
Individual Scheduling for the Multi-Mode Resource-

Constrained Multi-Project Scheduling Problem

Vladislav Korotkov1, Mikhail Matveev2

1 Voronezh State University, Voronezh, Russia

chasecrunk@gmail.com
2 Voronezh State University, Voronezh, Russia

1 Introduction

Solving a well-known resource constrained project scheduling problem (RCPSP) is

crucial for project management. It consists of assigning a start time to each activity such

that the precedence relations and the resource constraints are satisfied [1, 2]. The re-

sulting schedule usually quantitatively distributes resources along the project timeline.

However, for practical purposes, individual schedules have to be obtained for employ-

ees and other named resources to organize the workflow. Such resource allocation was

previously presented assuming the difference in skills and other individual features [3].

This approach dramatically extends the search space. In practice, accounting resource

heterogeneity is usually redundant or difficult to implement.

This paper proposes the two-stage approach to individual schedule construction as-

suming that all units of the same resource are interchangeable. The first stage is a gen-

eral scheduling based on genetic algorithm. The modified multi-project and multi-mode

variation of the problem (also known as MRCMPSP) is considered as it is much closer

to the real-world problems [4]. The second stage includes individual scheduling by al-

locating resource units to activities subject to the required condition (in this case, the

uniformity of resource allocation). A simulated annealing algorithm is proposed for this

purpose.

2 Problem Description

We consider a set P of n projects. Each project p P consists of non-preemptive

activities pJ . We need to determine a start time pjs for each activity pj J . Each

project p also has a start date pStart so that none of the activities can be started earlier.

Some activities require others to complete, so ()Pre j is a set of predecessors of pj J

.

The set p p pL L L   of resources is allocated to each project p . Here pL


 are local

renewable resources and pL


 are local non-renewable resources. The amount of non-

renewable resources is fixed over the entire project duration. Examples of this type of

resource are money, consumables, etc. Renewable resources have a fixed capacity per

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0)
ICID-2019 Conference

2

time unit. Workers and machines are examples of this type of resource. Each resource

pl L of the project p has a capacity of plc . There are also global renewable resources

G
 limited by capacities ,gc g G . They can be used in any project.

Each activity ,pj J p P  is performed in exactly one mode pjm from the set of

possible execution modes pjM . The mode determines activity duration and specific

resource requirements. Let
pjpjmd be the processing time of activity pj J in mode

pj pjm M , and
pjpjm lr define its consumption of l .

The objective is to find such activity start times pjs and mode assignments pjm that

satisfy precedence and resource constraints while minimizing the total project delay

TPD . The total project delay is calculated as follows:

 ()p p

p P

TPD MK CPD


  (1)

 p p pMS Finish Start  (2)

where pFinish is the last activity completion time for the project p ; pCPD is a critical

path duration assuming resource constraint relaxation and the assignment of execution

modes with the shortest durations.

Thus, the objective can be formulated as the combinatorial optimization problem:

 minTPD (3)

subject to:

  
()

, , 0,
pj

p

pjm l pl p

j A t

r c p P l L t T



     (4)

 ,
pj

p

pjm l pl p

j J

r c p P l L



    (5)

  
()

, 0,
pj

p

pjm g g

p P j A t

r c g G t T

 

     (6)

 , , ()
pjpj pjm pj ps d s p P j J j Pre j

       (7)

 ,pj p ps Start p P j J    (8)

 ,pj pj pm M p P j J    (9)

  () |
pjp p pj pj pjmA t j J s t s d     (10)

3

Here T is an upper bound of projects completion time; ()pA t is the set of activities

of the project p in progress in the period  , 1t t  ; (7) defines the precedence con-

straints while resource constraints are defined in (4), (5) and (6).

The second stage is aimed to find correspondences between activities and resource

units that are in some sense optimal. The schedule obtained in the first stage determines

durations and resource requirements for each activity. Let
lH be the set of all available

units of resource l and l p

p P

J J



 be the set of all activities that require resource l .

Each activity lj J  has duration jd and requires jlr of resource l . For each resource

unit h we define
hS as the desired set of activities from its individual schedule. In this

case, the uniformity of the resource allocation is considered as the optimality criterion.

We assume that no resource unit can be utilized in multiple parallel activities. Thus, we

can formulate the following combinatorial optimization problems for each renewable

resource type p

p P

l G L 



  :

 2(() ()) min
lh H

U h AvgU l


  (11)

 ()
h

j

j S

U h d


  (12)

()

() lh H

l

U h
AvgU l

H





 (13)

subject to:

  |h h jl lS j S r j J     (14)

 () ; , ;l hj Over j h H j j S j j       (15)

 h l lS J h H   (16)

Here ()Over j is the set of activities which overlap with j . ()U h (12) is the total

utilization of h , ()AvgU l (13) is the average resource utilization for l . Constraint (14)

verifies that resource needs are met. Constraint (15) prevents allocation to overlapping

activities.

3 General Scheduling

RCPSP (and hence MRCMPSP) is computationally intensive combinatorial optimiza-

tion task. It was proven to be NP-hard [5]. Optimal solution may be obtained only for

4

rather small instances while practical problems can reach hundreds of activities. There-

fore, the majority of studies consider applying different heuristics to find suboptimal

solutions without traversing the entire search space [2].

In this study a genetic algorithm approach was used for general schedule construc-

tion. Some features of the previous implementations were incorporated [6, 7, 8]. Imple-

mentation details are provided below.

3.1 Solution Representation

Each solution is encoded by a chromosome which corresponds to strictly one feasible

schedule. Each chromosome consists of two parts: the first one contains an activity list

in order of priority and the second one includes chosen activity modes. The correspond-

ing schedule can be obtained by the following sequential procedure. Starting with an

empty schedule we construct a new partial schedule by placing the next activity from

an activity list to the earliest possible time so that precedence and resource constraints

are satisfied. This is usually called a serial schedule generation scheme (SGS). Note

that any such solution corresponds to only one schedule but the same schedules can be

obtained from different solutions.

3.2 Fitness Function

The modification of fitness function proposed in [8] was used for solution evaluation.

It penalizes solutions by adding the number of requested non-renewable resource units

that exceed the capacity. Such approach is considered more efficient in terms of faster

convergence to suboptimal solutions.

() ()
1 1 ,

0
()

()
1 ,

MaxTPD TPD I MaxTMS TMS I

ERRMaxTPD MaxTPD
f I

TPD I otherwise
ERR

MaxTPD

 
   

 
  


 (17)

 p

p P

TMS MS


 (18)

pj

p

pjm

p P j J

MaxTMS d
 

 (19)

pj

p

pjm p

p P j J

MaxTPD d CPD
 

 
  

 
 

  (20)

 max 0,
pjp

p

pjm l plj J

p P l L pl

r c
ERR

c



 

 
 

  
  


 (21)

5

Here ERR (21) is the non-renewable resource error, TMS (18) is the total makespan

of the projects, equations (19) and (20) define estimations of maximum total makespan

and maximum total project delay respectively.

3.3 Initial Population

The initial population is randomly generated to ensure diversity of solutions. The pro-

cedure of random generation starts with an empty activity list. At each step of the pro-

cedure a random activity whose predecessors are already in the list is appended. Its

mode is also taken randomly and added to the second part of the chromosome.

The resulting instances obviously satisfy the precedence constraints. And for the al-

gorithm to work correctly crossover and mutation operations must be implemented in

such a way that the resulting solutions are also feasible.

3.4 Crossover Operation

Crossover operation combines a pair of parent solutions to produce two children that

inherit their parents’ features. The operation is applied independently to activity lists

and mode lists of parent chromosomes.

A point q on both active lists is picked randomly splitting them into two parts. All

activities from the first part of the first (second) activity list are transferred to the first

(second) offspring list and the remaining activities are appended in the order in which

they are located in the second (first) parent. Such method is called a single-point cross-

over.

Activity mode lists of the parents are crossed over according to uniform method. For

each i-th activity a random value  0,1ip  is picked independently. If 0.5ip  then

the first (second) child inherits the mode of this activity from the first (second) parent.

Otherwise, the first (second) child inherits the mode from the second (first) parent.

3.5 Mutation Operation

Mutation is defined as a random change in the solution obtained by crossing over. Mu-

tation operation is also applied independently to each part of a chromosome.

For each i-th activity of activity list a random value  0,1ip  is picked inde-

pendently. If i PMp P , where PMP is initially defined mutation probability, then i-th

and i+1 activities are swapped unless this violates the precedence constraints.

Each activity mode is replaced by a randomly picked one with initially defined prob-

ability MMP .

6

4 Individual Scheduling

Since we assume interchangeability of individual units of the same resource, it's rea-

sonable to represent solution as a multiset to reduce the search space. Thus, any solution

is defined as:

  (1) (1) () (),..., k k

l l l l l lZ S N S N k H    (22)

where
()i

l lS J  is a list of activities, and
()i

lN is the number of such schedules.

The neighbor of any solution relative to the particular activity j can be obtained by

removing this activity from some schedule and adding to another one. Note that target

schedule should not contain any activities overlapping with j .

The initial solution can be randomly generated. The procedure starts with a set of

empty schedules. Then each activity j from lJ


 is added jlr times to random sched-

ules. Again, the target schedules should contain only activities which don't overlap with

j .

Now it becomes possible to apply any local search algorithm to solve the problem.

In this study the simulated annealing method was used. The main steps of the algorithm

are:

Obtain random initial solution and set x (the current solution) and
bestx (the best

solution) to it. Store corresponding objective function value in
bestf ;

1. Initialize the temperature T with
0T ;

2. Get random neighbor x of the current solution;

3. Calculate the objective function ()f x and the difference : () ()f x f x   ;

4. if 0  then :x x and

5. if () bestf x f  then : ()bestf f x and :bestx x ;

6. Otherwise, if
/Te p  ([0,1]p is a random value) then :x x ;

7. Lower the temperature: :T T ((0,1) );

8. If termination conditions aren't met, then go to step 3.

5 Computational Experiments

The algorithm was tested on a subset of MISTA 2013 Challenge problem instances [4].

The algorithm was implemented in Python and all tests were performed on a computer

with Intel Core i5 8250U.

Table 1 shows results for 9 problems of MISTA 2013 Challenge instance set. The

problems with different number of projects, activities and renewable resources were

considered. Parameters of genetic algorithm were: population size – 150, crossover

probability – 0.8, mutation probability – 0.04. Simulated annealing parameters were:

iteration count – 1000, initial temperature – 1000, temperature reduction factor – 0.9.

7

Table 1. The results of applying the algorithm to some problems of MISTA 2013 Challenge.

GSf – total project delay of the general schedule,
ISf – average square resource utilization er-

ror of individual schedules,
GSt – total general scheduling time,

ISt – total individual schedul-

ing time.

Id Project

count

Activity

count

Renewable

resource

count

GSf
ISf

GSt (s)
ISt (s)

A-1 2 20 2 9 59.88 7.69 0.08

A-2 2 40 2 30 11.01 21.84 0.16

A-3 2 60 2 10 77.04 58.42 0.26

A-4 5 50 2 130 35.95 39.19 0.15

A-5 5 100 2 628 77.39 130.33 0.31

A-6 5 150 2 785 40.64 367.99 0.35

A-7 10 100 2 2441 5.18 92.50 0.14

A-8 10 200 2 1677 16.52 607.41 0.32

A-9 10 300 2 1683 61.88 2281.05 0.79

A series of tests was performed on the problem A-1 with different number of gener-

ations to estimate the rate of convergence of the proposed genetic algorithm. The values

of other parameters were the same. 20 runs were made for each population size. The

results are shown in table 2.

Table 2. The results of applying the proposed genetic algorithm with different number of gen-

erations.

Number of generations Average TPD Average processing time (s)

10 11.20 2.80

30 5.85 7.67

50 4.55 12.40

70 4.49 16.85

A series of tests was performed on the problem A-9 with different number of itera-

tions to estimate the rate of convergence of the proposed simulated annealing method.

The values of other parameters were the same. 20 runs were made for each number of

iterations. The results are shown in table 3.

Table 3. The results of applying the proposed simulated annealing algorithm with different

number of iterations.

Number of iterations Average error Average processing time (s)

100 4861.26 0.17

500 239.78 0.45

1000 49.94 0.80

8

5000 29.82 3.59

10000 28.23 7.06

6 Conclusion

In this study, an extension to the traditional MRCMPSP was introduced to make indi-

vidual schedules for renewable resources. The resulting two-stage optimization model

was implemented using genetic algorithm and simulated annealing method. The algo-

rithm was tested on the set of problems from MISTA 2013 Challenge.

References

1. Kolisch, R.: Project Scheduling under Resource Constraints: Efficient Heuristics for Several

Problem Classes. Physica-Verlag, Heidelberg (1995)

2. Abdolshah, M.: A Review of Resource-Constrained Project Scheduling Problems (RCPSP)

Approaches and Solutions. International Transaction Journal of Engineering, Management,

& Applied Sciences & Technologies 5(4), 253–286 (2014)

3. Yannibelli, V., Amandi, A.: A knowledge-based evolutionary assistant to software develop-

ment project scheduling. Expert Systems with Applications 38(7), 8403-8413 (2011)

4. Wauters, T., Kinable, J., Smet, P., et al.: The Multi-Mode Resource-Constrained Multi-Pro-

ject Scheduling Problem. Journal of Scheduling 19(3), 271-283 (2016)

5. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource con-

straints: classification and complexity. Discrete Applied Mathematics 5(1), 11-24 (1983)

6. Hartmann, S.: Project Scheduling with Multiple Modes: A Genetic Algorithm. Annals of

Operations Research 102(1-4), 111-135 (2001)

7. Kumanan, S., Jose, G.J., Raja, K.: Multi-project scheduling using a heuristic and a genetic

algorithm. The International Journal of Advanced Manufacturing Technology 31(3-4), 360–

366 (2006)

8. Sebt, M.H., Afshar, M.R., Alipouri, Y.: An Efficient Genetic Algorithm for Solving the

Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key

Representation. International Journal of Supply and Operations Management 2(3), 905-924

(2015)

