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Abstract. We investigate a new SMT-based bounded model checking (BMC)
method for the existential part of Metric Temporal Logic (MTL). The MTL logic
is interpreted over linear dense infinite time models generated by timed automata
with dense time. We implemented the new SMT-based bounded model checking
technique for MTL and as a case study we applied the technique to the analysis of
the Timed Generic Pipeline Paradigm and Timed Train Controller System, both
modelled by a network of timed automata.

1 Introduction

Timed automata [2] are very convenient for modelling and reasoning about real-time
systems: they combine a powerful formalism with advanced expressiveness and effi-
cient algorithmic and tool support. The timed automata formalism is now applied to
the analysis of timing analysis of software and asynchronous circuits [12] and real-
time control programs [13]. Timed automata technology was also used to analysis of
numerous real-time communication protocols [20].

Timed automata (TA) are adequate to represent systems, but not that much for rep-
resenting properties of systems3. Temporal logics are a well known framework in the
field of specification and verification of computer systems [18]. Linear Temporal Logic
(LTL) allows to express properties about each individual execution of a system, such
as the fact that any occurrence of a problem eventually triggers the alarm. Real-time
constraints have naturally been added to temporal logics [16, 1] at the beginning of the
90s. The resulting logics allow to express e.g. that any occurrence of a problem in a
system will trigger the alarm within at most 5 time units.

Metric Temporal Logic (MTL) [16] was discussed in the literature e.g on the ver-
ification of real-time systems [14, 11, 22, 19, 7]. MTL extends the until and globally

3 Assume that one TA represents a system and the second TA represents a property of the
system. We would like to check if TA representing the system satisfies the property. This
problem is unfortunately undecidable for timed automata.
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operators of classical temporal logic with an interval which specifies the time interval
within which the formula must be satisfied. The MTL logic has traditionally been in-
terpreted in two ways: the pointwise and the continuous semantics. In this paper we are
focused on the pointwise version. The temporal assertions are interpreted only at time
points where an action happens in the observed timed behaviour of a system.

Bounded model checking [8, 9, 17] (BMC) is one of the symbolic model checking
technique designed for finding witnesses for existential properties or counterexamples
for universal properties. Its main idea is to consider a model reduced to a specific depth.
The method works by mapping a bounded model checking problem to the Boolean
satisfiability problem (SAT) or to satisfiability modulo theories problem (SMT).

The satisfiability and model checking problems for MTL are undecidable over the
interval-based semantics [5]. This has led to consider various restrictions on MTL to
recover decidability [21, 22, 3]. The main steps of our new method for MTL and timed
automata with dense time can be described as follows:

1. the timed model (infinite) is reduced to a finite model,
2. the MTL formula is translated to LTLq formula [24, 25],
3. since the interval modalities in MTL appear as literals in LTLq formula, the exis-

tential properties are reduced to a satisfiability modulo theories problem (SMT).

We evaluate the new BMC method experimentally by means of a timed generic
pipeline paradigm (TGPP) and timed train controller system, which are modelled by a
network of timed automata with dense time.

2 Timed Automata

The model of timed automata has been defined in the 90s by Alur and Dill as a model
for representing systems with real-time constraints. A timed automaton is basically a
finite automaton which manipulates finitely many variables called clocks.

We assume a finite set X = {x0, . . . , xn−1} of variables, called clocks. A clock
valuation is a total function v : X 7→ IR that assigns to each clock x a non-negative
real value v(x). The set of all the clock valuations is denoted by IR|X |. For X ⊆ X , the
valuation v′ = v[X := 0] is defined as: ∀x∈X , v′(x) = 0 and ∀x∈X \X , v′(x) =
v(x). For δ ∈ IR, v + δ denotes the valuation v′′ such that ∀x ∈ X , v′′(x) = v(x) + δ.
Let x ∈ X , c ∈ IN, and ∼ ∈ {<,6,=,>, >}. A guard over X is a finite conjunction
of expressions of the form x ∼ c. We denote by C(X ) the set of guards over X . A clock
valuation v satisfies a clock guard cc, written as v |= cc, iff cc evaluates to true using the
clock values given by the valuation v.

Definition 1. A timed automaton is a tupleA= (Act, Loc, `0, T,X , Inv,AP, V ), where

– Act is a finite set of actions,
– Loc is a finite set of locations,
– `0 ∈ Loc is an initial location,
– T ⊆ Loc×Act× C(X )× 2X × Loc is a transition relation,
– X is a finite set of clocks,
– Inv : Loc 7→ C(X ) is a state invariant function,



– AP is a set of atomic proposition, and
– V : Loc 7→ 2AP is a valuation function assigning to each location a set of atomic

propositions true in this location.

Each element t ∈ T is denoted by `
σ,cc,X−→ `′, and it represents a transition from location

` to location `′ on the input action σ. X ⊆ X is the set of the clocks to be reset with
this transition, and cc ∈ C(X ) is the enabling condition for t.

2.1 Concrete model

The semantics of the timed automaton is defined by associating a transition system with
it, which we call a concrete model.

Definition 2. Let A = (Act, Loc, `0, T,X , Inv,AP, V ) a timed automaton, and v0a
clock valuation such that ∀x∈X , v0(x) = 0.

A concrete model for A is a tupleMA = (Q, q0,−→,V), where

– Q = Loc× IRn s a set of the concrete states,
– q0 = (`0, v0) is the initial state,
– −→⊆ Q×Q is a total binary relation on Q defined by action and time transitions

as follows. For a ∈ Act and δ ∈ IR+,

1. Action transition: : (`, v) a−→ (`′, v′) iff there is a transition `
a,cc,X−→ `′ ∈ T

such that v |= cc ∧ Inv(`) and v′ = v[X := 0] and v′ |= Inv(`′),

2. Time transition: (`, v) δ−→ (`, v + δ) iff v |= Inv(`) and v + δ |= Inv(`).
– V : Q 7→ 2AP is a valuation function such that V((`, v)) = V (`) for each state
(`, v) ∈ Q.

A run ρ in a concrete model for the timed automata A is a infinite sequence of

concrete states q0
δ0,a0−→ q1

δ1,a1−→ q2
δ2,a2−→ . . . such that qi ∈ Q, ai ∈ Act and δi ∈ IR+,

for all i ∈ IN. An assumption that δi ∈ IR+ implies that runs are strongly monotonic.
This is because the definition of the run does not permit two consecutive actions to be
performed one after the other, i.e., between each two actions some time must pass.

3 MTL logic

MTL logic [16] (metric LTL) is a timed temporal logic with interval operators. It has
received much attention in the literature on the verification of real-time systems. MTL
can express many time constraints. For example we can express a system property: if a
system is in the state q, than it will be in the state q′ exactly 3 time units later.

Syntax Let p ∈ AP be a propositional variable and I be an interval in IN of the form
[a, b) or [a,∞), where a, b ∈ IN and a < b. The MTL logic in release positive normal
form is defined in the following way:

α := true | false | p | ¬p | α ∧ α | α ∨ α | αUIα | GIα.



Intuitively, UI and GI are the operators for, respectively, bounded until and bounded
always and they are ridden as, respectively, „until in the interval I” and „always in the
interval I”. The operators FI and RI are defined in the standard way:

FIα
df
= trueUI α αRIβ

df
= GIβ ∨ β UI(α ∨ β).

Semantics Over dense time the logic has traditionally been interpreted in either of two
ways which have come to be known as the “pointwise” and the “continuous” seman-
tics [10]. In the pointwise approach temporal assertions are interpreted only at time
points where action happens in the observed timed behaviour of a system. In the con-
tinuous one is allowed to assert formulae at arbitrary time points between actions as
well.

In the presented method we use the pointwise semantics.
LetA be a time automata,MA = (Q, q0,−→,V) be a concrete model for the timed

automataA, ρ : q0
δ0−→ q′0

a0−→ q1
δ1−→ q′1

a1−→ q2
δ2−→ q′2

a2−→ . . . be a run in A, which

can be written in the shorter way: ρ : q0
δ0,a0−→ q1

δ1,a1−→ q2
δ2,a2−→ . . .. Each of the runs

determines the path λρ: q0, q′0, q1, q
′
1, q2, q

′
2 . . . in an unambiguous way. Given a run ρ

one can define a function ζρ : IN 7→ IR+ such that, for all the position j > 0, ζρ(j) is
a sum of all the time transitions along the run ρ till the position j. For all j > m, the
function ζρ(j) returns the value of the global time (in [10] called „duration”).

To make the definition more clear we use a notation (λρ,m)|=EMTLϕ instead of
M, (λρ,m)|=EMTLϕ, for each MTL formula ϕ.

Definition 3. Let α and β be MTL formulae. The satisfaction relation |=EMTL, which
indicates truth of an MTL formula in the concrete modelMA along a path λρ starting
at position m ∈ IN, is defined inductively as follows:

(λρ,m) |=EMTL true,
(λρ,m) 6 |=EMTL false,
(λρ,m) |=EMTL p iff p ∈ V(ρ(m)),
(λρ,m) |=EMTL ¬p iff p 6∈ V(ρ(m)),
(λρ,m) |=EMTL α ∧ β iff (λρ,m) |=EMTL α and (λρ,m) |=EMTL β,
(λρ,m) |=EMTL α ∨ β iff (λρ,m) |=EMTL α or (λρ,m) |=EMTL β,
(λρ,m) |=EMTL αUIβ iff (∃j ≥ m)(ζρ(j) − ζρ(m) ∈ I and (λρ,m+ j) |=EMTL β
and (∀m 6j′<j)(λρ,m+ j′) |=EMTL α),
(λρ,m)|=EMTL GIβ iff (∀j ≥ m)(ζρ(j)− ζρ(m)∈ I implies (λρ,m+ j) |=EMTL β).

As (λρ, 0) = λρ, we shall writeMA, λρ |=EMTL ϕ forMA, (λρ, 0) |=EMTL ϕ.
An MTL formula ϕ is existentially valid in the modelMA, denotedMA |=EMTL Eϕ,
if, and only ifMA, λρ |=EMTL ϕ for some path λρ starting in the initial state ofMA.
Determining whether an MTL formula ϕ is existentially valid in a given model is called
an existential model checking problem.

4 SMT-based bounded model checking

The verification method presented in this paper is based on the translation of MTL
formulae to LTLq formulae defined in [24, 25]. We do not report on this step here in



detail, since it requires introducing the huge mathematical machinery, but in fact it can
be done in a way similar to the one presented in [24]. However, this will be provided in
the full version of the paper. We refer the reader to the chapter 4 of the thesis [24] for
details.

The SMT-based bounded model checking can be described in the following steps:

1. Since the concrete model is infinite we have to abstract the model to be able to
applied bounded model checking technique. It is a well-known technique [15, 4].

2. We use the EMTL semantics in the abstract model [24] and translate the EMTL
formula into an LTLq formula.

3. The next step is standard. It consists of a translation of the transition relation in
the depth k in the abstract model and the LTLq formula into satisfiability modulo
theories problem. The difference between the BMC method for classic LTL and our
method lies in encoding of a finite prefix (ζπ̃l

(0), ζπ̃l
(1), . . .).

4. After the translation to SMT, the SMT-solver checks the satisfiability of the LTLq

formula in the abstract model.

5 Experimental results

In this section we experimentally evaluate the performance of our new translation.
We have conducted the experiments using the slightly modified timed generic pipeline
paradigm (TGPP) and timed train controller system (TTCS) [23].

5.1 Timed Generic Pipeline Paradigm

The Timed Generic Pipeline Paradigm (TGPP) timed automata model shown in Figure 1
consists of a Producer producing data within the certain time interval ([a, b]) or being
inactive, a Consumer receiving data within the certain time interval ([c, d]) or being
inactive within the certain time interval ([g, h]), and a chain of n intermediate Nodes
which can be ready for receiving data within the certain time interval ([c, d]), processing
data within the certain time interval ([e, f ]) or sending data. We assume that a = c =
e = g = 1 and b = d = f = h = 2 · n + 2, where n represents a number of nodes in
the TGPP.

To compare our experimental results with [23], we have tested the TGPP timed
automata model, scaled in the number of intermediate nodes on the following MTL
formulae that existentially hold in the model of TGPP (n is the number of nodes):

– ϕ1 = F[0,2·n+3)(ConsReceived). It expresses that Consumer receives the data in
at most 2 · n+ 3 time units.

– ϕ2 = G[0,2·n+2)(ConsReady). It states that the Consumer is always forced to
receive the data in 2 · n+ 2 time units.

– ϕ3 = G[0,∞)(ProdReady∨ConsReady). It states that always either the Producer
has sent the data or the Consumer has received the data.

– ϕ4 = F[0,2·n+3)(G[0,∞)(ProdSend ∨ ConsReceived)). It states that eventually
in time less then 2 ·n+3 it is always the case that the Producer is ready to send the
data or the Consumer has received the data.

– ϕ5 = G[0,∞)(F[0,2·n+3)(ConsReceived)). It states that the Consumer infinitely
often is receiving the data in time less then 2 · n+ 3.



Fig. 1: The TGPP system.

5.2 Timed Train Controller System

Fig. 2: The TTCS system.

The Timed Train Controller System (also known as Fischer’s mutual exclusion pro-
tocol) consists of n (for n ≥ 2) trains T1, . . . , Tn, each one using its own circular track
for travelling in one direction and containing its own clock xi, together with controller
C used to coordinate the access of trains to the tunnel through which all trains have to
pass at certain point. There is only one track in the tunnel, so trains arriving from each
direction cannot use it in this same time. There are signals on both sides of the tunnel,
which can be either red or green. All trains notify the controller when they request en-
try to the tunnel or when they leave the tunnel. The controller controls the colour of
the displayed signal, and the behaviour of the scenario depends on the values δ and ∆
(∆ ≥ δ makes it incorrect - the mutual exclusion does not hold).

Controller C has n + 1 states, denoting that all trains are away (state 0), and the
numbers of trains, i.e., 1, . . . , n. Controller C is initially at state 0. The action Starti



of train Ti denotes the passage from state away to the state where the train wishes to
obtain access to the tunnel. This is allowed only if controller C is in state 0. Similarly,
train Ti synchronises with controller C on action approachi, which denotes setting C
to state i, as well as outi, which denotes setting C to state 0. Finally, action ini denotes
the entering of train Ti into the tunnel.

– ψ1 = F[0,7)(
∨n−1
i=1

∨n
j=i+1(tunneli∧tunnelj)). It states that the mutual exclusion

property is violated, i.e. for some path some two trains are in the tunnel at the same
time. The formula is existentially valid in the model if and only if ∆ ≥ δ.

– ψ2 = G[0,∞)(F[0,9)(
∨n
i=1(tunneli))). It states that always eventually some of the

trains enters the tunnel. The formula is existentially valid in the model regardless
of the values of ∆ and δ.

– ψ3 = F[0,∞)(
∨n
i=1(tunneli)). It states that eventually all the trains are in the

tunnel. The formula is existentially valid in the model if ndonlyif∆ ≥ δ.

5.3 Performance evaluation

We have performed our experimental results on a computer equipped with I7-5500U
processor, 12 GB of RAM, and the operating system Linux with the kernel 5.2.9. Our
SMT-based BMC algorithm is implemented as standalone programs written in the pro-
gramming language C++. We used the state of the art SMT-solver Z3 (program version
8.4.5).
TGPP

The number of considered k-paths (fk) for the translation is always equal to 1. The
length of the witness for the formula ϕ1 is equal to 4 · (n + 1) ; for the formula ϕ2 is
equal to 8 · n + 6; for the formula ϕ3 and is equal to 8 · n + 6; for the formula ϕ4 is
equal to 8 · n+ 15; for the formula ϕ5 is equal to 8 · n+ 6.

The experimental results presented on the Fig. 3 show total time usage. We can
observe that the SMT-based method is sensitive to scaling up the size of the bench-
marks. For more complicated formulae time usage grows very fast with the size of the
benchmark.

The maximum memory usage for all the formulae showed on the Fig. 4 is not very
big. The biggest memory usage was for the formula ϕ5 and it amounts 375 MB.

Fig. 5 shows time usage for bounded model checking algorithm ( translation of the
model and the formula to SMT format) and for the SMT-solver. We can observe that
almost the whole time were consumed by the SMT-solver (the y axis has different scale
on both figures). Generating a quantifier-free first-order formula in every case took less
than 45 sec.

Fig. 6 shows memory usage for the BMC algorithm and SMT-solver. We can ob-
serve that for the formulae ϕ1 and ϕ3 the BMC algorithm did not use a lot of memory
and the SMT-solver consumed almost the whole memory in this case. For other formu-
lae the memory usage for BMC and SMT-solver is almost the same.
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TTCS
As we mentioned before, the number of considered k-paths (fk) for the translation

is always equal to 1. The length of the witness for the formula ψ1 is equal to 12 and for
the formula ψ2 is equal to 7. For the formula ψ3 the length of the witness is equal to 12
for two trains, 18 for three trains, 32 for four trains, and 38 for five trains.
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Fig. 7 shows the time usage for the verification process for all the formulae. We can
observe that the third formula could be verified only for the TTCS with 5 trains. We
tried to verify it for the system with 6 trains but we gave up after 6 hours. Fig. 8 shows
the memory usage for all the formulae.

Fig. 9 shows the time usage for BMC and SMT for all the formulae and TTCS.
For the formula ψ2 we can observe that BMC algorithm uses more time than the SMT-
solver. However, the plot for this formula and SMT looks a bit weird. We expect that
with the scaling up the benchmark the time usage would be bigger. For 120 and 130



trains we have the opposite situation. The reason of this situation is the heuristic of the
SMT-solver. Z3 solver found the valuation faster. We think that the interesting future
work will be finding the optimal SMT file for SMT-solvers [6].
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6 Conclusions

We have implemented and experimentally evaluated an SMT-based BMC method for
real-time systems, which are modelled by timed automata with dense time, and for
properties expressible in MTL with the semantics over timed automata. We have exper-
imentally evaluated the method. The method is based on a translation of the existential
model checking for MTL to the existential model checking for LTLq, and then on the
translation of the existential model checking for LTLq to the satisfiability modulo the-
ories problem.

In the future we would like to develop a corresponding SAT-based method. Devel-
oping the SMT-based method as a first method was a natural way to solve the problem.
SMT encoding is easier to implement. However, the SAT encoding in many cases is
more precise, what may give better experimental results.
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