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Abstract. In the work we have implemented an ensemble of Naive
Bayes classifiers using committee of bootstraps and monte carlo splits.
We have conducted 50 iterations of learning in each tested model. Fixed
percentage of random objects from the original training system was used.
New training decision systems that were considered consisted of 10 to
100 percent of random objects from original training decision system.
Two main variants were checked, first with objects returning after the
drawn (bootstraps) - and without returning (as monte carlo splits). We
have presented how Naive Bayes classifier works in mentioned models on
selected data from UCI repository.
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1 Introduction

The ensemble scheme of classification is really effective in many contexts, for
instance in rough set methods the exemplary successful applications can be found
in [1, 2, 8, 9, 12, 17, 20]. In the work we are trying to answer the question of how
the fixed percentage of drawn objects from the original training set can influence
the ensemble of Naive Bayes (NB) classifiers. We have implemented two variants
for committees - bootstrap and monte carlo split. In Sect. 2 we have introduced
theory and show toy examples for Naive Bayes classifier. In Sect 3 we have
brief introduction to used Ensemble models. In Sect. 4 we show the experiment
settings and in Sect. 5 the results of the experiments. We conclude the paper in
Sect. 6. Let us to start with basic knowledge about used classifier [15].
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2 Naive Bayes classifier

The Bayes classifier, for a general perspective, cf., Mitchell [11], Devroye et al.[6],
Duda et al. [7], or Bishop [4], for monographic expositions, and Langley et al.
[10], and, Rish et al. [16] for analysis of classifier performance vs. data structure,
was introduced in Ch. 3. Its study in rough set framework was, given, e.g., in
Pawlak [14], Al–Aidaroos et al. [3], Cheng et al. [5], Su et al. [21], Wang et al.
[23], [24], Yao and Zhou [26], Zhang et al. [27].

Naive Bayes classifier owes its naivety epithet to the fact that one assumes
the independence of attributes which condition in reality is not often met. Its
working in the realm of decision systems can be described concisely as follows.
For a given training decision system (Utrn, A, d) and a test system (Utst, A, d),
where U = Utrn∪Utst is the set of objects, A = {a1, a2, ..., an} is the conditional
attribute set, and d is the decision attribute.

The classification of a test object v ∈ Utst described by means of its infor-
mation set (a1(v), a2(v), ..., an(v)) consists of computing for all decision classes
the value of the parameter

P (d = di|b1 = a1(v), b2 = a2(v), ..., bn = an(v))

and the decision on v is the decision value with the maximal value of the pa-
rameter.

The Bayes theorem along with the frequency interpretation of probability
allows to express this probability as

P (b1 = a1(v), b2 = a2(v), ..., bn = an(v)|d = di) ∗ P (d = di)

P (b1 = a1(v), b2 = a2(v), ..., bn = an(v))
(1)

One usually dispenses with the denominator of equation 1, because it is constant
for all decision classes. Assuming independence of attributes, the numerator of
equation 1 can be computed as

P (d = di) ∗
n∏

m=1

P (bm = am(v)|d = di).

In practice, we can use partial estimation

P (bm = am(v)|d = di) =
number of test instances bm = am(v) in training class di

cardinality of class di
.

Each decision class is voting by submitting the value of the parameter

Paramd=di = P (d = di) ∗
n∏

m=1

P (bm = am(v)|d = di). (2)

In this approach, we could encounter a problem of zero frequency of a descriptor
bm = am(v) in a class di, i.e., P (bm = am(v)|d = di) = 0. One of the methods



to avoid the problem of zero–valued decisive parameters, is to search among the
remaining classes for the smallest non–zero value of P (bm = am(v)|d = dj).
The found value is additionally slightly lowered, and assigned instead of the zero
value. In case of more than one class with the zero frequency of the descriptor
bm = am(v), we could assign such reduced value to all of them. Another method
to avoid this problem is to consider the remaining decision classes, which contain
the value bm = am(v). In case of the zero frequency of the descriptor bm =
am(v) in all training classes, this descriptor can be disregarded. In order to help
ourselves with the task of computing with small numbers, we can use logarithms
of probabilities. In practice, it is also acceptable to use sums instead of products
in which case decision classes vote by the parameter

Paramd=di = P (d = di) ∗
n∑

m=1

P (bm = am(v)|d = di). (3)

This classifier is fit for symbolic attributes. In case of numerical data, assuming
the normal distribution, the probability P (bm = am(v)|d = di) can be estimated
based on the Gaussian function

f(x) =
1√

(2 ∗ π ∗ σ2
c )
∗ e

−(x−µc)2

2∗σ2c .

To compute this value, the estimates of mean values and variances in decision
classes are necessary:

µc =

∑cardinality of class c
i=1 a(vi)

cardinality of class c
,

σ2
c =

1

cardinality of class c
∗

cardinality of class c∑
i=1

(a(vi)− µc)
2.

2.1 An example of Bayes classification

In this section we show an exemplary classification on the lines of equation (2).
The test decision system is given as

Table 1. Test system (X,A, c)

a1 a2 a3 a4 c

x1 2 4 2 1 4
x2 1 2 1 1 2
x3 9 7 10 7 4
x4 4 4 10 10 2

and the training system is



Table 2. Training system (Y,A, c)

a1 a2 a3 a4 c

y1 1 3 1 1 2
y2 10 3 2 1 2
y3 2 3 1 1 2
y4 10 9 7 1 4
y5 3 5 2 2 4
y6 2 3 1 1 4

We have P (c = 2) = 3
6 = 1

2 , P (c = 4) = 1
2 .

We start with classification of the test object x1 whose information set is (2, 4, 2, 1)
and the decision c = 4.

According to the formula in (??), we obtain
P (a1 = 2|c = 2) = 1

3 .
P (a2 = 4|c = 2) = 0

3 we cannot handle it, there is no descriptor a2 = 4 in all
classes. Next,

P (a3 = 2|c = 2) = 1
3 .

P (a4 = 1|c = 2) = 3
3 .

Finally, Paramc=2 = 1
2 ∗ ( 1

3 + 0
3 + 1

3 + 3
3 ) = 5

6 .
Continuing, we obtain
P (a1 = 2|c = 4) = 1

3 .
P (a2 = 4|c = 4) = 0

3 we cannot handle it, there is no descriptor a2 = 4 in all
classes.
P (a3 = 2|c = 4) = 1

3 .
P (a4 = 1|c = 4) = 2

3 .
Finally, Paramc=4 = 1

2 ∗ ( 1
3 + 0

3 + 1
3 + 2

3 ) = 2
3 .

As Paramc=2 > Paramc=4, the object x1 is assigned the decision value of 2.
This decision is inconsistent with the expert decision, this object is incorrectly
classified.

For the second test object x2, with the information set (1, 2, 1, 1) and the deci-
sion value of 4, we obtain in the analogous manner:

P (a1 = 1|c = 2) = 1
3 , we increase counter by 1 because P (a1|c = 4) = 0 so

finally P (a1 = 1|c = 2) = 2
3 .

P (a2 = 2|c = 2) = 0
3 we cannot handle it because the descriptor a2 = 2 is

missing in all classes.
P (a3 = 1|c = 2) = 1

3 .
P (a4 = 1|c = 2) = 3

3 ,
so Paramc=2 = 1

2 ∗ ( 2
3 + 0

3 + 1
3 + 3

3 ) = 1.



P (a1 = 1|c = 4) = 0
3 , in this case we have to increase counter of P (a1 = 1|c = 2)

by one to account for the class, which contains at least one count of the descrip-
tor a1 = 1.

P (a2 = 2|c = 4) = 0
3 , we cannot handle it, a2 = 2 is missing in all classes.

P (a3 = 1|c = 4) = 1
3 .

P (a4 = 1|c = 4) = 2
3 , so, finally, Paramc=2 = 1

2 ∗ ( 0
3 + 0

3 + 1
3 + 2

3 ) = 1
2 .

As Paramc=2 > Paramc=4, the object x2 is assigned the decision value of 2; this
decision is consistent with the expert decision so the object is correctly classified.

The next test object is x3 with the information set (9, 7, 10, 7, 4).

We have Paramc=2 = P (c = 2) ∗
∑4

i=1 P (ai = vi|c = 2), and,

P (a1 = 9|c = 2) = 0
3 .

P (a2 = 7|c = 2) = 0
3 .

P (a3 = 10|c = 2) = 0
3 .

P (a4 = 7|c = 2) = 0
3 ,

so, finally, Paramc=2 = 1
2 ∗ ( 0

3 + 0
3 + 0

3 + 0
3 ) = 0.

Also, for Paramc=4 = P (c = 4) ∗
∑4

i=1 P (ai = vi|c = 4), we have
P (a1 = 9|c = 4) = 0

3 .
P (a2 = 7|c = 4) = 0

3 .
P (a3 = 10|c = 4) = 0

3 .
P (a4 = 7|c = 4) = 0

3 ,

and, finally, Paramc=2 = 1
2 ∗ ( 0

3 + 0
3 + 0

3 + 0
3 ) = 0.

As Paramc=2 == Paramc=4, the random decision random(2, 4) = 4 is assigned
to x3, so the object is correctly classified.

For the last test object, x4 with the information set (4, 4, 10, 10, 4), we com-
pute

Paramc=2 = P (c = 2) ∗
∑4

i=1 P (ai = vi|c = 2):
P (a1 = 4|c = 2) = 0

3 .
P (a2 = 4|c = 2) = 0

3 .
P (a3 = 10|c = 2) = 0

3 .
P (a4 = 10|c = 2) = 0

3 ,

and, finally, Paramc=2 = 1
2 ∗ ( 0

3 + 0
3 + 0

3 + 0
3 ) = 0.

For Paramc=4 = P (c = 4) ∗
∑4

i=1 P (ai = vi|c = 4),we need:
P (a1 = 4|c = 4) = 0

3 .
P (a2 = 4|c = 4) = 0

3 .
P (a3 = 10|c = 4) = 0

3 .
P (a4 = 10|c = 4) = 0

3 ,



hence, Paramc=2 = 1
2 ∗ ( 0

3 + 0
3 + 0

3 + 0
3 ) = 0.

A random decision assignment random(2, 4) = 4 causes x4 to be incorrectly
classified.
We now compute parameters:

Global Accuracy =
number of tst objects correctly classified in whole test system

number of classified objects in whole testsystem
;

Balanced Accuracy =

∑number of classes
i=1

number of test objects correctly classified in class ci
number of objects classified in class ci

number of classes
.

In our exemplary case, these values are

Global Accuracy =
2

4
=

1

2
;

Balanced Accuracy =
1
2 + 1

2

2
=

1

2
.

Tst obj Expert decision Decision of our classifier
x1 4 2
x2 2 2
x3 4 4
x4 2 4

3 Selected ensemble models

There are many techniques in the family of Ensemble models. One of the most
popular are Random Forests, Bagging and Boosting - see [25]. Short description
of used models is to be found below.

Bootstrap Ensembles - Pure Bagging: It is the random committee of bootstraps
[28]. It is a method in which the original decision system - the basic knowledge
- is split into (TRN) training data set, and (TSTvalid) validation test data set.
And from the TRN system, for a fixed number of iterations, we form a new
Training systems (NewTRN) by random choice with returning of card{TRN}
objects. In all iterations we classify the TRNvalid system in two ways: the first
based on the actual NewTRN system and the second based on the committee
of all performed classifications. In the committee majority voting is performed
and the ties are resolved randomly.

Committee of Monte Carlo splits: Classification method used in this algorithm
is similar to the previously described with the difference that the NewTST are
formed in a different way - see [13], [19] and [29]. Objects for NewTRN are simply
random chosen without returning.



4 Experimental Session settings

In the next subsections we present information on how the models described
above are used in our experiments.

4.1 Committee of Monte Carlo splits for NB Classifier

We have carried out a series of experiments using Australian credit data set
form University of Irvine repository [22]. The original decision-making system
was split by 20 to 80 percent for tst and trn sets respectively. In the case of
iterations the monte carlo model, when creating new training systems, objects
are randomly drawn without return. Each draw is followed by a classification
of tst by a single classifier and a committee of previously learned classifiers. We
ran 10 tests, where for Test i: we consider i ∗ 10 percent of random objects.

4.2 Committee of Bootstraps with NB classifier

The method [28] works in the same way as described above, but the only differ-
ence is that the objects are returned after the draw and it is possible to see the
copies in the training systems. The other experimental settings are identical.

As the base classifier we used the NB classifier from Sect. 2 for symbolic
data. Effectiveness is assessed by the accuracy of the classification - expressed
as a percentage of correctly classified objects.

5 Results of experiments

In Figs. 1 to 10 we have the classification results based on the training systems
formed from 10 to 100 percent random objects of the original training system.
There are two variants presented - on the left-hand side a draw without a return
- on the right-hand side a draw with a return. Additionally, in Tables 3 and 4 we
present the average result of 50 iterations of learning with additional parameters
of assessment of the quality of classification. We used our own implementations
to carry out the tests.

5.1 Discussion of results for NB

From the results we can conclude that single classifiers may work unstable when
they are based on a small part of the original training system. That is, when
sets of objects from individual iterations do not overlap. Another reason for their
instability of single classifications may be the appearance of copies of objects for
appropriately larger training systems in the return variant. The classification
committee, starting from 20 iterations, starts to work steadily even for the only
10 percent of the drawn objects. The classification committee seems to be slightly
more stable for the monte carlo split but its in the range of standard deviation
of results. Individual classifications from individual iterations with the help of



larger training systems are much more stable in the case of the monte carlo
technique. But this does not have a major impact on the final effectiveness of
the classification committee.

Fig. 1. tst20% - trn10%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning



Fig. 2. tst20% - trn20%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning

Fig. 3. tst20% - trn30%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning



Fig. 4. tst20% - trn40%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning

Fig. 5. tst20% - trn50%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning



Fig. 6. tst20% - trn60%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning

Fig. 7. tst20% - trn70%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning



Fig. 8. tst20% - trn80%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning

Fig. 9. tst20% - trn90%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning



Fig. 10. tst20% - trn100%: no returning vs. with returning: result for australian credit
dataset - the accuracy of classification - 50 iterations of learning

Table 3. An average effectiveness from 50 iterations, in each test we have 20 percent
of tst, for Test i, trn=i*10% random objects without returning; Global Accuracy is the
percentage of correctly classified objects, Global Coverage is percentage of classified
objects, TPR 0 and TPR 1 is the precision of the classification in class 0,1 respectively,

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10

Global Accuracy 0.71 0.76 0.79 0.80 0.81 0.81 0.82 0.83 0.83 0.83
Global Coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TPR 0 0.73 0.73 0.75 0.76 0.76 0.77 0.77 0.78 0.78 0.79
TPR 1 0.72 0.85 0.88 0.93 0.95 0.95 0.95 0.95 0.94 0.94

6 Conclusions

In this experimental work we checked the performance of the Näıve Bayes clas-
sifier in the context of the classification committees based on a fixed percentage
of objects drawn from the training system. We used two techniques to create
training systems in particular iterations - the first one is based on the monte
carlo split, where objects are drawn without returning them - the second one is
based on the bootstrap model, where objects are returned. It turned out that



Table 4. An average effectiveness from 50 iterations, in each test we have 20 percent
of tst, for Test i, trn=i*10% random objects with returning

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10

Global Accuracy 0.73 0.78 0.75 0.77 0.79 0.76 0.77 0.81 0.78 0.81
Global Coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TPR 0 0.73 0.75 0.73 0.74 0.75 0.72 0.73 0.77 0.74 0.76
TPR 1 0.71 0.83 0.89 0.91 0.94 0.91 0.90 0.94 0.89 0.95

Y oudenIndex 0.44 0.59 0.62 0.65 0.68 0.63 0.62 0.71 0.63 0.71

the stability of individual classifiers increases in the case of the monte carlo
method (compared to the bootstrap method) with the increase in the size of
random training systems. In the case of bootstraps, increasing the training sys-
tem causes more and more copies of objects, which apparently disturbs the NB
classification. We observed that for the examined system, up to 10 percent of
random objects used in the committee are finally starting to work steadily and
give classification results comparable to those of the whole original training sys-
tem. In each of the tests the classification committee starting from about the
twentieth iteration begins to give good, stable results.

In future works, we plan to check the detected irregularities in other decision-
making systems. We will try to check the Bayes classification under similar
conditions in the context of other ensemble methods. And we plan to test the
behavior of other selected classifiers.
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