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Abstract. 1 The Bayes theorem published posthumously as the work of
Rev. Thomas Bayes (1701/2-1761) in ‘Essay Towards Solving a Problem
in the Doctrine of Chances’ (1764) rediscovered by Lagrange, provides a
foundation for some areas of Artificial Intelligence like Bayesian Reason-
ing, Bayesian Filtering etc. It had been reformulated in logical terms by
Jan  Lukasiewicz (1913). Recently, an abstract version couched in mereo-
logical terms was formulated and a strengthening of it appeared derived
from the Stone representation theorem for complete Boolean algebras. It
is our aim to comprehensively present those approaches with emphasis
on the abstract setting of mass assignments on mereological universes
endiwed with rough inclusions induced by masses of things.

1 The Bayes theorem original and the rendering by
 Lukasiewicz

Given a probability distribution on a space of events Ω (cf.[5]) one defines the
conditional probability P (E|H) of the event E modulo the event H as P (E|H) =
P (E∩H)
P (H) . From this the Bayes theorem follows in the presently used form:

P (E|H) =
P (H|E) · P (E)

P (H)
. (1)

It is often in use the generalization of (1) to the case when the space of events

Ω is split into pairwise disjoint events Gi, i ≤ k with Ω =
⋃k
i=1Gi. In this case,

by axioms of probability calculus [5], P (H) =
∑k
i=1 P (H|Gi) · P (Gi) and the

Bayes theorem is given in the form:

P (E|H) =
P (H|E) · P (E)∑k

i=1 P (H|Gi) · P (Gi)
. (2)
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Jan  Lukasiewicz [8] (for english transl. see [1]) considered the logical frame-
work of a collection Γ of indefinite unary formulas over a finite universe of things
Ω. For a formula γ(x) ∈ Γ and a thing ω ∈ Ω, one says that the thing ω satis-
fies the formula γ(x), in symbols: ω |= γ(x) when after substitution of ω for all
symbols in γ(x) equiform with x, the formula γ(x/ω) is true (we do not discuss
here the criterion of truth assuming it is set).

For a formula γ(x) ∈ Γ ,  Lukasiewicz had defined the truth value w:

w(γ(x)) =
|{ω ∈ Ω : ω |= γ(x)}|

|Ω|
, (3)

where the symbol |X| is denoting the cardinality of X. The function w takes
values in the unit interval [0, 1] and it subject to the following properties (0
denotes the unsatisfiable formula and 1 denotes a tautology):

I. (γ = 0)⇔ [w(a) = 0].
II. (γ = 1)⇔ [w(a) = 1].
III. (γ ⇒ δ)⇒ [w(γ) + w((¬γ) ∧ δ) = w(δ)].
From postulates I, II and III,  Lukasiewicz had derived, using the standard

propositional calculus derivations, formulas which turn out to be the basic for-
mulas of probability calculus like (the numeration is as in original  Lukasiewicz
[8], cf. [1]):

(3) (γ ⇔ δ)⇒ [w(γ) = w(δ)].
(4) w(γ) + w(¬γ) = 1.
(5) w(γ ∧ δ) + w((¬γ) ∧ δ) = w(δ).
(6) w(γ) + w((¬γ) ∧ δ) = w(γ ∨ δ).
(7) w(γ ∨ δ) = w(γ) + w(δ)− w(γ ∧ δ).
(8) (γ ∧ δ = 0)⇒ [w(γ ∨ δ) = w(γ) + w(δ)].
(9) (

∑
i,j gammai ∧ γj = 0)⇒ [w(

∨
i γi) =

∑
i w(γi)].

(10) [w(γ ∨ δ) = w(γ) + w(δ)]⇒ (γ ∧ δ = 0).
(12) [w(γ) + w((¬γ) ∧ δ) = w(δ)⇒ (γ ⇒ δ).
(13) (aγ ⇒ δ)⇔ [wγ) + w(¬γ ∧ δ) = w(δ)].
‘Relative truth value’ is defined in  Lukasiewicz [8] as follows:

wγ(δ) =
w(γ ∧ δ)
wγ)

. (4)

The following formulas are consequences to definition (4).
(14) w1(δ) = w(δ).
(15) w(γ ∧ δ) = w(γ) · wγ(δ) = w(δ) · wδ(γ).
The final thesis is a rendering of the Bayes theorem as ‘a special theorem’

(cf. [1] p. 31):

(22) (
∨
i γi = 1) ∧ (

∨
i,j γi ∧ γj = 0)⇒ [wδ(γm) =

w(γm)·wγm (δ)∑
i
w(γi)·wγi (δ)

.

It is manifest that after substitution of probability of an event for weight of
a formula, we obtain true formulas of probability calculus on finite probability
spaces. We now proceed to the meerological setting in which we give an abstract
formulation for both probability calculus and  Lukasiewicz’s logical scheme.



2 Mereology and approximate (rough) mereology

The standard version of mereology had been proposed by Stanis law Leśniewski
[6]. The interested reader may as well consult in addition, e.g., Casati and Varzi
[2], Pietruszczak [9], or, Polkowski [11].

A mereological universe is a pair (U, π) where U is a collection of things and
π is a binary relation of being a part of which should satisfy the conditions:

1. For each thing x, it is not true that π(x, x).
2. For each triple x, y, z of things, if π(x, y) and π(y, z), then π(x, z).
The relation of a part does induce the relation of an improper part Π(x, y),

defined as:
Π(x, y)⇔ (π(x, y) ∨ x = y). (5)

When the relation Π occurs between a pair x, y then x is called an ingrediens of
y. Clearly, (U,Π) is a partially ordered structure.

On basis of the relation Π, the overlap relation is defined:

Ov(x, y)⇔ ∃z.Π(z, x) ∧Π(z, y). (6)

Helped by the relation of overlapping, we introduce the third postulate for our
model of mereology:

3. For each pair x, y of things, if for each thing z such that Π(z, x) there
exists a thing w such that Π(w, y) and Ov(z, w), then Π(x, y).

The important notion in the mereology scheme is that of a class of things;
the class operator converts any non-empty collection of things into a thing. The
assumption is that classes always exist; by 3. they are unique.

The notion of a class was defined originally in Definition II in [7]:
P is a class of objects a if and only if the following conditions are met: (i)

P is an object; (ii) every a is an ingrediens of P ; (iii) for any Q, if Q is an
ingrediens of the object P then some ingrediens of the object Q is an ingrediens
of some a.

Let us notice that notions of a set and of a class have been the subject of
a long going philosophical dispute (cf. Pietruszczak [9] for a discussion; we owe
this work the translation into English of Definition II.)

For the universe (U, π) of things, we define the class V of all things:

V = Cls{x : x ∈ U}. (7)

We call V the universal thing.
We are now in a position to recall here two fusion operators due to Tarski

[18]. These operators are the sum x+ y and the product x · y defined as:

x+ y = Cls{z : Π(z, x) ∨Π(z, y)} (8)

and

x · y = Cls{z : Π(z, x) ∧Π(z, y)}. (9)



The things x, y are disjoint, dis(x, y) in symbols, whenever there is no thing z
such that Π(z, x) and Π(z, y) (a fortiori, the product of x and y is not defined).

dis(x, y)⇔ ¬Ov(x, y). (10)

The difference x− y is defined as follows:

x− y = Cls{z ∈ U : Π(z, x) ∧ dis(z, y)}. (11)

It is well-known (see [18]; cf. English transl. in [19]; cf. Pietruszczak [9].
Ch. III) that the mereological universe (U, π) with the universal thing V and
operations +, ·,− carries the structure of a complete Boolean algebra without
the zero element. However, contrary to some views, the two are not identical:
mereology is defined for individuals and they are defined in the Ontology by
Leśniewski, so one cannot extract solely mereology from his scheme.

The complement −x to a thing x in the universe (U, π) is the difference V −x:

−x = V − x. (12)

We introduce finally the mereological implication x ↪→ y, valued in things in
the universe U and defined as:

x ↪→ y = −x+ y. (13)

The implication x ↪→ y is declared true if and only if −x+ y = V .

2.1 Rough mereology

Approximate mereology (rough mereology, fuzzified mereology) [14], [10], [20]
takes part relations of mereology and extends them to relations of being a part
to a degree . Formally, the rendering of those relations comes in the form of the
relation of rough inclusion µ (see [15] where this notion was introduced); the
relation µ takes as arguments things x, y in the universe U and a real number
r ∈ [0, 1]. The formula µ(x, y, r) reads: the thing x is a part of the thing y to a
degree of at least r. The relation µ should obey the requirements:

4.µ(x, y, 1)⇔ Π(x, y).
5. µ(x, y, 1)⇒ ∀z ∈ U. ∀r ∈ [0, 1]. [µ(z, x, r)⇒ µ(z, y, r)].
6. [µ(x, y, r) ∧ s < r]⇒ µ(x, y, s).
The reader will find a discussion of rough inclusions in [10].

3 Mass-based approximate mereology

By a mass assignment on a universe (U, π) we understand a function m : U →
(0, 1] which is subjected to postulates [12]:

7. m(θ) = 0, where θ denotes the empty thing, not in the universe U .
8. x = V ⇔ m(x) = 1.
9. x = θ ⇔ m(x) = 0.



10. (x ↪→ y)⇒ [m(y) = m(x) +m(−x · y)].
From 7-10, we derive properties of m (see [12]:
11. (x = y)⇒ [m(x) = m(y)].
12. m(x+ y) = m(x) +m(−x · y).
13. (x · y = θ)⇒ [m(x+ y) = m(x) +m(y)].
14. m(x) +m(−x) = 1.
15. m(y) = m(x · y) +m((−x) · y).
16. m(x+ y) = m(x) +m(y)−m(x · y).
17. Π(x, y)⇒ [m(x) ≤ m(y)].
18. [m(x+ y) = m(x) +m(y)]⇒ (x · y = θ).
19. Π(x, y)⇔ m(x ↪→ y) = 1.
20. Π(y, x)⇒ y · (−x) = θ.
21. Π(y, x)⇒ m(x ↪→ y) = 1−m(x) +m(y).
22. m(x ↪→ y) = 1−m(x− y).
Comment. 22 is a general formula which generalizes the  Lukasiewicz impli-

cation formula [4] to the case of partially ordered sets.
23. m(x · y) = m(x) ·m(y)⇔ m((−x) · y) = m(−x) ·m(y).
It is clear that masses m(x) generalize  Lukasiewicz’s w(q)’s.

4 Rough inclusions in mass-based mereological universe
and the Bayes theorem

We continue with the mereological universe (U, π), augmented with a mass as-
signment m. We define a rough inclusion µ ⊆ U × U × [0, 1] with triples of the
form (x, y, r), where x, y ∈ U and r ∈ [0, 1] as arguments:

µ(x, y, r)⇔ m(x · y)

m(y)
≥ r. (14)

We define in addition the inclusion function µ1 : U2 → [0, 1] returning for each
pair of things x, y the maximal degree r such that µ(x, y, r) holds true, i.e., the
maximal degree of inclusion of x into y:

µ1(x, y) =
m(x · y)

m(y)
. (15)

The rough inclusion µ and the inclusion function µ1 satisfy the following
formulas.

24. Π(y, x)⇒ [µ1(x, y) = 1].
25. [µ1(x, y) = 1]⇒ Π(y, x).
26. Π(y, x)⇔ µ1(y, x) = 1⇔ y ↪→ x.
27. [µ(x, y, 1)⇒ ∀z.µ1(x, z) ≥ µ1(y, z).
28. µ1(−y, x) = 1− µ1(y, x).
29. [m(x) +m(−x · y) = m(y)]⇒ Π(x, y).

30. µ1(x, y) = m(x)·µ1(y,x)
m(y) [the Bayes formula].



31. µ1(x,y)
µ1(y,x)

= m(x)
m(y) .

32. Π(x, y)⇒ [µ1(y, x) = m(y)
m(x) ].

33. µ1(x,y)
µ1(y,x)

· µ1(y,z)
µ1(z,y)

= µ1(x,z)
µ1(z,x)

.

The general form of the Bayes theorem is as follows. The notation +Y for a
finite collection of things Y denotes the result of mereological addition of things
in Y .

34. [(+i 6=jyi · yj = θ) ∧ (+iyi = V )] ⇒ [µ1(z, x) = m(z)·µ1(x,z)∑k

i=1
m(yi)·µ1(x,yi)

].

We now pass to a discusssion of existence of a system {yi} satisfying the
premises of formula 34. We prove (ineffecively) the existence of such a system
with use of the Stone duality theorem (Stone [17]).

5 The compactness aspect

We explore the fact that the mereological space (U, π) carries the structure of
a complete Boolean algebra without the null element and we refer to the Stone
Representation Theorem [17] for complete Boolean algebras. We recall that a
filter on a Boolean algebra B is a collection F of elements of B with properties:
(i) if x, y ∈ F then x · y ∈ F ; (ii) if x ∈ F and x ≤ y then y ∈ F ; (iii) the null
element not in F . A filter maximal with respect to containment in the collection
of all filters is called an ultrafilter. It is well-known that each ultrafilter H has
the following defining properties (see [?]): (iv) for each thing x ∈ U , either x ∈ F
or −x ∈ F ; (v) H is prime, i.e., if x+ y ∈ H then either x ∈ H or y ∈ H.

The Stone theorem states that a complete Boolean algebra B is isomorphic
to the space of closed - and - open sets in a compact 0-dimensional Hausdorff
space. This space is the space of all ultrafilters on B (the Stone space St(B))
and it is topologized by admitting sets S(x) for x ∈ B as the closed-and-open
base, where S(x) is the set of all ultrafilters in St(B) which contain x.

It has been shown as the consequence to the Stone theorem cf. [13], that:
In the mereological space (U, π), there exists a finite set of elements {x1, x2, . . . , xk}

for some k with the property that each thing x ∈ U admits the representation
x = +ix · xi. The set {xi : i ≤ k} is called a base in the space (U, π).

One can produce an orthogonal base {yi : i ≤ k} by letting yi = xi·
∏
j<i(−xj)

for i ≤ k [13]; then:

yi · yj = θ (16)

whenever i 6= j.
Accordingly, the rough inclusion m has by virtue of 13 the property,
35. For each thing x ∈ U , m(x) =

∑k
i=1m(x · yi).

In consequence, the mass-based inclusion function µ1 acquires the form

µ1(x, z) =

∑
i≤km(x · z · yi)∑
i≤km(x · yi)

. (17)



From (17), we obtain the ultimate form of the Bayes theorem by taking as
the set Y in 34 any orthogonal base {yi : i ≤ k} and expressing terms for µ1 as
in (17).

6 Appendix. Topological notions used and some proofs

. A topological space is a pair (U, τ), where U is a set and τ is a family of subsets
of U which is closed on arbitrary unions and finite intersections. It follows that
both the empty set ∅ and the set U are members of τ , whose elements are
called open sets. Complements to open sets are closed sets. An open covering
of a space U is a family ω ⊆ τ such that

⋃
ω = U . A topological space (U, τ)

is Hausdorff when for each pair x, y of distinct elements of U there exist open
disjoint sets X,Y such that x ∈ X, y ∈ Y . An open base for a topological soace
is a family β ⊆ τ such that each non–empty open set X is a union of some
sub–family βX ⊆ β. A topological space (U, τ) is zero-dimensional when there
exists in it an open base consisting of sets which are closed as well. A topological
space (U, τ) is compact when each open covering β contains a finite subfamily
δ which is also a covering of U. A convenient paraphrase of this condition is
couched in terms of closed sets: a family K of closed sets is finitely centered
when each finite non-empty sub–family of K has a non–empty intersection; the
compactness condition can be stated as follows: a topological space is compact
when each finitely centered family of closed sets has a non–empty intersection.
The reader will find a detailed discussion of topological spaces in [3].

For a Boolean algebra (see Sikorski [16]) B, by a filter on B we understand
a collection F of elements of B such that (i) if x, y ∈ F then x · y ∈ F , (ii)
if x ∈ F and x ≤ y) then y ∈ F , (iii) ∅ /∈ F . For a mereological space (U, π),
condition (ii) translates as (ii)’ if x ∈ F and Π(x, y) then y ∈ F and condition
(iii) translates as (iii)’ θ /∈ F . An ultrafilter is a filter which is not contained
properly in any other filter. A Boolean algebra B is complete when each subset
C ⊆ B has the least upper bound L, i.e. (i) x ≤ L for each x ∈ C and (ii) if
an element M satisfies (i) then L ≤ M . It is well known that the mereological
space (U, π) with mereological operations of sum, product and complement, the
unit element V and augmented with θ is a complete Boolean algebra (see [18],
[19]).

For a Boolean algebra B, the Stone space S(B) consists of ultrafilters on B.
The Stone topology st(B) on the Stone space S(b) is induced by the open base
consisting of sets S(x) = {F : F an ultrafilter on B and x ∈ F} for all x ∈ B.

The fundamental Stone theorem [17] states that

Theorem 1 (M. Stone [17]). The Stone space S(B) with the Stone topology
st(B) on a complete Boolean algebra B is a compact Hausdorff zero-dimensional
topological space.

We recall a proof, for completeness’ sake.
By Definition of a filter S(x)∩S(y) = S(x ·y), hence, st(B) has properties of

a base. Each set S(x) is clopen: S(x) = S(U) \ S(−x). S(U) is compact: let B,



a collection of sets of the form of S(x) for x ∈ W ⊆ U , be finally centered, i.e.,
for each finite sub-collection X={x1, x2, . . . , xk} of W , there exists an ultrafilter
F with X ⊆ F . Let us consider a set G = W ∪ {z ∈ U : there exists x ∈
W with Π(x, z)}. Then G extends to an ultrafilter H and H ∈

⋂
B, i.e., S(U)

is compact. S(U) is Hausdorff: let F 6= G for ultrafilters F,G. Assume, for the
attention sake, that x ∈ F \G for some thing x. Hence, −x ∈ G and F ∈ S(x),
G ∈ S(−x), and, S(x) ∩ S(−x) = ∅.

The Stone theorem implies that there exists a finite set Ψ = {x1, . . . , xk}
of elements of the space (U, π) with the property that S(U) =

⋃
{S(xi) : i =

1, . . . , k}. One proves that Ψ is a base in U in the sense that for each x ∈ U , we
have the representation for x in the form

x = +ix · xi, (18)

where +i denotes the mereological sum of all elements xi fori = 1, . . . , k.
We recall a proof from [12]. Consider an arbitrary thing y with Π(y, x). Let

F (y) be an ultrafilter containing y; hence, x ∈ F (y). Let xi ∈ K be such that
F (y) ∈ S(xi). Then, y·xi 6= θ and i ∈ I(x). As Π(y·xi, x·xi), it follows Π(x,+ix·
xi) by M3. Contrariwise, assume for an arbitrary thing z that Π(z,+ix · xi),
hence, Π(z, x ·xi) for some i ∈ I(x) and thus Π(z, x); by M3, Π(+ix ·xi, x) and
finally x = +ix · xi.

We let yi = xi − (+j<iyj ; then, the formula

x = +ix · yi, (19)

holds true (cf. [12]).
The collection {yi : i = 1, . . . , k} is an orthogonal base in U . It serves as the

collection of pairwise disjoint elements needed in the general Bayes formula.

7 Conclusions

We have presented a survey of some approaches to the Bayes theorem in frame-
works of logic and mereology. An extended version will appear in [13].
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