since every attempt fails, even assuming perfect indexing,
the proof costs n2.

Thus, in some cases Extensional Reasoning can find proofs in complete theories more
efficiently than traditional techniques, but this last example demonstrates that this is
not always the case. An important next step is to investigate algorithms that predict
which approach will find a proof (or fail to find a proof) more quickly; such algorithms
are the subject of future work.

Empirical Comparison

Next we report on experiments designed to compare Extensional Reasoning tech-
niques to traditional techniques in the case of complete theories. Since the algorithms
for detecting completeness presented in this paper produce a set of nonrecursive bi-
conditional definitions, all the tests we performed were on such sentence sets. The
results demonstrate what is predicted above. When negation occurs in the sentences,
the datalog¬ implementation, which uses Negation as Failure, is significantly faster than
techniques that do not employ NAF.

Each sentence set represents the layout of a two-dimensional grid, like the one shown
in Fig. 2. Every sentence set has exactly six biconditionals representing the following
information.

• west(x, y): cell x is the cell immediately west of cell y.

• north(x, y): cell x is the cell located immediately north of cell y.

• duewest(x, y): cell x is in the same row as cell y and located to the west.

• duenorth(x, y): cell x is in the same column as cell y and located to the north.

• vert(x, y): cell x is duenorth of y or vice versa.

• westof(x, y): cell x is located to the west of y, i.e. x and y can be in different
rows but x’s column is to the west of y’s column.

16

Figure 2: A 4× 4 grid, corresponding to the theory in the appendix.

An axiomatization for the 4× 4 case can be found in the appendix.
The tests varied the dimensions of the grid, starting at 4× 4 and ending at 20× 20.

The queries were of the form westof(t, u) and ¬westof(t, u), where t and u were always
ground. Every query tested was entailed. The results of the positive queries are reported
separately from the results of the negative queries because negation plays a prevalent
role in the negative queries but not the positive. The positive queries provide a baseline
for comparing techniques on how well they handle nonrecursive biconditional definitions.
The negative queries illustrate how NAF can affect performance.

We compared our implementation of Extensional Reasoning for the case of complete
theories, DBD (Datalog Based Deduction), with Vampire 8.1, Darwin, and Epilog (the
Stanford Logic Group’s model-elimination implementation1). Vampire and Darwin were
run using SystemOnTPTP, and Epilog and DBD were run in Macintosh Common Lisp
on a 1.5 GHz G4 Powerbook with 1.25 GB of RAM.

As expected, DBD, the system built to reason about towers of biconditionals, outper-
formed the three general-purpose systems on both the positive and the negative queries.
Each system had 1000 seconds to find a proof. Most of the systems performed fairly
similarly until the last or second-to-last grid size they solved under the time limit.

For the positive queries (Fig. 3), Epilog and Darwin performed similarly, both failing
to find a proof in 1000 seconds for the 16 × 16 grid. Vampire failed to find a proof at
20× 20; DBD solved the 20× 20 in 126 seconds. These tests were run without the DCA
or the UNA since entailment did not require them; thus, these tests primarily illustrate
how the various systems cope with the potentially large number of clauses generated by
converting biconditionals to clausal form.

1For completeness, model elimination and therefore Epilog require all contrapositives of the clauseset
to be explored. For these experiments, only those clauses produced by a typical clausal form conversion
were used.

17

Figure 3: Results for queries of the form westof(t, u).

n× n Darwin Vampire Epilog DBD
4 0 0 0 0
6 0 3 1 0
8 1 47 7 1

10 7 48 43 2
12 65 50 152 6
14 509 61 480 15
16 > 999 82 > 999 33
18 589 69
20 > 999 126

For the negative queries (Fig. 4), the difference between DBD and the others is
larger. Vampire failed at size 8 × 8; Epilog failed at size 12 × 12; Darwin failed at
16× 16. DBD solved 20× 20 in 187 seconds. This difference appears to be due mainly
to the fact that DBD uses NAF, and the negative search space for westof (as induced
by the clauses with negative westof literals) is substantially larger than the positive
search space. These tests required the UNA, but not the DCA.

18

Figure 4: Results for queries of the form ¬westof(t, u).

n× n Darwin Vampire Epilog DBD
4 0 14 0 0
6 0 170 6 0
8 4 > 999 67 1

10 5 512 2
12 55 > 999 6
14 137 15
16 > 999 40
18 72
20 187

We also worked on answering entailment queries using boolean SAT solvers, since
every FHL theory can always be converted into propositional logic. Conversion to clausal
form after grounding proved to be prohibitively expensive, even using the structure-
preserving version of clausal form conversion. Comparing DBD to a non-clausal SAT
solver is the subject of future work.

These experiments compare how quickly various sytems can prove theorems when the
search space is shallow but has a high branching factor. Typical database applications
have this character: the majority of the cost comes from manipulating large amounts of
data, and the tower of view definitions built on top of the extensional tables is relatively
short. As expected, in such situations Negation as Failure can produce significant savings
over treating negation classically.

19

4 Incomplete Theories

Complete theories have powerful properties, but incomplete theories are the norm. The
last section detailed techniques for reasoning efficiently about complete theories using
database techniques. However, if one were to add even just a small amount of incom-
pleteness into a complete theory by including new predicates, those techniques could no
longer be applied. This is unfortunate since the speedups in the complete case seem to
be large enough to absorb some extra overhead for dealing with theories that have a
small amount of incompleteness.

For example, suppose we take any complete theory and add in the following sen-
tences, where p and q are new predicates.

p(a) ∨ p(b) ∨ p(c)
q(d) ∨ q(e) ∨ q(f)

Supposing the complete theory had a definition for the binary predicate r, a reason-
able entailment query might be

∀xy.(p(x) ∧ q(y) ⇒ r(x, y)). (2)

When the definitions for r are large enough to warrant using a database system, we
probably still want to use that database system in spite of the fact that we now have
an incomplete theory.

Theory resolution [Sti85] is one approach to dealing with such situations, where
part of the theory can be effectively represented and reasoned about with a specialized
procedure. If a theory were partitioned into the complete portion C and the incomplete
portion I, theory resolution would allow us to use a database system to represent C
while answering queries about C ∪ I using resolution.

One of the benefits of the to-biconds algorithm shown in Alg. 1 is that with a two-
line change, it can be used to find the portion of the theory that is complete, partitioning
the theory as required for theory resolution. This change consists of replacing lines (14)
and (15) so that once the algorithm fails to find a new biconditional definition, it returns
all the biconditionals it has found so far. Alg. 4 gives this new algorithm, to-biconds-
max. It is noteworthy that to-biconds-max can be turned into an anytime algorithm,
allowing the user or system designer to determine how much time to spend trying to
find a complete subtheory.

With the partitioning algorithm in place, we can now focus on theory resolution.
Because C is complete, we can think of it as being a set of ground literals such that
every ground atom or its negation is included. For the case where the incomplete portion
I is in ∀∗, i.e. where when I is written in prenex normal form the quantifiers are all
universal, theory resolution takes a particularly simple form. Suppose p is a predicate
that belongs to the complete portion, i.e. every ground p literal or its negation belongs
to C. Then if there were some clause

{p(t)} ∪ Φ,

resolution would produce a resolvent for every literal ¬p(a) where p(a) unifies with p(t):

Φσ, where σ is the mgu of p(a) and p(t)

20

Algorithm 4 to-biconds-max(∆, basepreds)

1: sents := {〈p, d〉|d ∈ ∆ and p 6∈ basepreds and Preds[d] is p and some subset of basepreds}
2: preds := {p|〈p, d〉 ∈ sents}
3: bicond := NIL
4: for all p ∈ preds do
5: partition := {d|〈p, d〉 ∈ sents}
6: bicond := reformulate-to-bicond(partition, p)
7: pred := p
8: when bicond then exit for all
9: end for

10: when not(bicond) then return NIL
11: remaining := ∆− partition
12: when remaining = ∅ then return cons(bicond,NIL)
13: rest := to-biconds-max(remaining, basepreds ∪ {pred})
14: return cons(bicond, rest)

For completeness, theory resolution must produce all such clauses.

Definition 5 (Complete Theory Resolution). Complete Theory Resolution (CTR)
is the following rule of inference. When it is added to the usual resolution inference rules,
we denote the closure of clauses S using all those rules by CTRRes(C,S). Suppose C
is a complete theory with a definition for predicate p.

±p(t) ∪ Φ
Let {σ1, . . . , σn} be the set of all mgus σ such that ∓p(t)σ is entailed by C.

Φσ1
...
Φσn

∓p(t)σ has the opposite sign of ±p(t).

In general, for FHL the DCA, UNA, and x = x must be added to a set of clauses for
standard implementations of resolution equipped with paramodulation to be sound and
complete; however, in the case where the clauses are in ∀∗, it has been shown [Rei80]
that neither the DCA nor paramodulation are necessary for completeness. This fact
simplifies the completeness proof below.

Theorem 7 (CTRRes Soundness and Completeness for ∀∗). Suppose ∆ = C ∪ I
is a finite set of FHL sentences, where C is a satisfiable, complete theory with definitions
for predicates P , and I is in ∀∗. ∆ is unsatisfiable if and only if CTRRes(C, I) contains
the empty clause.

Proof. (Soundness) Every resolution inference rule is sound, which means we need only
show CTR is sound. But this is immediate because CTR is simply n applications of
resolution, using literals from C.

(Completeness) A database system compactly represents C, which is semantically
a finite set of ground literals. We show that CTRRes is complete by showing that

21

every inference step that could occur using resolution between C, represented as a set
of ground literals, and I will also occur in CTRRes(C, I).

Because C is a set of ground literals, it is in ∀∗, and I is in ∀∗ by assumption;
thus, C ∪ I is in ∀∗, which means neither the DCA nor paramodulation are necessary
for resolution to be complete. Thus, the only necessary rules of inference are binary
resolution and factoring; moreover, only those inferences that use as a premise some
literal from C could cause incompleteness.

If ∆ is unsatisfiable then there is a resolution proof of the empty clause from C ∪ I.
Consider any step in which one of the literals from C is resolved with a non-unary clause.

±p(t) ∪ Φ
∓p(a) (from C)

Φσ, where σ is the mgu of p(t) and p(a)

In CTRRes(C, I), this resolvent is one of many produced when CTR is applied to the
first clause above. CTR finds all variable assignments ρ1, . . . , ρm so that ∓p(t)ρi belongs
to C. Because every literal in C is ground, the unifier σ is a variable assignment such
that p(t)σ belongs to C, i.e. σ is one of the ρi. Since CTR produces all Φρ and σ is
some ρi, CTR certainly produces Φσ.

For every resolution between some literal in C and some other literal, we know that
the other literal could not have come from C because that would make C unsatisfiable;
the above argument applies to this case as well, which guarantees no binary resolution
inferences are lost by using CTRRes.

Hiding C does not result in the loss of any factoring step since factoring does not
apply to unit clauses. Altogether, every inference rule application using resolution can
be mirrored using CTRRes.

In effect, this result is a practical approach to enlarging Reiter’s result [Rei80] that
eliminates the need for paramodulation in the case of ∀∗. Here we have shown that
regardless what prefix class the complete portion of the theory belongs to, we can avoid
paramodulation as long as the remaining sentences are in ∀∗.

We have speculated on inference rules for performing theory resolution when the
incomplete sentences do not belong to ∀∗. The difficulty is that skolems exist, which
must be dealt with by the database; moreover, the proof of completeness is complicated
by the fact that paramodulation is necessary. Here we simply illustrate the issues and
point toward an avenue with promise.

Consider an example where the incomplete sentences are in ∃∗∀∗, which causes the
clausal form conversion to introduce new skolem constants but no skolem functions.

p(x) ⇔ (x = a ∨ x = b)
q(x) ⇔ (x = c)
∃x.(¬p(x) ∧ ¬q(x))

The first two sentences comprise complete definitions for p and q, and the last sentence
belongs to the incomplete portion. These sentences are inconsistent because every el-
ement is either in p or in q, but the last sentence says that there is some element in
neither p nor q. The definitions for p and q are stored in the database, which leaves the
existential to be manipulated by resolution. The clauses we start with (UNA left out
for brevity) are as follow.

22

1. x = a ∨ x = b ∨ x = c

2. ¬p(k)

3. ¬q(k)

Notice here that not only must the database be used to answer queries with skolems,
but the result of such queries must include information about skolems. Concentrating
on the ¬p(k) clause, we see that if k is equal to any one of the values true of p in C,
then we have an inconsistency; or equivalently, k cannot be equal to any one of those
values if the sentences are consistent. This line of reasoning produces the following two
resolvents.

4. k 6= a

5. k 6= b

Applying the same rule of inference to ¬q(k) produces the following resolvent.

6. k 6= c

Together these three resolvents are inconsistent with the DCA, which, by the complete-
ness of resolution, ensures the production of the empty clause.

Further work needs to be done to determine whether an inference rule built around
this idea would be complete. The next step would be to build an inference rule for
handling skolem functions as well as skolem constants.

The downside to the theory resolution approach is that if large amounts of data are
stored in the database, and even a small fraction of that data must be used for a proof,
we still must address the problem of building theorem provers that can handle massive
amounts of data.

Our approach is to avoid theory resolution altogether by completing the incomplete
theory, and using the techniques described in the previous section to answer questions
about the theory. This gives the database the opportunity to solve the entire problem
itself, managing the massive amount of data as it sees fit. The tricky part is performing
theory completion in a way that is not so expensive as to negate the benefits of using a
database to reason about the completed theory.

Our approach to theory completion, outlined in [HG07], is to first partition the
theory into the complete portion and the incomplete portion using to-biconds-max.
Then we use various techniques for completing the incomplete portion of the theory
while ignoring the complete portion, to the extent possible. We now have a complete
theory, which can be reasoned about using the algorithms presented in the last section.

We expect this approach to work well in the context of large theories when a large
portion of the theory is complete. As the size of the complete portion increases, so
does the cost of manipulating the data, which increases the utility of using a database.
Moreover, if the incomplete portion of the theory is small enough, running what might
normally be considered expensive algorithms to perform theory completion is affordable
because of the relative cost of manipulating the data. Thus, in large theories that have
a small amount of incompleteness, Extensional Reasoning has the potential for large
computational savings over traditional techniques.

23

5 Conclusion and Future Work

This paper presents Extensional Reasoning for both complete theories and incomplete
theories. In the complete case it introduces a quadratic-time partitioning algorithm for
rewriting a class of complete theories into a set of nonrecursive biconditional definitions
and discusses issues regarding the transformation of those definitions into datalog¬ .
For the incomplete case, it introduces an anytime algorithm for finding the portion of
a theory that can be transformed into a set of nonrecursive biconditionals, and theory
resolution techniques that allow the complete portion to be represented with a database
system. The theory resolution techniques are sound and complete when the incomplete
portion of the theory is in ∀∗. Empirically, Extensional Reasoning techniques perform
better than traditional theorem proving techniques when the theory consists of nonre-
cursive biconditional definitions.

Besides enlarging the class of complete theories that we can detect, the first extension
to the work presented here is a better algorithm for finding a biconditional that is
entailed by a given set of sentences. This problem is unlike the traditional theorem
proving problem because the entailment query is a metalevel query: do these sentences
entail a sentence of the form p(x) ⇔ φ(x)? We have done some work on metalevel logic
[HG05] and made preliminary investigations into meta-resolution, a variant of resolution
that targets metalevel logic.

Second, the algorithm illustrated in section 3 for converting a set of nonrecursive
biconditional definitions into datalog¬ is straightforward, but in those cases where the
resulting rules are unsafe, we introduce the univ relation, which is true of every object
constant in the language. Minimizing the cases where univ is used can have drastic
effects on run time. Because such domain-dependent queries are often explicitly disal-
lowed in the traditional database setting, standard database query optimizers will not
take advantage of the semantics of univ. ER will reap large benefits from augmented
query-optimization algorithms.

Third, the policy we currently use for determining which portion of the theory to
turn into extensional tables and which portion to turn into intensional tables needs
further study. The database community has studied view materialization [Hal01] and
view construction [Chi02] in depth, and those results can surely inform if not entirely
address this issue.

24

A Example of Test Theory

west(x, y) ⇔

(x = a ∧ y = b) ∨
(x = b ∧ y = c) ∨
(x = c ∧ y = d) ∨
(x = e ∧ y = f) ∨
(x = f ∧ y = g) ∨
(x = g ∧ y = h) ∨
(x = i ∧ y = j) ∨
(x = j ∧ y = k) ∨
(x = k ∧ y = l) ∨
(x = m ∧ y = n) ∨
(x = n ∧ y = o) ∨
(x = o ∧ y = p)

north(x, y) ⇔

(x = a ∧ y = e) ∨
(x = e ∧ y = i) ∨
(x = i ∧ y = m) ∨
(x = b ∧ y = f) ∨
(x = f ∧ y = j) ∨
(x = j ∧ y = n) ∨
(x = c ∧ y = g) ∨
(x = g ∧ y = k) ∨
(x = k ∧ y = o) ∨
(x = d ∧ y = h) ∨
(x = h ∧ y = l) ∨
(x = l ∧ y = p)

duewest(x, y) ⇔

 west(x, y) ∨
∃z.(west(x, z) ∧ west(z, y)) ∨
∃zw.(west(x, z) ∧ west(z, w) ∧ west(w, y))

duenorth(x, y) ⇔

 north(x, y) ∨
∃z.(north(x, z) ∧ north(z, y)) ∨
∃zw.(north(x, z) ∧ north(z, w) ∧ north(w, y))

vert(x, y) ⇔ (duenorth(x, y) ∨ duenorth(y, x))
westof(x, y) ⇔ (duewest(x, y) ∨ ∃z.(vert(x, z) ∧ duewest(z, y)))

References

[AS92] Owen Astrachan and Mark Stickel. Caching and lemmaizing in model elimi-
nation theorem provers. CADE, 1992.

[Chi02] Rada Chirkova. Automated Database Restructuring. PhD thesis, Stanford
University, 2002.

[Hal01] Alon Halevy. Answering queries using views: A survey. VLDB Journal: Very
Large Data Bases, 10(4):270–294, 2001.

25

[HG05] Timothy L. Hinrichs and Michael R. Genesereth. Axiom schemata as metalevel
axioms. AAAI, 2005.

[HG07] Timothy L. Hinrichs and Michael R. Genesereth. Reformulation for extensional
reasoning. Proceedings of the Symposium on Abstraction, Reformulation, and
Approximation, 2007.

[Llo84] John Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.

[McC82] John McCarthy. Coloring maps and the Kowalski doctrine. Stanford Technical
Report, 1982.

[MG03] James Masters and Zelai Gungordu. Structured knowledge source integration:
A progress report. Integration of Knowledge Intensive Multiagent Systems,
2003.

[Rei80] Raymond Reiter. Equality and domain closure in first-order databases. Journal
of the ACM, 27(2):235–249, 1980.

[RV01] Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning. MIT
Press and Elsevier Science, 2001.

[Sti85] Mark Stickel. Automated deduction by theory resolution. Journal of Auto-
mated Reasoning, 1:333–356, 1985.

26

Semantic Selection of Premisses

for Automated Theorem Proving

Petr Pudlák1

1Charles University, Prague
petr.pudlak@mff.cuni.cz

Abstract

We develop and implement a novel algorithm for discovering the optimal sets of
premisses for proving and disproving conjectures in first-order logic. The algorithm
uses interpretations to semantically analyze the conjectures and the set of premisses
of the given theory to find the optimal subsets of the premisses. For each given
conjecture the algorithm repeatedly constructs interpretations using an automated
model finder, uses the interpretations to compute the optimal subset of premisses
(based on the knowledge it has at the point) and tries to prove the conjecture using
an automated theorem prover.

1 Importance of selecting appropriate premisses
in automated theorem proving

A proper set of premisses1 can be essential for proving a conjecture by an automated
theorem prover. Clearly, the larger the number of the initial premisses the larger the
number of the inferred formulae. And as for the most proving techniques the number
of inferred formulae is in general super-exponential in the number of input formulae,
the impact on the performance of an automated theorem prover is quite significant.
Removing even a single superfluous premiss can make the difference between being or
not being able to prove the conjecture.

This major problem is even more serious when reasoning within large mathematical
theories, which can contain hundreds of premisses and thousands of conjectures. In such
cases, selecting proper premisses for proving the conjectures becomes a necessity.

In our previous work [Pud06a, Pud06b] we described a method for compacting proofs
of conjectures. By constructing lemmas from the proofs and by syntactically analyzing
both the lemmas and the proofs, we constructed sets of premisses that produced shorter
proofs of given conjectures, or allowed to construct proofs much faster. However, the
assumption was that for each conjecture we already know some set of premisses from
which we were able to prove the conjecture (although possibly redundant and inefficient
for constructing a proof). If we were not able to prove the conjecture at all, the situation
was more complicated.

1Using the notion axioms for the formulae the prover uses as assumptions sometimes causes confusion,
therefore we shall prefer the notion premisses instead. See section 2.1.

27

One possibility is to syntactically analyze the formulae and/or use an AI algorithm
for guessing the proper premisses. Successful examples of such procedures are Josef
Urban’s tools for the Mizar Project [Urb06a, Urb06b], reducing axiom sets in software
verification [RS98] or filtering of axioms for machine-generated problems [MP06]. Al-
though even simple syntactic heuristics can be very effective, the syntactic approach is
generally restricted to the cases when the (syntactic) structure of formulae well reflects
their semantics. Clearly, this is not always the case. Moreover, the syntactic analysis
is usually only a heuristic procedure that tries to learn what premisses could be needed
but is likely to fail on a new kind of problem. Syntactic filters are also often incomplete
in the sense that they can eventually remove too many premisses.

The procedure we shall describe in this article uses semantic analysis. By observing
which formulae are true in which interpretations, we can get a deeper insight into the
nature of a conjecture and compute such a set of premisses that is proper for proving
the conjecture. As far as we are aware, this is a novel approach, which has not been
researched before.

We shall focus on two interconnected goals:

• Determine which sets of premisses are sufficient for proving the conjecture;

• among those sets, choose such a set that contains no redundant premisses and
that is minimal with respect to some criterion.

The criterion can be just a simple one – to minimize the number of premisses, or a
more complex one, for example, to avoid premisses of a certain kind that complicate the
proving process.

2 Semantic analysis of problem using interpretations

2.1 Notation

Throughout the whole article we shall always work within the domain of first-order
logic. We shall always assume that a language is given and all formulae we work with
are formulated in the language and are closed.

We shall denote formulae by regular letters (e.g. A, F), interpretations by calli-
graphic letters (e.g. M), sets of formulae by boldface letters (e.g. B, AC) and sets
of sets or sets of interpretations by script letters (e.g. F , N). We shall also use the
following symbols:

M |= B M is a model of a formula B (1)
M |= B M is a model of all formulae in B

(i.e. a model of the conjunction of all formulae in B) (2)
B |= G for all possible interpretations M, if M |= B then M |= G

(i.e. G is a consequence of B) (3)
B ` G G can be proved from B (4)

For brevity we shall often say that “a formula B avoids an interpretation M” (resp. B
avoids a set of interpretations M) if and only if M 6|= B (resp. M 6|= B for all M∈ M).

28

Often formulae given to the prover as a basis for (dis)proving conjectures are simply
called axioms. However, this sometimes causes confusion, because these given formulae
actually do not have to be the axioms of a particular theory. They can be also propo-
sitions that have already been proved before, lemmas, etc. Therefore, we shall instead
call such assumptions premisses.

2.2 Basic principle

Let a conjecture C and a set of premisses A (finite, but presumably large) be given.
We would like to prove (or to refute) C from A using an automated theorem prover.
But since A is large, the prover is overloaded by the high number of premisses and we
are not able to prove C directly from A. We expect that only a small subset of A is
necessary to prove or to refute C and we would like to find such a subset.

The idea of the semantic analysis is based on two principal properties of first-order
logic:

1. If B ` C then for any interpretation M such that M 6|= C also M 6|= B. That is,
there is B ∈ B such that M 6|= B.

2. Having a set of premisses B, then

• either C is provable from B, hence B ` C, which is equivalent to B |= C by
the completeness theorem,

• or there is an interpretation M such that M |= B ∪ {¬C}.
Using these two properties we shall construct a sequence of interpretations Mi and

a sequence of premisses Fi (for convenience let us set Bi = {F0, . . . , Fi−1}). At each
step we select Fi to be from the set Ai = {F ∈ A |Mi 6|= F} and eventually some set
Bk will be sufficient for proving C.

Let us start with an empty set of premisses B0 = ∅. If C is a tautology, then B0 ` C
and we are finished. Otherwise, there is some interpretation M0 such that M0 |= ¬C
(see Fig. 1a). Let

A0 = {F ∈ A |M0 6|= F}
Let us select any F0 ∈ A0 and set B1 = {F0}. Because M0 6|= F0, also M0 6|= B1.
Now, either B1 |= C, thus B1 ` C, or there is an interpretation M1 such that M1 |=
B1 ∪ {¬C} (see Fig. 1b). We set

A1 = {F ∈ A |M1 6|= F}

and continue in similar fashion. In step i, either already Bi |= C (as in Fig. 1d, where
i = 3) or there is an interpretation Mi such that Mi |= Bi∪{¬C} (as in Fig. 1c, where
i = 2). In such a case we set

Ai = {F ∈ A |Mi 6|= F}

If Ai is empty, then Mi |= A ∪ {¬C}, hence C is not a theorem of A. Otherwise, we
set Bi = Bi−1 ∪ {Fi−1}, where Fi is an arbitrary formula chosen from Ai.

29

(a) (b)

(c) (d)

Each point of the plane of the diagram represents a single possible inter-
pretation of the language. A formula is represented as a shape that contains
precisely the interpretations in which the formula is true. The conjecture C
is illustrated by the gray rectangle. First, we construct a model M0 of ¬C
(a). We pick some premiss F0 that avoids the model. Next, we construct a
model M1 of {F0,¬C} (b) and pick some other premiss F1 which avoids this
model. Then, because we still cannot prove C from {F0, F1}, we construct a
model M2 of {F0, F1,¬C} (c) and pick yet another premiss F2 that avoids
it. Now, there is no model of {F0, F1, F2,¬C} (d) and hence we can prove
C from {F0, F1, F2}.

Figure 1: Illustration of the semantic selection of premisses.

30

Observe that at each step Bi avoids all constructed interpretations M1, . . . ,Mi−1.
Also note that Bi∩Ai = ∅, since Mi |= Bi, but for each F ∈ Ai we know that Mi 6|= F
by the definition of Ai. Therefore, at each step, a different formula is moved from Ai

into Bi (and possibly other formulae are removed from Ai) and |Bi| = i. And since A
is finite, either Bk |= C for some k, or Al = ∅ for some l and thus A 6|= C.

2.3 Adaptation for automated theorem provers

Automated theorem provers, model finders and other similar tools are always limited
in available resources such as time or computer memory. Hence, if we are given a set of
premisses B and a conjecture C, the result of a computation could be that we either

• find a proof of C from B, or

• find an interpretation M such that M |= B ∪ {¬C}, or

• run out of resources.

We have to take into account also the last possible outcome and modify the procedure
described in the previous section to be able to deal with such a result.

The simplest possible solution is that if at step n we are neither able to prove C
from Bn nor to find an interpretation Mn such that Mn |= Bn ∪ {C}, we backtrack
and at some previous step k < n we try to pick a different formula Fi from Ak.

Nevertheless, we shall now describe a more general solution that allows us to pro-
ceed in those cases when we are neither able to prove nor disprove C. The procedure
remembers all failed attempts (sets of premisses) in a system of sets F to avoid trying
the same attempt again and thereby getting into an infinite cycle. All interpretations
that are constructed during the computation are stored in a set M and are then reused
for selecting the premisses.

Let us give a schema of the procedure:

1. Initialize F = ∅ and M = ∅.
2. Repeat:

(a) Construct a subset of premisses B ⊆ A such that B 6∈ F and such that for
each M∈ M : M 6|= B. If no such B can be found, report failure and exit.

(b) Try to prove C from B. If successful, print the proof and exit.

(c) Otherwise, try to construct an interpretation M such that M |= B ∪ {¬C}.
In our case, this step is performed by an automated model finder like Paradox
or Darwin.

(d) If such a model M is found, then

i. if M |= A then report that A 6|= C and exit;
ii. otherwise add M to M , and
iii. loop to 2.

(e) If no such model is found, add B to F and loop to 2.

31

We only need to remember the failed attempts, because if we successfully construct
a model M |= B, the condition M 6|= B in 2a prevents choosing B again.

The procedure described in section 2.2 was a special case of this generalized proce-
dure. As there were no failed attempts, the system F remained empty and in i-th cycle
the set B constructed in 2a was the set Bi.

As mentioned in step 2c, we use an external tool to construct the interpretations.
There is no restriction on the constructed interpretations except that we are able to
decide whether a formula is true in it or not. However, as far as we are aware, all
current model finders are limited to constructing only finite interpretations.

The important part, which we have omitted until now, is the construction of the
set of premisses B in 2a. We shall examine this problem in the next section and give a
specification of a complete algorithm.

3 Specification of the algorithm

3.1 Converting the task to the weighted set cover problem

In the previous section we have outlined a schema of an algorithm for selecting premisses
for proving a conjecture. In this section we shall construct a complete, generalized
algorithm that tries to find a minimal set of premisses with respect to a given criterion.
The criterion will be represented by a weight function on premisses and our goal will be
to find a set of premisses for which the sum of the weights is minimized.

Definition 1 (Weight function). Let A be a set of premisses. A weight function β is a
function that maps formulae from A into positive real numbers:

β : A → R+

We shall now focus on the construction of the optimal set of premisses in step 2a
of the procedure given in section 2.3. Our aim is to find such a subset of premisses
B ⊆ A that avoids all known interpretations of ¬C and for which the sum

∑
B∈B β(B)

is minimized.
For each premiss B ∈ A let CB be the set of interpretations that B avoids:

CB = {M ∈ M |M 6|= B} (5)

Thus, B avoids all the interpretations in M if and only if
⋃

B∈B CB = M . By this
assignment we have converted our problem to the well-known weighted set cover problem:

Definition 2 (The weighted set cover problem). For the input

• ground elements M = M1, . . . ,Mn

• subsets CB ⊆ M where B ∈ A

• weights β(B) defined for B ∈ A

find a set B ⊆ A that minimizes
∑

B∈B β(B) such that
⋃

B∈B CB = M . For the
unweighted set cover problem we take β(B) = 1 for all Bs.

32

In our case, the elements being covered are the interpretations we have constructed
so far and the covering sets are defined by (5).

There are many theoretical results regarding this problem in literature. For us the
most important results concern the greedy algorithm, which approximates the problem:

Definition 3 (Greedy algorithm for the weighted set cover problem). The greedy algo-
rithm for set cover selects sets according to the rule:

At each stage, select the set that minimizes the cost (with respect to the
weight function β) per additional element covered.

More formally, if N is the set of uncovered ground elements, select B for which β(B)
|CB∩N |

is minimal.
For the unweighted set cover problem this means that we select the set for which

|CB ∩ N | is maximal, that is the set which contains the largest number of uncovered
elements.

By the following results, the algorithm gives the best possible polynomial approxi-
mation of the weighted set cover problem:

Remark 1 (Properties of the greedy algorithm). The greedy algorithm for the weighted
set cover problem has the following properties:

• The weighted set cover problem is NP-complete (see [Kar72]).

• The approximation ratio2 of the greedy algorithm is H(maxB∈B |CB|), where
H(n) =

∑n
k=1

1
k ≤ ln(n) + 1 (see [Chv79]).

• This is essentially the best possible approximation (see [Fei98]).

3.2 Searching for sets of premisses using the greedy set cover algo-
rithm

The greedy algorithm described in the previous section will find an approximation of
the optimal subset of premisses. If we are able to prove C from B, we are finished,
and if we are able to find a model of B ∪ {¬C} we use the greedy algorithm to find
a new optimal subset. The problem arises if we are neither able to prove C or find a
new interpretation. Therefore, we slightly modify the greedy algorithm so that we are
able to backtrack and find another next-to-optimal set of premisses that covers all the
interpretations. Hereby we are able to construct a sequence of sets of premisses until
we prove C or find a new interpretation.

The work of the modified algorithm can be viewed as traversing a search tree, where
each node of the tree corresponds to a subset of premisses selected from A. The original

2An algorithm Γ is an α-approximation algorithm for a minimization problem Π if

– Γ runs in polynomial time.

– Γ always produces a solution which is within a factor of α of the value of the solution of the
optimal algorithm Π.

The least α that satisfies these conditions is called the approximation ratio of Γ.

33

greedy algorithm traverses only a single branch of the search tree until it finds a covering
set. The modified algorithm remembers its position in the search tree and if it is neither
able to prove the conjecture from the premisses nor to find a new interpretation, the
algorithm continues traversing the tree according to the greedy rule. If it exhausts the
whole tree, it exits with a failure.

Remark 2. The theoretical results described in the previous section cover only the origi-
nal greedy algorithm. The question whether the subsequent covering sets returned by this
extended algorithm also well approximate the optimum is still to be researched. However,
we believe that it a reasonable assumption.

The algorithm in pseudo-code. Let us now look at the schema of the algorithm.
The main function searchForProofOrModel recursively searches the sub-tree that cor-
responds to a given set of premisses B. It sorts the remaining admissible premisses
B1, . . . , Bk by their cost per additional covered element (with respect to the weight
function β) and recursively processes the sets B∪ {Bi} until either a model is found or
the whole sub-tree is exhausted (the original greedy algorithm always picks B ∪ {B1}).
The function returns either a new model, or a NIL value if it exhausts all nodes of the
sub-tree.

The traversed nodes are remembered using a global set variable F . It is constructed
so that the set {Y ⊆ A | there is X ∈ F such that X ⊆ Y } is the set of all visited
nodes of the tree. Every time we visit a whole sub-tree, we replace all the visited sets of
premisses occurring in the sub-tree by the set of premisses corresponding to the root of
the sub-tree (line 40). This allows us to keep F small and thus to efficiently recognize
the sets of premisses we have already inspected.

1 /∗ first, try to find any model of ¬C ∗/
2 try to prove C from ∅; if successful, print |= C and exit;
3 try to find a model M |= ¬C;
4 if successful, set M := {M};
5 otherwise exit ”Failed to prove nor disprove C from A”;
6 /∗ now we have at least one element to cover ∗/
7 label ADD MODEL:
8 for B ∈ A do
9 CB := {M ∈ M : M 6|= B}; /∗ initialize the covering sets CB ∗/

10 F := ∅; /∗ initialize the set of failed attempts ∗/
11 M := searchForProofOrModel(∅); /∗ search for a new model ∗/
12 if M 6= NIL then /∗ if a new model is found, search again ∗/
13 if M |= A then
14 exit ”C not provable from A”
15 /∗ invariant: M 6∈ M , see Corollary 1 that follows ∗/
16 M := M ∪ {M};
17 goto ADD MODEL;
18 /∗ otherwise exit with failure ∗/
19 exit ”Failed to prove nor disprove C from A”;

20 function searchForProofOrModel(set of premisses B)
21 returns new model or NIL
22 begin
23 N := M \ ∪B∈BCB ; /∗ the set of uncovered models ∗/

34

24 let B1, . . . , Bk be the premisses from A for which (CBi ∩N) 6= ∅
25 sorted by β(B)

|CBi
∩N | in ascending order;

26 for i := 1 to k do
27 begin
28 B′ := B ∪ {Bi};
29 if ¬((∃X ∈ F) : X ⊆ B′) then
30 N ′ := N \ CBi ;
31 if N ′ = ∅ then
32 try to prove C from B′; if successful, print B′ |= C and exit;
33 try to find a model M |= B′ ∪ {¬C}; if successful, return M;
34 else /∗ N ′ 6= ∅, i.e. there are still uncovered models ∗/
35 M := searchForProofOrModel(B′); /∗ recursively try to find a model ∗/
36 if M 6= NIL then
37 return M;
38 /∗ whether N ′ = ∅ or not, remember the visited sub−tree: ∗/
39 /∗ replace all descendants of B′ by B′ ∗/
40 F := {B′} ∪ (F \ {X ∈ F |B′ ⊆ X});
41 end;
42 /∗ exhausted all possibilities, neither proof nor new model was found ∗/
43 return NIL;
44 end;

3.2.1 Constructed interpretations and termination of the algorithm

Lemma 1. Let M1 and M2 be two interpretations constructed by the algorithm, M2

after M1. Let B1 and B2 be their corresponding sets of premisses B′ from which the
interpretations were constructed at line 33 (Mi |= Bi ∪ {¬C}). Then B1 6= B2 and
there is a formula F such that M2 |= F but M1 6|= F .

Proof. B2 is selected so that for every M ∈ M at that point M 6|= B2. In particular
M1 6|= B2, hence there is F ∈ B2 such that M1 6|= F . But M2 |= F (because
M2 |= B2), hence F has the desired properties. And because M1 |= B1, F 6∈ B1, thus
B1 6= B2.

Corollary 1. No two constructed interpretations are isomorphic.

Theorem 1. The algorithm terminates.

Proof. By lemma 1, every time the program constructs an interpretation it uses a dif-
ferent subset of premisses. There only 2|A| possible subsets of A, hence the algorithm
can construct at most 2|A| interpretations and must eventually terminate.

4 Implementation

We have designed an implementation of the algorithm that is aimed to prove or disprove
several conjectures at once. The program is written in the Java programming language
and is connected to E prover ver. 0.99 [Sch02, Sch07] and two model finders: Darwin
ver. 1.3FM [FBT07, BFdNT06] and Paradox ver. 2.0 [CS07, CS03]. When constructing
models the program runs both these model finders simultaneously and takes the result

35

of the first one that completes. As the model finders take quite different approaches,
this arrangement leads to a better success rate, and on multi-processor machines also
to shorter times.

4.1 Input of the program

The input of the program is a list of TPTP3 files. The formulae in each file can be
divided into these categories:

Conjecture (denoted by C). The formula which we want to prove or disprove from
the premisses given in the same file. (TPTP name conjecture.)

Premisses (denoted by AC). The set of formulae from which the algorithm should
select the optimal set of premisses for (dis)proving the conjecture C. (TPTP name
axiom.)

Definitions (denoted by DC). The formulae which are always included as premisses
for proving C. In some cases the user may surmise that some formulae are indis-
pensable for the proof, for example definitions of essential functional or predicate
symbols. (TPTP name definition.)

4.2 Execution of the program

Recall that we denote by C the set of all conjectures the program is asked to prove, by
AC the input set of premisses for proving each conjecture C ∈ C, by DC the definitions
given for proving C and finally by M the set of constructed interpretations.

At the beginning M = ∅. The program runs in a loop until either all conjectures
are (dis)proved or until it runs out of time. During each pass of the loop the program
performs the following step:

1. Decide which conjecture C to try to (dis)prove at this step (we shall describe this
in more detail later).

2. Use the greedy algorithm to select the optimal set of premisses B ⊆ AC that
covers all interpretations from {M ∈ M : M |= ¬C}.

3. Run the model finder and the prover on B ∪ {¬C}.
• If a model M is found, set M := M ∪ {M};
• or if B |= C, report the achievement and remove C from further processing

(C := C \ {C});
• or if neither a model is found nor C proved (we shall call this outcome a

failed attempt), save the state of the greedy algorithm to be able to restore
it next time C is selected and to construct another possible covering set.

4. In all cases, loop again to 1.
3Thousands of Problems for Theorem Provers, see [SS98].

36

Selecting the conjecture. When designing the way how to select the next conjecture
to be processed, we had two primary requirements:

1. The program should not spend too much time trying to prove a single, possibly
too hard conjecture. Instead, it should alternate between the given conjectures.

2. The program should favour the easier conjectures because it is likely it will be able
to prove them earlier.

Here too we can take an advantage of the information stored in the constructed inter-
pretations. Both above requirements are satisfied by assigning the following weight wC

to each conjecture and selecting the one with the highest weight:

wC = |{M ∈ M |M |= C}| − |C| · uC (6)
uC = the number of previous failed attempts when C was selected. (7)

The more interpretations C is valid in, the more general C is likely to be and thus
supposedly easier to prove. And each time C is selected we construct an interpretation
M such that M |= ¬C, hence wC does not increase. On the other hand, if another
conjecture D is true in M, wD increases. This happens for example if D ∈ AC and
it is selected as a premiss for proving C. Subtracting the number of failed attempts
(multiplied by the number of conjectures for better efficiency) prevents the program
from sticking to a single conjecture in the case when it is unable to construct a new
interpretation for a long time and therefore the weights do not change.

4.3 Optimizations

4.3.1 Large number of constructed interpretations

One of the main drawbacks of the algorithm is that when it constructs a new interpre-
tation M |= B∪{¬C}, only a small subset B of all possible premisses AC is true in M.
Most of the other premisses from A \B are usually false in M and therefore they cover
M. High number of possible coverings then leads to construction of a large number of
interpretations. One possible solution is to add some of the remaining premisses and/or
conjectures (A\B)∪(C\{C}) to B in such a way that they will not affect the possibility
and the difficulty of constructing M. In particular, if A ∈ (A \B) ∪ (C \ {C}) has no
common predicate symbol with any of the formulae in B ∪ {¬C}, we can safely add A
to B. Depending on the structure of the problem, we can enlarge B by several formulae
and thus reduce the number of possible coverings of M, especially at the beginning of
the process when the sets of selected premisses are small. On the other hand, in some
cases this optimization can considerably slow down the model finder.

4.3.2 Formulae problematic for the model finder

Another question that highly affects the efficiency of the algorithm is the ability of the
model finder to construct an interpretation. It is not surprising that some formulae
can make the process of searching for models much more difficult. By assigning higher
weights β to such problematic formulae we can discourage the algorithm from selecting
such formulae.

37

For example, the model finder Darwin is not optimized for equality reasoning and
therefore we primarily wanted to avoid formulae with equality. Secondarily, we wanted
to assign higher weights to formulae with many variables, because such formulae also
make the process of model construction more difficult (this was suggested by Koen
Claessen, the author of Paradox). Therefore, we assigned the weight β of a formula A
as

β(A) = θ(A) if A does not contain ‘=’
β(A) = θ(A) + 10000 if A contains ‘=’

(8)

where θ(A) is defined recursively as

θ(P) = 0 if P is an atom
θ((∀x)F) = θ(F) + 1
θ((∃x)F) = θ(F) + 1

θ(¬F) = θ(F)
θ(FΩG) = max(θ(F), θ(G)) where Ω is any binary connective

(9)

θ(A) is simply the maximum number of quantifiers we can encounter when traversing
from an atom of A to A’s topmost connective. Such proper assignment of weights can
indeed reduce the unwanted outcomes when the model finder is not able to find an
interpretation.

We also tried to set the weight to β(A) = 2θ(A) (resp. β(A) = 2θ(A) + 1000) as this
number more closely corresponds to the number of possible variable assignments that
must to be examined when deciding the validity of A. This weight also produced very
good results.

There are of course many other possibilities how to assign the weights, depending on
the nature of the particular problem. For example, when deciding relationships between
modal logic systems in [Pud06b] we based the weights on the number of modal symbols
occurring in the formula.

5 Empirical evaluation

For the first time we have used the algorithm when deciding relationships between modal
systems in [Pud06b]. The first implementation of the algorithm allowed us to decide
several cases that we were not able to solve with an ordinary theorem prover. The recent
improved version of the program has not yet been evaluated on a large sets of problems.
However, the present experiments already show that the method is quite promising.

5.1 Tests on the bushy division of The MPTP Challenge

We have tested the program on the bushy division The MPTP Challenge [US06]. The
challenge is focused on automated theorem proving in environments with many axioms,
predicates and functors. For the test we have selected 121 problems on which E prover
spent more than 10s (or failed at all) in the MPTP referential tests.

All experiments were run on a Linux machine with 4 Dual Core AMD OpteronTM

1.8 GHz Processors and 5 GB of memory. The program was able to take advantage of
the multiple processors by running the prover and the model finders simultaneously.

38

E proof proved proof # of # of # of # of failed
article thm. CPU after time interpre- initial selected proof

name time [s] [s] [s] tations prems. prems. attempts
finset 1 t17 87 0.20 4860 87 32 392
funct 1 t21 485 0.93 412 47 21 322
funct 1 t57 90 0.03 135 46 20 40
funct 1 t62 40 0.04 118 46 16 13
funct 1 t145 391 0.15 171 40 15 253
lattice3 t1 14 143
lattice3 t3 9 152
orders 2 t25 147 84
ordinal1 t23 8 0.19 56 44 12 3
pre topc t48 1114 320 0.24 2074 71 17 2
relat 1 t12 76 0.02 160 36 14 93
relat 1 t25 24 210 0.37 266 34 13 149
relat 1 t44 276 0.04 249 34 15 351
relat 1 t45 651 0.04 284 34 15 1247
relat 1 t74 1728 0.26 466 38 17 2140
relat 1 t86 134 0.60 186 38 18 55
relat 1 t88 14 47 0.12 153 35 16 19
relat 1 t115 66 0.62 228 38 18 22
relat 1 t117 15 39 0.10 145 35 15 15
relat 1 t143 58 0.06 253 38 18 24
relat 1 t166 69 0.08 207 38 16 33
relat 1 t167 759 0.04 508 39 18 890
relat 1 t174 30 101 0.66 170 39 16 36
relat 1 t178 41 0.11 199 35 12 11
relset 1 t12 729 36
subset 1 t43 89 3 0.18 29 26 14 0
waybell 7 t8 2 195
waybell 9 t29 31 249
wellord1 l29 12 0.03 93 36 15 3
wellord1 t19 86 0.58 161 54 25 62
wellord1 t21 9 0.48 89 41 12 0
wellord1 t24 31 35
wellord2 t3 15 0.10 131 55 19 0
wellord2 t5 45 0.06 153 55 21 0
yellow 0 t42 472 0.07 3237 89 27 0
yellow 0 t60 790 0.05 4119 91 27 0
yellow 0 t61 771 0.09 2385 96 34 180
yellow 1 t2 16 183
zfmisc 1 t99 3 0.60 11 13 7 0
zfmisc 1 t136 96 8

Table 1: Results for 121 “difficult” problems from the bushy division of MPTP.

39

The results of the test are summarized in Table 1. The table shows only the problems
solved by E or by the program (or by both). The third column shows the CPU time
of standalone E. The fourth column shows the wall-clock time4 of the program. The
fifth column shows the CPU time of E on the premisses selected by the program. The
sixth column shows the number of interpretations constructed by the program during
the search. The last column shows the number of failed attempts, that is the number
of cases where the program was neither able to construct a new model nor to prove the
conjecture. If the program (or E) were not able to solve a problem, the corresponding
columns are left blank.

The presented experiments were conducted with the CPU limit set to 1.2s for both
the prover and the model finders. When have noticed that the program performs better
when the time limits for the prover and for the model finder are very low.5 This
is explained by the observation that in vast majority of cases if a model cannot be
found within a few seconds it is not found at all. And if an optimal (or near-optimal)
set of premisses is eventually found, the prover spends very little time on proving the
conjecture. Thus, if the time limits are higher, the program wastes much of its time on
unsuccessful attempts and is not able to construct as many interpretations.

The program was able to prove 31 problems of 121 compared to 15 of standalone E.
6 problems were solved by both E and the program. The total time is mostly affected by
the number of failed attempts and by the total number of constructed interpretations.
As expected, the proofs from the selected subsets of premisses (fifth column) indeed took
very little time, just fractions of seconds. E exhibits the usual behavior of proving tools
that with increasing time it becomes overwhelmed by the number of derived clauses. In
our case, E successfully proved only two conjectures after time longer than 150s. On the
other hand, when the program was given enough time, it was able to prove many more
difficult conjectures.

5.2 SRASS

The idea was recently implemented by Geoff Sutcliffe and Yury Puzis in SRASS system
[SP07]. The system uses more advanced techniques to further improve performance,
including a syntactic relevance measure as an ordering heuristic to guide the selection
process. SRASS is able to solve many problems that can not be solved by the underlying
theorem prover alone and is among the most successful systems entering The MPTP
challenge [US06].

6 Conclusion and further work

The main difference from the commonly used proving techniques is that the algorithm
is capable of selecting only those premisses that are necessary for the proof and that its
decisions are based not on a syntactic but on a semantic basis.

4The program runs in a platform-independent language and moreover it spawns multiple child pro-
cesses (the prover and the model finders), therefore we were not able to gather the total CPU time of
the program.

5Of course this observation applies only to this particular set of problems.

40

The program was eventually able to find a proof for some conjectures that were too
difficult for the classical black-box prover. When an optimal set of premisses was found,
the proof constructed from this set usually took just a fraction of second. Thus, even if
it takes the program a long time to find a proof, the optimal set of premisses provides
the information how to prove the conjectures efficiently.

6.1 Advantages

6.1.1 Reusing interpretations

The interpretations constructed during the process of proving one conjecture can be
reused by the algorithm for proving other conjectures, even from different theories. It
is only required that the theories share the same language.

By accumulating such interpretations, the program gains knowledge about relation-
ships between theorems and premisses within the theory. As the process is fully auto-
mated, the algorithm could be used to gather a large amount of such interpretations
without any user intervention and these interpretations could be then used to answer
queries in the future.6 Therefore, we surmise that the algorithm could prove its worth for
large databases of mathematical knowledge, both for automated and interactive proving
of theorems.

6.1.2 Saving the state of the algorithm

The state of the algorithm can be easily saved and restored. The state is fully described
by the set of unsuccessful attempts F and by the set of constructed interpretations M .
Hence, the algorithm can be easily suspended, if there is a more important task to be
solved, and resumed later in the future. Or, like in our implementation, the program
can alternate the conjecture it tries to prove according to some criterion.

6.1.3 More efficient on long runs than conventional provers

As we have noticed in our example, classical black-box provers usually become ineffective
(and tend to consume a lot of memory) after a few minutes, when the number of inferred
clauses becomes too large. The program does not suffer from this issue, as it only needs
to remember the constructed interpretations7 and the set of failed attempts.

6.2 Disadvantages

6.2.1 A high number of constructed interpretations

A major disadvantage of the algorithm is that the number of constructed interpretations
can become quite high, especially if there are a lot of similar axioms and lemmas in the
set of premisses. Although the program was able to handle even several tens of thousands

6This idea was first proposed by Jǐŕı Vyskočil in a personal discussion.
7In fact, it is even not necessary to remember the interpretations. It is sufficient to store the in-

formation of what premisses from AC are true in each interpretation, that is just |M | · |AC | Boolean
values.

41

of interpretations, we believe that reducing the number would make the method much
more efficient. We suggest the following improvements:

1. Focus on constructing interpretations in which a high number of the premisses is
true. The higher the number, the less is the number of the remaining premisses
that can be used to avoid the interpretation. Thus, the algorithm would be led
more directly towards finding the optimal set of premisses.

2. Try to construct interpretations in which several of the conjectures are false. A
single interpretation can be used to guide the search for all conjectures which are
false in the interpretation.

We have already partially implemented these two suggestions as described in sec-
tion 4.3.1.

3. If possible, analyze what interpretations became unnecessary and remove them
from the pool. As we have seen, the algorithm never constructs two isomorphic
interpretations (Corollary 1). Therefore, every constructed interpretation carries
a unique piece of knowledge. It will be necessary to devise a more sophisticated
technique for detecting which interpretations participate only negligibly on the
selection of premisses and thus can be discarded.

6.2.2 Limitation to finite interpretations

In general, the problem of constructing a model of a set of formulae is algorithmically
undecidable. Any algorithm we construct will be only able to construct some specific
class of interpretations. In most cases, it will be the class of finite interpretations. And
as many interesting theories (like arithmetic or set theory) have infinite interpretations,
this may impose a strict restriction on the method. However, the situation needs not
to be as hopeless as it seems to be. Recall that we only construct interpretations of
subsets of the given axioms. If we force the algorithm to elude those axioms that cause
the interpretation to be infinite, we may still be able to achieve good results. This can
be easily arranged by assigning high weights to those problematic axioms. However, we
are not aware how to automatically identify such axioms.

Another solution would be to construct and represent some class of infinite interpre-
tations. For example, one could construct Herbrand interpretations, saturations or more
generally represent the interpretations as complex functions or programs that compute
the validity of formulae.

6.3 Comparison with syntactic techniques

As it turns out, the algorithm falls short of the original expectation that it could very
effective when the number of premisses is very large (hundreds or more). The reason is
the high number of interpretations that need to be constructed to determine the optimal
set of premisses in such cases. Syntactic approaches as [Urb06a, Urb06b, RS98, MP06]
seem to be much more efficient. However, the value of the algorithm emerges in the
cases where even the number of premisses is moderate, the prover is overwhelmed by
unnecessary premisses.

42

It seem quite possible that a combination of the semantic approach with syntactic
techniques might be very efficient. This assumption is supported by the results of the
SRASS system [SP07] in the MPTP Challenge [US06] (see also Section 5.2).

6.4 Further work

We have already suggested many possible areas of improvement in the previous section.
We believe that considerable improvements could be attained by close cooperation with
the designers of model finders and theorem provers to implement some of the following
proposals:

1. Guide the model finder when constructing interpretations. We suggest that the
model finder would be given two sets of formulae, A and L. It would be required
to find a modelM |= A such that it is also a model of as much as possible formulae
from L (for example within some given time limit, domain size, etc.).

2. Reveal which premisses are well suited for a particular theorem prover or a model
finder. This information could be used to minimize the number of cases where
neither a proof nor a new interpretation are found, and secondly to develop a
better founded, automated process of assigning weights to premisses.

The program would also benefit from a graphical user interface that would facilitate
visual and interactive analysis of the process.

Although the method is not mature yet and many aspects still need to be researched,
we believe that it can bring significant benefit to the task of automated proving of theo-
rems. Not only it can allow to prove conjectures that are hard to prove by conventional
prover, but it also opens the possibility to further analyze the relationships between the
conjectures, the premisses and the interpretations that it constructs.

References

[BFdNT06] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli.
Computing finite models by reduction to function-free clause logic. to ap-
pear, preliminary version, June 2006.

[Chv79] Vašek Chvátal. A greedy heuristic for the set-covering problem. Math.
Oper. Res., 4:233–235, 1979.

[CS03] Koen Claessen and Niklas Sörensson. New techniques that improve
MACE-style model finding. In Proc. of Workshop on Model Computation
(MODEL), 2003.

[CS07] Koen Claessen and Niklas Sörensson. Paradox – a first-order logic model
finder. WWW pages, 2007.
http://www.cs.chalmers.se/~koen/paradox/.

[FBT07] Alexander Fuchs, Peter Baumgartner, and Cesare Tinelli. Darwin – a
theorem prover for the model evolution calculus. WWW pages, 2007.
http://combination.cs.uiowa.edu/Darwin/.

43

[Fei98] Uriel Feige. A threshold of ln(n) for approximating set cover. J. ACM,
45(4):634–652, 1998.

[Kar72] Richard Manning Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[MP06] Jia Meng and Lawrence Paulson. Lightweight relevance filtering for
machine-generated resolution. volume 192 of CEUR Workshop Proceed-
ings, 2006.

[Pud06a] Petr Pudlák. Search for faster and shorter proofs using machine generated
lemmas. In G. Sutcliffe, R. Schmidt, and S. Schulz, editors, Proceedings of
the FLoC’06 Workshop on Empirically Successful Computerized Reasoning,
3rd International Joint Conference on Automated Reasoning, volume 192
of CEUR Workshop Proceedings, pages 34–52, 2006.

[Pud06b] Petr Pudlák. Verification of Mathematical Proofs. PhD thesis, Charles
University in Prague, Faculty of Mathematics and Physics, 2006. Available
online at http://lipa.ms.mff.cuni.cz/~pudlak/pp-thesis.pdf.

[RS98] W. Reif and G. Schellhorn. Theorem proving in large theories. In W. Bibel
and P. Schmitt, editors, Automated Deduction—A Basis for Applications,
volume III, 2. Kluwer Academic Publishers, Dordrecht, 1998.

[Sch02] S. Schulz. E – A brainiac theorem prover. Journal of AI Communications,
15(2-3):111–126, 2002.

[Sch07] Stephan Schulz. The E equational theorem prover. WWW pages, 2007.
http://www.eprover.org/.

[SP07] Geoff Sutcliffe and Yury Puzis. SRASS – a semantic relevance axiom selec-
tion system, 2007.
http://www.cs.miami.edu/~tptp/ATPSystems/SRASS/.

[SS98] G. Sutcliffe and C. B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[Urb06a] Josef Urban. MizarMode - an integrated proof assistance tool for the Mizar
way of formalizing mathematics. Journal of Applied Logic, 4(1):414–427,
2006.

[Urb06b] Josef Urban. MoMM - fast interreduction and retrieval in large libraries
of formalized mathematics. International Journal on Artificial Intelligence
Tools, 15(1):109–130, 2006.

[US06] Josef Urban and Geoff Sutcliffe. The MPTP $100 Challenges, 2006.
http://www.cs.miami.edu/~tptp/MPTPChallenge/.

44

MaLARea: a Metasystem for

Automated Reasoning in Large Theories

Josef Urban
Dept. of Theoretical Computer Science

Charles University
Malostranske nam. 25, Praha, Czech Republic

Abstract

MaLARea (a Machine Learner for Automated Reasoning) is a simple metasystem
iteratively combining deductive Automated Reasoning tools (now the E and the SPASS
ATP systems) with a machine learning component (now the SNoW system used in
the naive Bayesian learning mode). Its intended use is in large theories, i.e. on a
large number of problems which in a consistent fashion use many axioms, lemmas,
theorems, definitions and symbols. The system works in cycles of theorem proving
followed by machine learning from successful proofs, using the learned information to
prune the set of available axioms for the next theorem proving cycle. Although the
metasystem is quite simple (ca. 1000 lines of Perl code), its design already now poses
quite interesting questions about the nature of thinking, in particular, about how (and
if and when) to combine learning from previous experience to attack difficult unsolved
problems. The first version of MaLARea has been tested on the more difficult (chainy)
division of the MPTP Challenge solving 142 problems out of 252, in comparison to
E’s 89 and SPASS’ 81 solved problems. It also outperforms the SRASS metasystem,
which also uses E and SPASS as components, and solves 126 problems.

1 Motivation and Introduction

In the recent years there has been a growing need for Automated Reasoning (AR) in
Large Theories (ARLT). First, formal mathematical libraries created by proof assistants
like Mizar, Isabelle, HOL, Coq, and others have been growing, often fed by important
challenges in the field of formal mathematics (e.g. the Jordan Curve Theorem, the Ke-
pler Conjecture, the Four Color Theorem, and the Prime Number Theorem). At least
some of these proof assistants are using some automated deductive methods, and some of
these libraries are (at least partially) translatable to first-order format [MP06b, Urb06]
(like the TPTP language [SS98]) suitable for Automated Theorem Provers (ATPs). Also,
when looking at the way how some of the hard mathematical problems like Fermat’s last
theorem and Poincare’s conjecture were solved, it seems that difficult mathematical prob-
lems quite often necessitate the development of large (sometimes even seemingly unrelated)
mathematical theories, which are eventually ingeniously combined to produce the required
results. An attempt to create a set of notrivial large-theory mathematical problems as
an initial benchmark for ARLT systems is the MPTP Challenge1 (especially its chainy
division), consisting of 252 problems (some of them with quite long human-written formal
proofs) in a theory with 1234 formulas and 418 symbols which represents a part of the
Mizar library.

1http://www.cs.miami.edu/~tptp/MPTPChallenge/

45

Today, there also seems to be a growing interest in using Automated Reasoning meth-
ods (and translation to TPTP) for sufficiently formal large “nonmathematical” knowledge
bases, like SUMO [NP01] and CyC [MJWD06]. It seems that semantic ontologies and
semantic tagging and processing e.g. for publications in natural and technical sciences are
currently taking off, creating more and more applications for ARLT.

On the other hand, it seems to be quite a common thinking that the resolution-based
ATP systems using usually some complete combination of paramodulation and resolution
are easily overwhelmed when a large number of irrelevant axioms are added to the prob-
lems. Sometimes (actually surprisingly often in the AI and Formal Math communities)
this is even used as an argument attempting to demonstrate the futility of using ATPs for
anything “serious” in formal mathematics and large theories in general. There have been
several answers to this problem (and to the general problem of the fast growing search
space) from the ATP community so far. Better (i.e. less prolific while still complete)
versions of the original calculi, and their combinations with even more efficient special-
purpose decision procedures, have been a constant research topic in the ATP field. More
recently, a number of heuristical approaches have appeared and been implemented. These
methods include strategy scheduling (competitive or even cooperative, see e.g. [Sut01]),
problem classification and learning of optimal strategies for classes of problems, lemmati-
zation (i.e. restarting the problems only with a few most important lemmas found so far,
see also [Pud06]), weakening [NW04] (solving a simpler problem, and using the solution
to guide the original problem), etc.

The metasystem for ARLT which is described here falls into this second category of
heuristical additions governing the basic ATP inference process. It is based on an assump-
tion (often spelled-out by the critics of uniform ATP) that while working on problems in a
particular domain, it is generally useful to have the knowledge of how previous problems
were solved, and to be able to re-use that particular knowledge in a possibly nonuniform
and even generally incomplete way. Again, this idea is not exactly new, and not only in the
world of “very-AI-but-very-weak” experimental AR systems implemented in Prolog. At
least the very efficient E prover [Sch02] has the optional capability to learn from previous
proofs, and to re-use that knowledge for solving “similar” problems. In comparison to
this advanced functionality of E, the first version of MaLARea is quite simple, and more
suitable for easy experimenting with different systems. The machine learning is done by
an external software, and one can imagine any reasonable learning system to take the place
of the currently used SNoW [CCRR99] system. The features used for learning should be
easy to extend, as well as the whole learning setting. It is quite easy to change the param-
eters of how and when particular subsystems are called, and to experiment with additional
heuristics. In the next section we describe the structure of the metasystem in more detail,
and then we show its current performance on the chainy division of the MPTP Challenge.

2 How MaLARea works

2.1 Basic idea

The basic idea of the metasystem is to interleave the ATP runs with learning on successful
proofs, and to use the learned knowledge for limiting the set of axioms given to the ATPs
in the following runs. In full generality, the goal of the learning could be stated as creating
an association of some features (in the machine learning terminology) of the conjecture
formulas (or even of the whole problems when speaking generally) with proving methods
which turned out to be successful when those particular features were present. This
general setting is at the moment mapped to reality in the following way: The features

46

characterizing formulas are just the symbols appearing in them. The “proving method” is
just an ordering of all available axioms. So the goal of our learning is to have a function
which when given a set of symbols produces an ordering of axioms, according to their
expected relevancy with respect to that set of symbols. One might think of this as the
particular set of symbols determining a particular sublanguage (and thus also a subtheory)
of a large theory, and the corresponding ordering of all the available axioms as e.g. a
frequency of their usage in a book written about that particular subtheory. There are
certainly many ways how this setting can be generalized (more term structure and problem
structure as features, considering ATP ordering and literal selection strategies as part of
the “proving method”, etc.). The pragmatic justification for doing things in the first
version this way, is that while this setting is sufficiently simple to implement, it also
turned out to be quite efficient in the first experiments with theorem proving over the
whole translated Mizar library [Urb06, Urb04].

This central “deduce, learn from it, and loop” idea is now implemented using a simple
(one might call it “learning-greedy”) “growing axiom set” and “growing timelimit” policy.
The main loop first tries to solve all the problems “cheaply”, i.e., with the minimal allowed
number of the most relevant axioms and in the lowest allowed timelimit. Each time there
is a success (i.e. a new problem is solved), the learning is immediately performed on
the newly available solution, and the axiom limit and timelimit drop to the minimal
values (hoping that the learning has brought a new knowledge, which will make some
other problem easily solvable). If there is no success with the minimal axiom and time
limits, the system first tries with a doubled axiom limit until a certain maximal threshold
(currently 128) on the number of axioms is reached. If there is still no success, the time
limit is quadrupled, and the axiom limit drops to a small value again, etc. The system
is now limited by the minimal and maximal values of the axiom and time limit, and also
by a maximal number of iterations (currently 1000). That means that the system stops
if either all the problems are solved (unlikely), or the maximal values of the limits are
reached without any new solution, or the maximal number of iterations has been reached.

2.2 Detailed implementation

The first version of MaLARea is available at http://lipa.ms.mff.cuni.cz/~urban/
MaLARea/MaLARea0.1.tar.gz. The distribution contains a main Perl script (TheoryLearner.pl),
and a number of ATP and other tools used by the main script. These tools currently are:

• the E (version 0.99) prover, and the tools epclextract and eproof needed for getting
a detailed TPTP proof from E

• the SPASS (version 2.2) prover [Wei01]

• the SNoW (version 3.0.3) learning system

• the tptp4X utility from the TPTPWorld distribution for transforming the TPTP
format to other ATP formats (like DFG)

• the GetSymbols utility from the TPTPWorld distribution for extracting symbols
and their arities from formulas written in the TPTP language

The set of theorem provers could be larger, the constraints that we use is that

• the provers should be reasonably efficient and reasonably orthogonal

47

• it has to be possible to run the prover in a “proof mode”, getting from it the list
of axioms which were actually used in the successful proof (this is necessary for the
learning phase, and it is the main reason why Vampire [RV02] with its undocumented
and hardly parsable proof output cannot be used)

• a future requirement might be that the provers should be easily parameterizable,
making learning over their strategies possible (this is definitiely the case for E)

The input to the system is a set of files (problems in the FOF TPTP format, the system
probably would not handle the CNF format now). The following two “large theory”
assumptions are made about the input problems:

• that the names of formulas in the files are stable (i.e. one name always denotes the
same formula in all files in which it appears)

• and that the symbols are stable (the same symbol in two files has the same intended
meaning).

So far, the system has always worked with problems where each conjecture was assumed
to be provable from its axioms (assumed SZS status [SZS04] Theorem), however it seems
that having some possibly countersatisfiable problems would not hurt the system. For
simplicity of the Perl processing, we require that each formula is written on just one line
in the input file (this can be achieved by preprocessing with tptp4X), and that each file
is named after its (exactly one) conjecture, by adding certain prefix and certain suffix
(specified as parameters to the main script) to the conjecture’s name. As an example (and
the main target of the system so far), the 252 problems from the chainy division of the
MPTP Challenge are included in the distribution.

Given a set of problems, the system starts by creating a main “specs” file, containing
for every conjecture the names of the axioms which are available (in its problem file) for
its proving. Similarly, the system creates (using the GetSymbols utility) a “refsyms” file,
containing for each formula appearing in some problem the set of symbols appearing in
it. These files are actually kept in memory (as hashes) during the whole processing. The
formulas and the symbols are disjointly numbered. This later serves for communicating
with the SNoW system, which assumes the features over which it learns to be represented
as numbers.

One of the main data structures which the system maintains is a hash (%gresults)
which for each conjecture (problem) keeps the list of all proof attempts conducted so far,
and their results. The data which are exactly kept for one proof attempt are following:

[SZSStatus, NumberOfReferences, CPULimit,
ListOfReferences, ListOfNeededReferences]

Where the SZSStatus tells the result of the proof attempt, CPULimit is the limit with
which the proof attempt was run, ListOfReferences are the axioms used for that par-
ticular proof attempt, NumberOfReferences is their number, and in case of a successful
proof (SZSStatus Theorem), the ListOfNeededReferences tells which of the axioms were
actually used in the proof.

Before we start explaining how the ATP proof attempts and machine learnings are
organized, we first note what is exactly meant by the term “running ATPs on a problem”
in the rest of this paper, and what exactly is meant by machine learning in the current
version of the system.

48

2.2.1 Running ATPs

All the available ATPs (now just E and SPASS) are run on a problem in order of their
expected performance (that now means E first, SPASS second) with the given timelimit.
They are run only in the fast “assurance mode”, i.e. not with the slowdown caused by
doing the additional bookkeeping necessary for printing the proof. As soon as one of
the provers solves the given problem (this means that it determines that the problem’s
status is either Theorem or CounterSatisfiable), the “assurance mode” processing stops.
If the result status is Theorem, the successful system is re-run in a “proof mode” with
a timelimit of 300 seconds. The reason for raising the timelimit so much is that at this
point we know that the system is capable of solving the problem, and we want to know
the solution so that we can learn from it for solving the rest of the problems. This
procedure could be in the future modified e.g. by quite standard strategy scheduling, i.e.
running only those provers (with those strategies, and possibly appropriately modified
timelimits) which seem (again from previous experience) to be most likely to succeed
on the problem. Another useful extension (suggested by Geoff Sutcliffe) motivated by
the experience with the SRASS system [SY07] would be addition of the Paradox [CS03]
system to the chain of ATP systems, especially in the proof attempts when the number of
axioms is decreased to minimum. That’s because in these very incomplete specifications
the frequency of the CounterSatisfiable result is quite high, and Paradox seems to be
currently the strongest system for determining CounterSatisfiability. After the procedure
stops (either successfully, or unsuccessfully, with all ATPs resulting in timeout), the result
is recorded in the results hash (%gresults) in the format described above (that means in
case of successful proof also recording the names of the axioms which were exactly needed
for the proof). The format now does not keep the information about particular ATPs
(and possibly particular strategies). This is not needed as long as some smarter machine
learning for selection of ATPs and strategies is not done, however the information about
which ATP solved which system can still be retrieved from the metasystem’s standard
output.

2.2.2 Machine Learning in MaLARea and its use for selection of axioms

As noted above, the SNoW system is used in the naive bayes mode for all learnings, mainly
because of its speed and relatively good previous experience on the whole Mizar library
(thousands of symbols and tens of thousands of formulas). After each ATP run on all
(unsolved) problems, the information about all successful proofs found so far is collected
in a format suitable for the SNoW system. As explained above, our goal is to learn the
association of symbol sets to axiom orderings. This in practice means that one training
example contains all the symbols of a solved conjecture, together with the names of axioms
needed for its proof (the symbols are in the machine learning terminology the “input
features”, while the names of the axioms are the “output (or target) features”, i.e. those
features that a trained classifier will try to assign to a test example consisting of the input
features). Then the classifier (a bayes network) is trained on this set of examples. This
procedure is very fast with the SNoW system (seconds or less for the number of features
and examples available in the MPTP Challenge problems). It is technically possible just to
add the new examples to an existing bayes network trained on the results of the previous
ATP runs, however until really large time-consuming learnings (this means really large
theories like the whole Mizar library) are needed, this is not necessary. The trained
classifier is then used to prune the axiom sets for the next runs. It means that we take
all the unsolved conjectures, and create a testing example from each by taking all its
symbols. The classifier is run on this set of test examples, printing for each example the

49

list of target features (axiom names) in order of their likelihood to be useful (as judged
from the training examples, i.e. previous proofs). This order of axioms is then used to
select the required number of axioms for the next run on the unsolved problems. I.e.,
provided that the next run will limit the number of axioms to n, we are looking for each
problem for n axioms from the problem’s specification whose ranking by the classifier is
highest.

2.2.3 Initial proof attempts in MaLARea

Before the system enters the main loop it first does two special proving attempts, in order
to generate the “initial knowledge”. The motivation for both of them is quite heuristical,
and both have been subject to experimenting.

The first proof attempt is quite expensive: it tries to solve all the problems in their
original form (that means without restricting the axioms in any way) with the maximum
timelimit (now 64 seconds). The motivation for these settings is to allow the ATPs to
consider the full axiom space for each problem, giving a chance to ATPs internal “large
problem” strategies. The heuristical justification for the high timelmit is that any proof
found at this point is a proof considering all the available axioms, which is not true for the
rest of the proof attempts done by the metasystem. Therefore the information obtained
from this proof attempt is in a certain way fresh and unbiased by solutions already found.
It can be compared to the mode of work of some mathematicians, who when entering a
new field, first try to think about the field themselves, possibly creating fresh insights, and
only after that consult other experts in the field and the available literature. It should be
noted that this approach probably would not be feasible for an order of magnitude larger
theories (e.g. for the ca. 40000 theorems and definitions in the whole Mizar library). On
the other hand, there seems to have been progress in this capability of ATP systems in
the recent years: several years ago one might have claimed that already 1000 axiom gives
to any resolution-based ATP system no hope.

The second proof attempt is cheap: it uses the minimal timelimit (1 second), and
a purely symbol based similarity measure to cut the number of axioms to the maximal
axiom limit (now 128). The symbol based measure is now just for simplicity achieved again
through the SNoW’s bayesian classifier: For each formula (all axioms and conjectures) one
training example for SNoW is created from the list of the formula’s symbols, and from the
formula’s name (this can be explained by saying that each formula is useful for proving
itself, or more precisely, for proving something with a similar set of symbols). The classifier
is trained on these examples, and then evaluated on the symbols of each conjecture formula,
providing for each conjecture the ordering of axioms according to their symbol overlap with
the conjecture. A possible future extension could be to employ more elaborate similarity
measures at this point, possibly also with a higher timelimit. One reason why we are not
here as aggressive with the timelimit in comparison to the previous pass, is that the symbol
based measure is taken into account in all the following passes, i.e. for all the learnings
on successful proofs explained in Section 2.2.2, we also add the training examples saying
that each formula can be proved by itself.

2.2.4 The main loop

After the two initial proving passes the system performs first learning (Section 2.2.2) on
the successful proofs, and enters the main loop with the initial timelimit set to minimum
and axiom limit set to maximum (this is quite arbitrary, it might as well be the minimal
axiom limit). The main loop is now limited to a certain number (default 1000) of iterations
(passes) (this is probably a bit redundant, but good for fast testing), and it will also stop

50

when the maximal time and axiom limits are reached without finding any new proof.
Obviously, as is the case for the MPTP Challenge, it can also be stopped by a user or
operating system after a certain overall timelimit (252 problems times 300 seconds for
the Challenge, i.e. 21 hours). The loop starts by an ATP run (see Section 2.2.1) on all
unsolved problems with the given axiom and time limits. Then the loop branches.

If no problem was solved by the ATPs, no new learning is done, the axiom limit is
doubled (if it is smaller than the maximal axiom limit), and for each unsolved conjecture
a new specification is created using the last learning results and the new axiom limit. In
case the axiom limit is already maximal, we instead quadruple the timelimit, and set the
axiom limit to the double of the minimal value (the minimal value seemed a bit too useless
when running with higher timelimits). If both the axiom and time limit are maximal, we
stop.

If a problem was solved during the last ATP run, learning immediately follows (in
order to take advantage of the newly available knowledge). The time and axiom limits are
reset to the minimal values (hoping that the new knowledge will allow us to solve some
more problems quickly), and the loop continues.

2.2.5 Usage of previous results

As described above, the system keeps the data about all previous proof attempts. This
is mainly used to avoid the proof attempts which do not make sense in the light of the
previous results. The current implementation recognizes three such situations for a given
unsolved problem:

• the suggested set of axioms is a subset of a previously tried set of axioms, whose
result was CounterSatisfiable

• the suggested set of axioms is equal to a previously tried set of axioms, whose result
was ResourceOut, and the suggested timelimit is less or equal to the timelimit of
the previous attempt (note that this practically interprets ResourceOut as running
out of time, which is the vast majority of cases especially with the low timelimits,
however the implementation could be improved in this respect)

• all ATPs have previously unexpectedly failed (status Unknown) on the suggested set
of axioms (regardless of timelimit)

Note that for checking the last two conditions it would be good to keep already now the
detailed information about each ATP system’s result, not just one summarized version for
all ATPs as is being done right now. In the current implementation this is temporarily
worked around by using the Unknown status only if it was the result of all (both) ATPs. If
at least one system ended with the ResourceOut status, this is the status recorded in the
result datastructure. Another practical problem is that the status Unknown is currently
used also if an ATP does not obey the timelimit (specified to it as a parameter) with
which it is run, and has to be killed by using the operating system’s limit. Given the three
policies described above, it seems better to use ResourceOut in such situations, which
would make it possible to re-run the system with higher timelimit later. Fortunately, it
happens only very rarely that both ATPs have to be killed by the operating system.

Especially the first condition is fulfilled quite often when the axiom limit is in its
lower values (the minimum is four axioms). Since the goal of the system is to try as
many reasonable axiom subsets as quickly as possible, we try to repair the “subsumed”
axiom specifications by adding additional axioms (again according to their rating by the
last learning) when the timelimit is minimal (1 second), and the additional check is thus

51

cheap. So in such cases, the advertised system’s axiom limit is not observed (though the
correct data are obviously kept in the results datastructure). It could be argued that this
should also be done for the higher timelimits. This is quite hard to decide, and hopefully
not much relevant to the overall performance of the metasystem. The current heuristical
reason for not doing it, is that we are happy to “shake abundantly” the set of axioms when
it is cheap (i.e. low timelimit), while we are trying to limit the higher timelimit runs only
to the combinations of axioms which make most sense. On the other hand, since we grow
the timelimit exponentially, it could be argued that the notion of cheapness applies to all
but the highest timelimits.

2.2.6 More questions on MaLARea policies

The previous paragraph actually shows some of the hard (and interesting) heuristical
choices which one has to make when experimenting even with such a simple kind of com-
bined deductive/inductive reasoning system. Why do we (after the first two passes) “learn
greedily”, and always prefer learning and low timelimit to more ATP with higher timelim-
its? Would not the “tabula rasa mathematician” argument used for the initial expensive
pass also justify a less greedy approach to learning (i.e. let the system learn something,
but not all others’ inventions at once, the ATPs might still come up with something rel-
atively new)? Or wouldn’t it pay to have even much more of the fast “reasonable axiom
shaking” attempts instead of the later and expensive higher timelimit attempts? Why do
we double the axiom size, and quadruple the timelimits, and why are their minima and
maxima set to their current values? Some explanation of this is the experience with the
(super)exponentially behaving ATPs that are used, however one might conjecture that
the system should be relatively robust to small changes of these values and policies. Even
more of such interesting questions are likely to appear if new components (lemmatization,
weakening, conjecturing, defining, etc.) are added, and if the learning component becomes
more sophisticated. Even now, simple as the whole setting is, it sometimes gives a strange
impression of conducting a bit of exploratory Artificial Intelligence.

3 Results

As noted above, the system’s main target so far has been the chainy division of the MPTP
Challenge. This is a set of 252 related mathematical problems, translated by the MPTP
system from the Mizar library. The conjectures of the problems are Mizar theorems, which
were recursively needed for the Mizar proof of one half (one of two implications) of the
general topological Bolzano-Weierstrass theorem. The whole problem set contains 1234
formulas and 418 symbols. Unlike in the “less AI” bushy division of the Challenge, where
the goal is just to reprove the Mizar theorems from their explicit Mizar references (and
some background formulas used implicitly by Mizar), the problems in the chainy division
intentionally contain all the “previous knowledge” as axioms. This results in an average
problem size of ca. 400 formulas. The Challenge allows an overall timelimit policy, i.e.,
instead of being forced to solve the problems one-at-a-time with a fixed timelimit of 300
seconds, it is allowed to use the overall timelimit of 21 hours in an arbitrary way for solving
the problems.

The system was run on this set of problems in five differently parameterized instances,
on a cluster of 3056MHz Pentium Xeons each with 1GB memory (the memory limit for
all the ATP runs was always 800MB). Before these instances were run, E version 0.99 and
SPASS version 2.2 were tested on the cluster in the standard 300 seconds timelimit setting.
E has solved 89 problems, and SPASS has solved 81. This is quite similar to the MPTP

52

Challenge measurements2 on Geoff Sutcliffe’s cluster, which claim 36% (91) problems
solved by E 0.99, and 31% (78) problems solved by SPASS 2.2 (the relative differences
might be caused e.g. by different memory limits). The total number of problems solved
by either E or SPASS is 104.

All the five instances of MaLARea shared the minimal timelimit set to 1 second, and
the minimal axiom limit set to 4 axioms. The instances differed in the values for the
maximal timelimit, and maximal axiom limit, which were as follows:

• 128 4s: maximal axiom limit set to 128, maximal timelimit to 4 seconds

• 128 16s: maximal axiom limit set to 128, maximal timelimit to 16 seconds

• 128 64s: maximal axiom limit set to 128, maximal timelimit to 64 seconds

• 64 4s: maximal axiom limit set to 64, maximal timelimit to 4 seconds

• 64 64s: maximal axiom limit set to 64, maximal timelimit to 64 seconds

The last instance unfortunately crashed (for unknown, probably cluster-related issues)
after 18 hours. The 128 64s version was let to run even beyond the timelimit of 21 hours
for a total of 30 hours (when it was stopped by the operating system), to see if there is any
improvement in the later stages (which was not the case). The 4 second and 16 second
instances have stoped themselves before the timelimit of 21 hours, because they reached
their maximal axiom and time limits. The reason for running the very low (4 seconds)
maximal timelimit instances was to find out how important is the long initial pass, and
how the system performs in a “shallow thinking only” mode.

The following Table 1 summarizes the main results (the times are in minutes, last
successful iteration is the last iteration in which a problem was solved). The Figures 1

description solved iterations last successful iter. time to stop time to solve last
128 4s 131 73 62 300 270
128 16s 141 137 121 930 810
128 64s 142 127 108 1800 1160
64 4s 130 44 35 240 210
64 64s 136 77 62 1080 900

Table 1: Statistics for the five instances of MaLARea fighting the MPTP Challenge

and 2 show the iterations for all five instances and the gains in terms of solved problems.
To make the scale readable on these figures, the timelimit is encoded as a letter (a,b,c,d),
corresponding to the exponentially grown timelimits (1,4,16,64). The numbers (2,3,4,5,6,7)
are the powers of 2 that should be used to get the axiom threshold (i.e. 4,8,16,32,64,128).
The first pass in each figure uses an underscore instead of the threshold exponent, which
means that the axioms were not limited in that pass. Instead of scaling the Y axis
logarithmically, the value of the first most successful pass is cut on the figures, and given
in their captions. Also note that the second and third passes are not the same, even though
they have the same time and axiom limits. The second pass is the “symbol similarity only”
pass, while the third one is the first in the main loop, i.e. the first which uses learning on
previous successful proofs.

2http://www.cs.miami.edu/~tptp/MPTPChallenge/Results/SVGResults.html, http://www.cs.

miami.edu/~tptp/MPTPChallenge/Results/ChainyResults.data

53

Figure 1: The first pass (cut) value for 128 4s is 71, and 72 for 64 4s

54

Figure 2: The first pass (cut) value for 128 16s is 85, 96 for 128 64s, and 93 for 64 64s

55

One easy observation made on the results, is that the combinations of time limit and
axiom limit which have not been tried yet usually produce some new proofs. This could
be explained by the fact that the relative gain from learning is in those situations much
bigger (involving all the previously found solutions) than in the later runs, when only a
few new solutions found in the meantime are used to modify the axiom relevancy. On the
other hand, it is also interesting how sometimes a solution which was obtained in quite
a difficult way and at quite late stage (e.g. the one b7 solution in 128 16s, and the one
c7 solution in 128 64s) can make previously difficult problems quite easy to solve (the b7
solution is followed by two a6 and that in turn by one more a4 solutions, i.e. a series of
solutions found in 1 second timelimit, similarly for the c7 solution in 128 64s). A bit closer
analysis of some of the runs seems to suggest that using smarter learning could make this
effect even more frequent. E.g. in some cases it seems that if the classifier knew more
about the relationships between some symbols (e.g. that one is a predicate implying the
other one, or that they are nearly equivalent predicates or functors), it could draw better
analogies and give better advice.

4 Related Work

A very good overview of the field of “machine learning for automated reasoning” is given
in the technical report[DFGS99]. The learning capability of E prover mentioned above is
today probably the most sophisticated implementation existing in the field. There is quite
a lot of related work on symbol-based and structure-based filtering of axioms, a recent one
(done for the Isabelle system) is [MP06a], which also cites some more work.

Generally, it is a bit hard for the author to compare related (meta)systems with
MaLARea. Quite often that would require further work on those systems, or their reim-
plementation, which could be criticized as “not being the original system”. The point of
creating the MPTP Challenge problems in the most standard FOL syntax available today
(i.e. TPTP) is to allow everyone to test their system under very clear conditions, and
report their results for comparison. It is currently also quite hard to test MaLARea on
other than MPTP problems, since it is quite difficult to determine to what extent a given
set of large theory problems satisfies the “large theory” criteria needed for MaLARea’s ma-
chine learning, i.e., consistency of symbol and formula naming. This unfortunately seems
to apply also to the set of Isabelle problems included in TPTP and used for evaluation
in [MP06a].

5 Future Work and Conclusions

Although MaLARea’s current performance is quite encouraging, it is still in a very early
stage, and quite a lot of its possible extensions are mentioned above. The machine learning
framework could be extended and improved, taking e.g. more relationships among the
symbols (and other formula features) into account. Lemmatization could be also quite
helpful, and while its addition should not be difficult, it would make the whole theory
evolving, not static like so far. The same could be said about defining new useful notions,
and possibly reformulating parts of the theory with them. Quite a strong method seems
to be weakening, and its extreme version using completely instantiated models. A good
database of models for a theory could be also used just as another simple way to classify
formulas (adding more features to the learning). Shortly speaking, it seems that with rich
theories the AI methods useful for Automated Reasoning can also get quite rich.

One thing that should be noted about the current version of the system is that it

56

does not use any Mizar-specific knowledge. There are two reasons for it. One is that
the system is intended to be generally useful, not just Mizar-specific. The second reason
is that re-using Mizar-specific knowledge requires some additional work on the system.
But it is quite possible, that e.g having the standard MPTP algorithm for adding the
background (e.g. Mizar type) formulas to the axiom set would sometimes be more useful
than relying only on learning. Because particularly type hierarchies are quite likely to
appear also in all kinds of non Mizar large theories, it would however be preferable to
have a more general (quite likely heuristic, and possibly to some extent also governed by
learned previous experience) methods for such “rounding-up” of axiom sets.

6 Acknowledgments

This work was supported by a Marie Curie International Fellowship within the 6th Eu-
ropean Community Framework Programme. The resources for the reproving experiments
were provided by the Czech METACentrum supercomputing project.

References

[CCRR99] A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth. Snow user’s guide.
Technical Report UIUC-DCS-R-99-210, UIUC, 1999.

[CS03] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-
style model finding. In Proc. of Workshop on Model Computation (MODEL),
2003.

[DFGS99] J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from Previous Proof
Experience. Technical Report AR99-4, Institut für Informatik, Technische
Universität München, 1999. (also to be published as a SEKI report).

[MJWD06] C. Matuszek, Cabral J., M. Witbrock, and J. DeOliveira. An Introduction
to the Syntax and Content of Cyc. In Baral C., editor, Proceedings of the
2006 AAAI Spring Symposium on Formalizing and Compiling Background
Knowledge and Its Applications to Knowledge Representation and Question
Answering, pages 44–49, 2006.

[MP06a] Jia Meng and L. C. Paulson. Lightweight relevance filtering for machine-
generated resolution problems. In Geoff Sutcliffe, Renate Schmidt, and
Stephan Schulz, editors, ESCoR: Empirically Successful Computerized Rea-
soning, volume 192 of CEUR Workshop Proceedings, pages 53–69. CEUR,
2006.

[MP06b] Jia Meng and L. C. Paulson. Translating higher-order problems to first-order
clauses. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors,
ESCoR: Empirically Successful Computerized Reasoning, volume 192 of CEUR
Workshop Proceedings, pages 70–80. CEUR, 2006.

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS ’01:
Proceedings of the international conference on Formal Ontology in Information
Systems, pages 2–9, New York, NY, USA, 2001. ACM Press.

[NW04] Monty Newborn and Zongyan Wang. Octopus: Combining learning and par-
allel search. J. Autom. Reasoning, 33(2):171–218, 2004.

57

[Pud06] Petr Pudlák. Search for faster and shorter proofs using machine generated
lemmas. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors,
ESCoR: Empirically Successful Computerized Reasoning, volume 192 of CEUR
Workshop Proceedings, pages 34–52. CEUR, 2006.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementation
of VAMPIRE. Journal of AI Communications, 15(2-3):91–110, 2002.

[Sch02] S. Schulz. E – a brainiac theorem prover. Journal of AI Communications,
15(2-3):111–126, 2002.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP problem library: CNF release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

[Sut01] G. Sutcliffe. The Design and Implementation of a Compositional Competition-
Cooperation Parallel ATP System. In H. de Nivelle and S. Schulz, editors, Pro-
ceedings of the 2nd International Workshop on the Implementation of Logics,
number MPI-I-2001-2-006 in Max-Planck-Institut für Informatik, Research
Report, pages 92–102, 2001.

[SY07] G. Sutcliffe and Puzis Y. SRASS - a semantic relevance axiom selection system.
In Pfenning F., editor, CADE 2007, Lecture Notes in Artificial Intelligence.
Springer, 2007. To appear.

[SZS04] G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for
Automated Theorem Proving Tools. In V. Sorge and W. Zhang, editors,
Distributed and Multi-Agent Reasoning, Frontiers in Artificial Intelligence and
Applications. IOS Press, 2004.

[Urb04] Josef Urban. MPTP - motivation, implementation, first experiments. Journal
of Automated Reasoning, 33(3-4):319–339, 2004.

[Urb06] Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J.
Autom. Reasoning, 37(1-2):21–43, 2006.

[Wei01] C. Weidenbach. Handbook of Automated Reasoning, volume II, chapter SPASS:
Combining Superposition, Sorts and Splitting, pages 1965–2013. Elsevier and
MIT Press, 2001.

58

Cyc Design Challenges and Solutions

Keith Goolsbey
Cycorp Inc.

3721 Executive Center Drive
Suite 100, Austin, TX 78731

Abstract

Cyc comprises a large, contextualized, common sense knowledge base (KB)
which is encoded in an expressive representation language (essentially FOL with a
few key extensions) and paired with an inference engine optimized for the classes of
queries we most frequently encounter. These queries tend to mix relatively shallow
reasoning within one of a large number of idiosyncratic subtheories with relatively
deep reasoning within one of a very small number of stylized subtheories. The con-
straints of these queries in a large and expressive KB combined with the need to
efficiently react to KB elaboration together provide a unique set of design challenges
that are extremely stressful for the solutions provided by the current state of the art
FOL theorem provers. The solutions to these challenges currently adopted by the
Cyc inference engine will be presented within the context of a new suite of TPTP
problems that are derived from Cyc’s KB and typical queries and are intended to
demonstrate Cyc’s design challenges for investigation by the wider community.

59

60

First Order Reasoning on a Large Ontology

Adam Pease1, Geoff Sutcliffe2

1Articulate Software
apease[at]articulatesoftware.com

2University of Miami
geoff[at]cs.miami.edu

Abstract

We present results of our work on using first order theorem proving to reason
over a large ontology (the Suggested Upper Merged Ontology – SUMO), and
methods for making SUMO suitable for first order theorem proving. We describe
the methods for translating into standard first order format, as well as optimizations
that are intended to improve inference performance. We also describe our work in
translating SUMO from its native SUO-KIF language into TPTP format.

 1. Introduction
There are two main areas of effort in this work. The first is to take a language that
appears to be beyond first order, and translate it into the strict first order form needed for
standard first order theorem provers. The second is in developing techniques that allow
standard provers to perform well on reasoning problems on a large ontology. Most first
order theorem provers, particularly those whose development has been done using the
TPTP (Sutcliffe & Suttner, 1998) library for testing, have been optimized to perform well
on proofs that require deep reasoning on a very small number of axioms, on the order of
10, or on proofs with a small number of rules but very large numbers of ground facts.
Reasoning over a large ontology such as SUMO requires a spectrum of reasoning, from
simple matching and unification to deep multi-step proofs, but most typically has a key
problem of finding a small number of relevant axioms in a sea of irrelevant ones. There
are also certain axioms that are needed much more frequently than others. Current ATP
systems are not tuned to cope with these two distinctive aspects of reasoning over a large
ontology. The most general way of framing a solution is to trade space for time, caching
what are anticipated to be frequently used results.

The Suggested Upper Merged Ontology (SUMO) (Niles & Pease, 2001) is a free,
formal ontology of about 1000 terms and 4000 definitional statements. It is provided in
the SUO-KIF language (Pease, 2003), which is a first order logic with some second-order
extensions, and also translated into the OWL semantic web language (which is a
necessarily lossy translation, given the limited expressiveness of OWL). SUMO has also
been extended with a number of domain ontologies, which together number some 20,000
terms and 70,000 axioms. SUMO has been mapped to the WordNet lexicon (Fellbaum,
1998) of over 100,000 noun, verb, adjective, and adverb word senses (Niles & Pease,
2003), which not only acts as a check on coverage and completeness, but also provides a
basis for work in natural language processing (Pease & Murray, 2003) (Elkateb et al,
2006) (Scheffczyk et al, 2006). SUMO is now in its 75th free version; having undergone
five years of development, review by a community of hundreds of people, and application
in expert reasoning and linguistics. Various versions of SUMO have been subjected to
formal verification with an automated theorem prover. SUMO and all the associated tools
and products are available at www.ontologyportal.org .

61

 1.1. The SUO-KIF Language
SUO-KIF, the Standard Upper Ontology Knowledge Interchange Format (Pease,

2003) was created as a variant of the KIF language (Genesereth, 1991) and designed to
support the SUMO project. It retains the LISP-like syntax of the original KIF, but
simplifies the language somewhat by including only logical operators in the language
itself, leaving any ontology that employs the language to define and handle issues such as
class and instance declarations and the difference between necessary and sufficient
definitions (if any). It has a relatively “free” syntax, allowing higher-order constructs
such as variables in the predicate position, quantification over formulas, and no
restrictions such as prohibiting predicates and instances sharing names. On the other
hand, the syntax is more restricted than some other variants of KIF in that constructs that
have little use in common sense knowledge representation, such as empty conjunctions,
are not allowed. Variables are denoted by a leading “?” character, and universal
quantification, existential quantification, implication, and biimplication are shown as
“forall”, “exists”, “=>” and “<=>”, respectively. Quantifier lists are delimited by
parentheses and quantified variables have no explicit sort syntax.

 2. Conversion to First Order Logic
Since 2002 a customized version of Vampire (Riazanov & Voronkov, 2002) has been

the primary system available for reasoning over SUMO, as part of the open source Sigma
system (Pease, 2003). While the customizations allow Vampire to read SUO-KIF format,
there are some restrictions, most notably on those aspects of SUO-KIF that appear to be
beyond first order. Several transformations are required.

The first transformation is related to handling the type signature of predicates and
functions. Provers such as Vampire are unsorted, and variables range over the Herbrand
universe. However, SUMO specifies the signature of each predicate and function. When
run in an unsorted prover, these specifications can have the unintended effect of
generating contradictions. Because variables can be of any type, they can be bound to a
term that is incompatible with the encompassing predicate or function's signature. The
axiom that specifies the signature then contradicts that variable binding. In addition, by
allowing variables to be any type, the prover's search may find variable bindings that
cannot be part of the eventual successful solution, so there is an efficiency cost, as well as
a problem for finding an accurate proof.

To solve this problem, we relativize the formulae by generating additional
preconditions for each rule in the ontology, which then limits every formula to being
considered only if type requirements have been met. For example,

 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

is transformed into

62

 (=>
 (and
 (instance ?AGENT Agent)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

Note that a naïve implementation of this approach would be to state
(=>
 (and
 (instance ?AGENT Agent)
 (instance ?TRANSFER Instance)
 (instance ?TRANSFER Process)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

but since ?TRANSFER is already constrained by the first clause of the original rule,
those additional preconditions are not necessary.

There is an efficiency cost with using sortal prefixes, since they increase the number
of literals that must be proved in order to derive each conclusion. We would expect the
use of sortal prefixes to improve correctness, but at the cost of speed (and some space).
The use of sortals has not provided any obvious benefit so far (see Section 5), possibly
because we have not allowed each test to run for a long enough time. Further testing is
planned.

The second transformation deals with SUO-KIF's row, or sequence variables, which
follow a scheme proposed in (Hayes & Menzel, 2001). They are denoted by the '@'
symbol in KIF statements. They are analogous to the Lisp language's @REST variable.
This is not first order if the number of arguments it can handle is infinite. However, if
row variables have a definite number of arguments, they can be treated like a macro, and
become first order. For example,
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 @ROW))
 (?REL2 @ROW))

becomes
 (=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))

63

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1 ?ARG2))
 (?REL2 ?ARG1 ?ARG2))

etc.

Note that this “macro” style expansion has the problem that unlike the intended semantics
of row variables, it is not infinite. If the macro processor only expands to five variables,
there is a problem if the knowledge engineer uses a relation with six. Because of that,
Sigma's syntax checker must prohibit relations with more arguments than the row
variable preprocessor expands to. Alternatively, we could first determine the maximum
number of relation arguments used in the KB, and then perform macro expansion up to
that number of arguments.

The third transformation universally quantifies all free variables. For example
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1))

becomes

(forall (?REL1 ?REL2 ?ARG1)
 (=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ARG1))
 (?REL2 ?ARG1)))

The fourth transformation eliminates the use of variables as predicates and functions.
A typical SUMO axiom that uses a variable in a predicate position is
(=>
 (inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (?REL1 ?INST1 ?INST2)
 (?REL2 ?INST2 ?INST1))))

This illustrates a case of variables, ?REL1 and ?REL2, being used as predicates.
Strictly speaking, variables in a predicate position are not first order. However, if we
adopt the simplifying assumption that such variables can range only over those predicates
that appear in the formulae in use, the statements become first order. All that is needed is
a simple syntactic transformation to make them appear so to a standard first order prover.
To do this, a “dummy” predicate called “holds_X__” is prepended to every atom, where
X is the arity of the predicate plus 1. This yields the following axiom
(=>
 (holds_3__ inverse ?REL1 ?REL2)
 (forall (?INST1 ?INST2)
 (<=>
 (holds_3__ ?REL1 ?INST1 ?INST2)
 (holds_3__ ?REL2 ?INST2 ?INST1))))

The inclusion of the arity in the “holds_X__” predicate is necessary to support
provers that do not support variable arity predicates, and the trailing __ avoids potential

64

conflicts with user predicates (which by convention should not end with __). An
analogous approach is taken for functions, using an “apply_X__” function. For example
(=>
 (and
 (attribute (GovernmentFn ?AREA) ?TYPE)
 (instance ?TYPE FormOfGovernment))
 (governmentType ?AREA ?TYPE))

becomes
(=>
 (and
 (holds_2__ attribute (apply_2__ GovernmentFn ?AREA) ?TYPE)
 (holds_3__ instance ?TYPE FormOfGovernment))
 (holds_3__ governmentType ?AREA ?TYPE))

These “holds_X__” and “apply_X__” wrappers are added to all atoms (in SUMO
every predicate has arity at least two), and to all non-constant function terms, even if the
predicate or function position is not a variable. This consistent treatment allows the same
unification possibilities as prior to the transformation, so that no completeness is lost. The
transformation has an added benefit of improving performance for those provers which
index clauses primarily on the predicate name.

The fifth transformation is significant. SUMO includes statements that are truly
second order. For example
 (=>
 (instance ?DEVICE MeasuringDevice)
 (hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

is an axiom that states that a MeasuringDevice has the purpose of being used as an
instrument in a Measuring action. Because hasPurpose takes a formula as its second
argument, it is not first order, and there is no simple trick or assumption that can be made
to reduce it to first order. The only solution available is to lose most of the semantics of
the statement, and turn it into an uninterpreted list. After transformation (omitting other
transformations for clarity) the axiom becomes
(=>
 (instance ?DEVICE MeasuringDevice)
 (list hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

While exists, and, etc., all lose their semantics, at least it is possible for a theorem
prover to unify over the list, retaining some limited possibility for reasoning with the
statement. To choose a bit clearer artificial example, supposing we had
(believes Mary
 (likes Mary Bill))

an answer for (believes Mary (likes ?X Bill)) could be found because
although (likes Mary Bill) becomes an uninterpreted list after the transformation, it
can still be subject to unification. However, if we had instead

65

(believes Mary
 (and
 (likes Mary Bill)
 (likes Sue Bill)))

an answer for (believes Mary (likes ?X Bill)) could not be found because
the two lists are not unifiable.

 3. Conversion to TPTP
While the conversions described above result in an essentially first-order form, there

are several aspects that are beyond the “traditional human-readable” format of the TPTP
language, as used by many current provers. The TPTP language uses Prolog-like user
terms and atoms, uses infix notation for binary operators, has a separate namespace for
operators, and provides a separate namespace for defined functors and predicates.
Additionally the TPTP language does not support arbitrary lists. These differences are
dealt with in the translation to TPTP format as follows.

A stack-based algorithm is used to convert from the SUO-KIF prefix form for binary
operators, stacking the translated form of an operator when found at the start of a
formula, copying it off the top of the stack for insertion between operand formulae, and
popping it off the stack at the end of the formula. As user terms and atoms are
encountered they are translated to Prolog’s prefix form, with variables prefixed by "V_",
and function and predicate symbols prefixed by "s_". All hyphens in user terms are
translated to underscores. Some defined functions are translated to corresponding
equivalents from the TPTP language, starting with a “$” (note that the TPTP standards
for defined arithmetic functions and predicates are in the process of being set as this
paper is being written, so some minor changes may be necessary in this aspect of the
translation to TPTP format). In the TPTP language double quoted strings are always
interpreted as themselves so that different strings are known to be not equal. In the
translation SUO-KIF double quoted strings are converted to single quoted constants, and
non-printable characters - carriage return, new line, tab, and formfeed - are replaced by
spaces. For example
(forall (?REL ?OBJ ?PROCESS)
 (=>
 (and
 (holds_3__ instance ?REL CaseRole)
 (holds_3__ instance ?OBJ Object)
 (holds_3__ ?REL ?PROCESS ?OBJ))
 (exists (?TIME)
 (holds_3__ overlapsSpatially
 (apply_3__ WhereFn ?PROCESS ?TIME) ?OBJ))))

is translated to
fof(name,axiom,
 ! [V_REL,V_OBJ,V_PROCESS] :
 ((holds_3__(s_instance,V_REL,s_CaseRole)
 & holds_3__(s_instance,V_OBJ,s_Object)
 & holds_3__(V_REL,V_PROCESS,V_OBJ))
 => ? [V_TIME] :
 holds_3__(s_overlapsSpatially,
 apply_3__(s_WhereFn,V_PROCESS,V_TIME),V_OBJ))).

In the translation to first-order form described in Section 2, it is explained that truly
second order constructs are dealt with by losing most of the semantics by conversion to
uninterpreted lists. This translated form is not directly usable in the TPTP format, as there

66

is no support for arbitrary lists. The current solution is to lose even more of the semantics,
by single quoting such expressions, thus treating them as constants. In this way the
possibility of unification over the list elements is lost - only unification of the whole is
possible. Part of the reason for taking this simplistic approach is that operators have a
separate namespace in the TPTP language, e.g., rather than SUO-KIF's and TPTP uses &.
As a result TPTP operators cannot be treated as constants in a list function. The list
solution can be implemented in the translation to TPTP format by retaining the SUO-KIF
forms of operators (which look like TPTP constants), and forming atoms with a
“list_X__” predicate to represent lists. For example

(=>
 (instance ?DEVICE MeasuringDevice)
 (hasPurpose ?DEVICE
 (exists (?MEASURE)
 (and
 (instance ?MEASURE Measuring)
 (instrument ?MEASURE ?DEVICE)))))

would be translated to
fof(name,axiom,
 ! [V_DEVICE,V_MEASURE] :
 (holds_3__(s_instance,V_DEVICE,s_MeasuringDevice)
 => holds_3__(s_hasPurpose,V_DEVICE,
 list_3__(s_exists,V_MEASURE,
 s_and(s_instance(V_MEASURE,s_Measuring),
 s_instrument(V_MEASURE,V_DEVICE))))).

 4. Optimization
It is always possible to compare a prover optimized for a given set of problems to one

that has not and show disappointing results for the unoptimized prover (Ramachandran et
al, 2005). Our challenge has been to develop a set of simple optimizations that allow a
set of standard, general-purpose, first-order provers to perform well on SUMO.

A first simple optimization is to cache transitive relationships. Almost any practical
query on SUMO requires reasoning about subclass and instance relationships at some
point during a proof. A standard prover does not give any special priority to SUMO's
axiom of transitivity, so many proofs attempts can spend a lot of time searching dead end
solution paths, when the answer is found mostly in a succession of applications of just
one axiom. A simple way to solve this is to cache all the subclass relationships. This
means that if SUMO authors have stated (subclass C B) and (subclass B A) that
our optimization code also generates (subclass C A), prior to any query being asked.

While prefixing all clauses with “holds_X__” is effective in making SUMO first-
order, as described above, it might not be the most efficient strategy. An alternative
approach is to instantiate all predicate and function variables with all the predicates and
functions with the same arity. For example
(=>
 (instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (?REL ?INST1 ?INST2)
 (?REL ?INST2 ?INST3))
 (?REL ?INST1 ?INST3))))

67

can be instantiated with subclass to yield
 (=>
 (instance subclass TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (subclass ?INST1 ?INST2)
 (subclass ?INST2 ?INST3))
 (subclass ?INST1 ?INST3))))

To avoid proliferating too many such instantiations however, the processor has to take
into account restrictions in the axioms themselves. A naïve approach would instantiate
the above axiom with predicates such as agent, which are not transitive. Our intuition
about the computational advantages of this approach are not supported by current test
results, as explained below.

 5. Tests
The table below reports preliminary results of testing the translation and

optimizations. The tests were performed using a 2002 version of Vampire on a 3.2GHz
PC with 2.9GB of memory. The default query timeout was set to 180 seconds. The
results are for tests performed on a KB consisting of SUMO plus the Mid-Level Ontology
(MILO).

The heading element “sortals” refers to the addition of type constraint antecedents to
axioms. The heading element “holds” refers to the addition of the artificial predicate
“holds_X__” to every clause. When tests are run with the option “instantiate”, predicate
variable instantiation is used instead. The heading element “caching” refers to pre-
computing the transitive closure of subsumption relations. The values in the "Overall
Ranking" row were computed with the following off-the-cuff algorithm: for each table:

1. Find the lowest value for Avg. total seconds. Call this LV.

2. For each column, take the average number of failed queries (i.e., 50 - Avg. # of
successful queries). Call this IA.

3. For each column take the Avg. total seconds value. Call this TS.

4. For each column, compute an index I using this formula: I = ((IA/50) *
(TS/LV)). Essentially, this is an ad hoc index of "badness", giving equal weight
to avg. number of failed queries and avg. total time per query run per parameter
configuration (column). The smaller this index, the "better" the overall
performance for this configuration of parameter settings relative to the other
configurations of settings.

5. Assign a rank to each column, based on the computed "badness" index, with 1
being best and 8 being worst.

Surprisingly, the optimizations we have implemented appear to give better
performance with our 2002 version of Vampire in only a few configurations, and the
results are difficult to interpret. Caching the subclass hierarchy does not generally
improve the query success rate. We surmise that the detrimental effect of caching is
related to the greatly increased size of the KB, but explanation of the actual causes
requires further investigation.

Before running the tests, we expected that the introduction of sortals, by constraining
the search space, would improve both query success rate and answer time. However, we

68

found instead that, for all combinations of using holds and caching, the introduction of
sortals degrades both success rate and performance. We believe that the degradation
results from the fact that sortals add extra literals which must be solved for each proof. It
may be that none of our current tests adequately targets the main problem that the
introduction of sortals was intended to solve: making predicate argument type constraints
more accessible to our 2002 version of Vampire, and thereby preventing spurious
conclusions. The instantiation of predicate variables (i.e., no use of holds_X__
prefixes) resulted in some improvement over using holds prefixes.

no sortals,
instantiate,
no caching

sortals,
instantiat

e, no
caching

no sortals,
holds, no
caching

sortals,
holds,

no
caching

no sortals,
instantiate,

caching

sortals,
instantiate,

caching

no sortals,
holds,

caching

sortals,
holds,

caching

Avg. %
successful 86% 82% 86% 30% 76% 82% 50% 32%

Avg. num.
successful 43/50 41/50 43/50 15/50 38/50 41/50 25/50 16/50

Avg. total
seconds 4,010 5,814 9,689 12,140 6,849 8,430 10,003 9,377

Normalized
avg. total

time
0.33 0.48 0.8 1 0.56 0.69 0.82 0.77

Overall
Rank 1 2 5 8 3 4 6 7

Table 1: Summary of Aggregate Performance per Run by Parameter Cluster

 6. Conclusion
We plan to continue our experiments along several dimensions. We need to expand

the variables tracked when running tests to include the numbers and types of formulas
(“rules”, Horn clauses, unit clauses, etc.), and the number and characteristics of the
proof(s) used to obtain each answer. We need to expand the number of tests and ensure
that they are representative of the queries typically posed in current applications. We
need to run in different memory configurations, to determine the impact of memory
paging on performance when the knowledge base is very large. We need to run tests on
SUMO alone, and on SUMO plus all of its domain ontologies. We need to run on all the
provers in the current TPTP suite, including the most recent version of Vampire. The
evolving set of tests is available at
 http://sigmakee.cvs.sourceforge.net/sigmakee/KBs/tests/
and the Sigma system that runs these tests is available at
 http://sigmakee.sourceforge.net/ .

Acknowledgments
This work has been funded by a number of sources, including the US Air Force, Army
CECOM, and DARPA. We are grateful for their investment. Some of this most recent
work has been helped from collaboration and discussion with German Rigau and his
students and colleagues at Universitat Politècnica de Catalunya and La Universidad del
País Vasco. We also appreciate the contributions of the anonymous ESARLT reviewers.

69

References

Elkateb, S., Black, W., Rodriguez, H, Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C.,
(2006). Building a WordNet for Arabic, in Proceedings of The fifth international
conference on Language Resources and Evaluation (LREC 2006).

Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, 1998.

Genesereth, M., (1991). “Knowledge Interchange Format'', In Proceedings of the Second
International Conference on the Principles of Knowledge Representation and Reasoning,
Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman Publishers, pp 238-249.

Hayes, P., and Menzel, C., (2001). A Semantics for Knowledge Interchange Format, in Working
Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology.

Niles, I & Pease A., (2001). “Towards A Standard Upper Ontology.” In Proceedings of Formal
Ontology in Information Systems (FOIS 2001), October 17-19, Ogunquit, Maine, USA,
pp 2-9. See also http://www.ontologyportal.org

Niles, I., and Pease, A. (2003) Linking Lexicons and Ontologies: Mapping WordNet to the
Suggested Upper Merged Ontology, Proceedings of the IEEE International Conference
on Information and Knowledge Engineering, pp 412-416.

Pease, A., (2003). The Sigma Ontology Development Environment, in Working Notes of the
IJCAI-2003 Workshop on Ontology and Distributed Systems. Volume 71 of CEUR
Workshop Proceeding series. See also http://sigmakee.sourceforge.net

Pease, A., (2004). Standard Upper Ontology Knowledge Interchange Format. Unpublished
language manual. Available at http://sigmakee.sourceforge.net/

Pease, A., and Murray, W., (2003). An English to Logic Translator for Ontology-based
Knowledge Representation Languages. In Proceedings of the 2003 IEEE International
Conference on Natural Language Processing and Knowledge Engineering, Beijing,
China, pp 777-783.

Ramachandran, D., P. Reagan, K. Goolsbey. First-Orderized ResearchCyc: Expressivity and
Efficiency in a Common-Sense Ontology. In Papers from the AAAI Workshop on
Contexts and Ontologies: Theory, Practice and Applications. Pittsburgh, Pennsylvania,
July 2005.

Riazanov A., Voronkov A. (2002). The Design and Implementation of Vampire. AI
Communications, 15(2-3), pp. 91—110.

Scheffczyk, J., Pease, A., Ellsworth, M., (2006). Linking FrameNet to the Suggested Upper
Merged Ontology, in Proceedings of Formal Ontology in Information Systems (FOIS-
2006), B. Bennett and C. Fellbaum, eds, IOS Press, pp 289-300.

Sutcliffe G., Suttner C.B. (1998), The TPTP Problem Library: CNF Release v1.2.1, Journal of
Automated Reasoning 21(2), 177-203.

70

	00_Cover.pdf
	00.5_BlankPage.pdf
	01_Preface.pdf
	02_deMoura.pdf
	02.5_BlankPage.pdf
	03_Hinrichs.pdf
	04_Pudlak.pdf
	05_Urban.pdf
	06_Goolsbey.pdf
	06.5_BlankPage.pdf
	07_Pease.pdf
	08_BlankPage.pdf
	08.5_BlankPage.pdf

