
Attack Protection Trees ?

Aliyu Tanko Ali and Damas Gruska

Department of applied informatics, Comenius University, Slovakia.
{aliyu.ali,gruska}@fmph.uniba.sk

Abstract. In this paper, an extended model for attack tree, called at-
tack protection tree, is presented. The traditional attack trees threat
model is extended with protection actions on the leaf nodes to protect
the intermediate nodes from malicious attack. The proposed formalism
allows the protection actions to be defined at the leaf nodes, by doing
so, eliminating the chances of attack(s) being successful through OR-
refinement. The concepts are illustrated through examples and we use a
model checker for attack protection tree analyses.

Keywords: Attack trees, attack-defence trees, attack protection trees

1 Introduction

Security is a difficult topic to discuss and it remains a challenge to both users
and developers of modern systems. More than ever before, systems are expe-
riencing threats from both competitors (intellectuals theft), motivated hackers,
unintended mistakes done by users and governmental agencies as part of cy-
ber warfare between competing nations. Most of the system attacks are done
through existing vulnerabilities. Often, system developers relay on an informal
testing process to identify system vulnerabilities. However, a testing technique
can only certify that the system meets the business (user) requirements or can
only detect the presence of errors, and not their absence. As a result, it is difficult
to capture a potential threat to a system using a testing process.

In recent times, the application of formal methods for the development and
verification of systems is gaining momentum. Formal methods are a particu-
lar kind of mathematically based technique that is used for the specification,
development, and verification of complex systems. The systems are model as
mathematical entities such that; their properties can be proven and verified.
Using formal methods, it is possible to verify the system’s properties in a more
thorough fashion than empirical testing. There are many diverse formal methods
and verification techniques for modeling and checking of security properties, one
of which is attack trees (ATs) [1].

Attack trees are formal methods used in modeling varying ways in which a
system can be attacked, in a tree structure. They are one of the popular formal

? Work supported by the grant VEGA 1/0778/18. Copyright c© 2019 for this paper
by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

security engineering formalism used to reason about multi-step attack scenarios.
AT is first introduced by Schneier [1] to provide a formal way of describing the
security of a system, they are best known for their graphical representation of
attack in a tree structure where the root node of the tree is the target goal
of an attacker. Intermediate nodes (sub-trees) are refinements of this goal, and
leaf nodes representing the attacker’s actions (also called basic actions). An
attacker interacts with the system (tree) through the leaf nodes. Schneier defined
the refinement of nodes in attack tree to be of two types: AND (conjunctive)
and OR (disjunctive). In order to reach the root node, all of its AND children
(aggregation) or at least one of its OR children (choice) must be accomplished.

In the literature, different symbols are used to represents attack tree dia-
grams. For instance, logic gate symbols can be used to represents nodes (goal,
sub-goal) instead of the used of conventional circle or rectangle, while in some
paper, a rectangle with the gate symbol just below it is used.

ATs are straightforward, and easy to work with, these results to them being
adopted and used by non-security professionals in both academia and industry
to model many practical case studies such as automated teller machine (ATMs)
[2], SCADA communication systems [3], BGP routing protocols [4], to name a
few. One of the most important features of attack trees is to provide a simple
and non-technical way of understanding security problems in IT systems. How-
ever, the overwhelming growth of vulnerabilities in modern systems is increasing
spontaneously. As well as ATs lack the expressing power to represents the order
in which attacks are executed (sequential, parallel), attack deference strategy,
etc. Furthermore, there is little work done in both the industrial and academic
literature on extending the use of attack trees beyond depicting ways in which
threats can be identified.

Related work. There are several discussions about general issues and chal-
lenges in the use of attack trees for threat modeling. The basic formalism of ATs
does not include any defence mechanisms. It can only statically shows varying
ways in which a system can be attacked. Ever since the introduction of ATs, a
wide range of research areas has emerged from them, this includes; threat mod-
eling, extending refinement with introduced new gates to cover different attack
scenarios, using attack trees to analyze probabilistic attack to systems, to name
a few. We will look at some of the work done in these areas.

Threat modeling. One of the common practices for assessing risk in busi-
nesses or systems is through the use of risk management techniques, and there
exist several processes for identifying and prioritizing risks. The concept of threat
modeling is one of those processes. Traditionally, it involved the use of theoreti-
cal and mathematical concepts. Several research and projects adopted the use of
attack trees to this end. For example, the work in [2] used attack tree to identify
possible attacks to automated teller machine (ATMs), SCADA communication
systems attacks using attack trees was presented in [3], BGP routing protocols
[4] and medical implant in [5].

Extending attack trees. Several attack tree extensions have been proposed,
amongst which are attack-defence trees (ADT) [2], attack response tree (ART)
and attack countermeasures tree (ACT) [4]. ADT is an extension of attack trees
that include, not only the attackers’ actions but also the defenders’ actions
and model their interplay in the form of game theory portraying the attacker-
defenders repelling each other move [6, 2, 7]. ACT, on the other hand, extends
the defence tree with countermeasures to mitigate attackers’ actions. Attack
response tree (ART) formalism extends the attacker-defender game to find an
optimal policy from a list of countermeasures. ART is not popular as they suf-
fer a state-space explosion problem. The work in [9] used defence tree for the
evaluation of Information Technology (IT) security investments, sequential con-
junction SAND gates were introduced in [10] to model attacks that are executed
in an orderly manner.

Quantitative and qualitative analysis. An excellent survey on attack trees
and related formalism was presented by Kordy et al. [8]. The work in [11] model
the attackers’ behaviour by introducing temporal order to the attackers’ decision-
making process. In another effort, attack net for penetration texting was intro-
duced in [12]. A time-dependent technique to analyze attack time was presented
in [13]. A large number of AT analysis and verification frameworks has been de-
veloped, model-driven engineering approach [14],timed automata [15], Petri nets
[17] e.t.c. There have been quite a several tools developed for verifying different
attack scenarios. ADTool is free, open-source software assisting graphical mod-
eling and quantitative analysis of security properties using attackdefence trees,
others include SeaMonster[18] and, ATSyRa [19]. The work in [8] introduced
SPTool, an equivalence model checker for SAND ATs and attack trees in Isabel
is presented in [16].

Aim. This paper aims to go beyond attack trees, identify varying ways in which
a system can be attacked and also defining a set of protection actions at the
point at which the attacker interacts with the system. We plan to achieve this in
two ways, firstly we will adopt the concept of attack trees and introduce protec-
tion actions to counter basic attack steps. Secondly, we will use a model checker
to model our approach, verifying whether the designed protection actions are
satisfied in the model and also if the attackers’ actions can lead to an unde-
sirable state. The results obtained in this work will serve as preliminary work
that will further investigate towards dynamic attackers’ actions. We also plan to
investigate the notion of time, the flow of information within the system. This is
particularly interesting because attack trees only represent static varying ways in
which a system can be attacked while the attackers’ actions are dynamic. Also,
there are different ways in which information systems can be attacked which is
almost impossible to be captured using attack trees; for example side-channel
attacks.

This paper is organized as follows, section 1 provides an introduction and
related work on the use of attack trees for threat modeling. Section 2 provides a
review of the concepts of attack tree, we defined attack protection tree in section
3. Section 4 analyses attack protection tree using UPPAAL model checker and
end the section with the conclusion and future work direction.

2 Attack Trees

In this section, we provide a gentle introduction to attack trees and define the
working formalism of attack protection tree. Attack Tree (AT) is a methodolog-
ical way of describing the security of a system on different varying attacks with
a clear path description of possible ways to refute them. As the name implies, it
is represented in the form of a tree (read bottom-up), with the root node as the
attack target, children nodes (sub-goals) and leaf. The goal of an attacker is to
reach to the root node, children nodes are the refinement of the root node. For
any successful attack, the conditions (OR, AND) on the children nodes have to
be satisfied.

The underlying concept of attack tree threat modeling is similar to that of pop-
ular divide and conquer technique [20] where a problem is recursively broken
down into smaller problems that are theoretically simpler to reason about and
solve. Although, unlike divide and conquer technique, AT consist of two types
of nodes:

– Event nodes: This is made up of basic attack steps (BASs), intermediate
events and top event. The BASs model malicious actions carried out by the
attacker and they are modelled as the leaves of AT. The intermediate events
are caused as the results of the achievement of BASs and are referred to as
internal nodes, sub-goals or child nodes and finally, the top event is modelled
as the root of the tree.

– Gate nodes: The gates combined the BASs, representing how and in which
temporal order the successful execution of BASs results in the compromise
of node above (parent node). The OR and AND are two of the most popular
gates used to modelled simple attacks. OR gates represent different ways
and the AND to represent necessary steps toward achieving (sub)goal. For
a successful attack to be carried out through an AND-gate, the attacker has
to succeed in all of its child nodes, while through the OR-gate requires the
attacker to execute at least one child node successfully. Other gate extensions
such as SOR and SAND were introduced to model the sequential attack
process.

Besides presenting the visual attack scenarios to a system, attack trees can also
be used as formal models with assigned semantics that can be used to answer
several quantitative and qualitative questions such as; ”What is the probability
of reaching to the top node? [21], What is the cheapest attack cost? [11], Which
attacks do not require special equipment to execute an attack? [22, 21] e.t.c.

The work in [2] introduced attack-defence trees to analyze threats and provide
countermeasures to attacks on ATMs, the work extended attack trees by adding
countermeasure nodes and termed it as defence trees. The defence methods only
have OR relationships with the leaf(s) it is said to defend, meaning once the
countermeasures failed as a result of introducing another attack vector, the de-
fence mechanism will fail as well. For example, in the black box attack, a sensor
to detect ATM modules deactivation can be spoofed and that can result in a
failed defence mechanism.

3 Attack Protection Tree (APT)

In this section, we define the working formalism of attack protection trees.
Firstly, we introduce some notations that will be used to formalise the attack
protection tree definition.

3.1 APT formalism

APT is an extension of attack trees with protection actions. As stated in the
previous section, the root node is the attackers’ ultimate goal, intermediate nodes
represent sub-goals necessary to achieve the root node. We exclusively define
leaf nodes as the point of interaction between an attacker and the tree. An
attacker can only influence the tree by interacting with the leaves. All other
nodes are derived from attacker actions, meaning, only by successfully achieving
the leaf node(s) does the attacker move to the next node (intermediate). Hence,
an attacker cannot penetrate the attack tree at intermediate nodes. We formalise
APT as follows.

An attacker denoted by A, is an outsider that interact with the system to
per-take in malicious activities. A defender denoted by D, could be either human
or automated designed to counter the attackers’ actions. We represent the set of
actions which can be performed by an attacker as B. While the set of defenders
(protection) actions as P. We denoted by L = {s1, ..., sn} the set of leaves
in the tree. The attackers’ actions are defined on the leaf nodes as a function
A : L → 2B, and protection actions are associated with the leaves to block the
attackers’ action D : L→ 2P . This interprets that an attacker try to perform on
a given leaf node action b ∈ A(s), and that there is a protection action assigned
by the defender α ∈ D(s) that will block the malicious activity. For simplicity,
we denoted this as sα/b. Whereas for a leaf s, if each b ∈ A(s) is associated
with protection action α ∈ D(s) then the leaf is said to be protected, denoted as
s ` (A, D). For instance, protection action α ∈ P to password attack (attackers’
action b) could be multi-factor authentication. The general syntax of APT
is generated by the following.

T = op(S◦(t(S1),, t(SN))) (1)

Where T is a tree, op = {AND,OR}, is the gates refinement, each node which
is not a leaf is either AND or OR node. S◦ is the root of the tree (goal) and
t(Si) is a subtree/ intermediate (I) with the root Si. Based on this syntax, we
define attack protection trees as follows;

Definition 1. An attack protection tree is a tuple T = (S∗, E,B,P,A, D). Where
S∗ = {S◦} ∪ {I} ∪ {L} is the set of nodes, E is the set of edges that link two
nodes in the tree, B,P are the disjoint actions of the attacker and the defender.
A, D representing the attacker A : L→ 2B and defender D : L→ 2P respectively.

Lets assume S{s1,sn} is an intermediate node with set of leaves. The in-

termediate node S is said to be secure if ∀si,∀b ∈ A(si).{∃α ∈ D(si) : s
α/b
i } (i.e.

for each si we have si ` (A, D)). This is being denoted as S ` (A, D).

Another instance of malicious activity password attack can be viewed as the
goal of an attacker A. To achieve this, some basic actions b ∈ B has to be car-
ried out such as brute force. We can define more protection action to defend
against this attack. Example, the protection actions α ∈ P for brute force

could be restricting the number of times the attacker can make an attempt or
using a delay in between the actions and additional password masking as a
protection action to the password attack.

Example 1. Consider Fig 1 were a tree with two child nodes and three leaf nodes
is depicted. we presented in equation (2) the corresponding attack protection tree
construction that can captured both the attacker actions and the protection
actions.

Fig. 1. APT example.

S◦(S1(sα/b, sα/b), (S2(sα/b)). (2)

Assuming that gates OR, AND (denoted by ∨,∧) construction are included
in the nodes, the semantics representation of the tree in equation (2) is as follows;

S◦∨(S1(sα/b, sα/b)), (S2(sα/b)) = S◦{(S1)/P ∨ (S2)/P},
S◦∧(S1(sα/b, sα/b)), (S2(sα/b)) = S◦{(S1)/P ∧ (S2)/P}.

(3)

Fig. 2. APT with actions.

Note that, this is different from inserting a defence node on an attack path
as each intermediate (sub-tree) node S1, S2 in the tree will be protected by
protection action(s) at the leaf nodes, as shown in Fig 2.

Example 2. To demonstrate further example using this approach, we look at an
IoT device compromise (see Fig. 3), whose attack tree was presented in [14].

We work with the same set(s) of goal, sub-goals and leafs presented in the paper
and, introduced sets of basic attackers actions and protection actions which can
be seen in Table 1.

The goal (S◦) of the attack is to compromise an IoT device, the intermedi-
ate nodes (attack refinement) includes; access home network as (S1), gain access
to a private network (S2), access LAN (S3) and access WAN (S4). The leaf nodes
are; exploit software vulnerabilities (s1), run malicious scripts (s2), get creden-
tials (s3), find LAN access point (s4), spoof MAC address (s5), find WAN (s6),
and break WPA keys (s7). Attackers’ point of interaction with the tree is at the
leaf(s) nodes and therefore, protection at the attackers’ point of interaction with
the tree (leaves) will be reduced drastically the possibility of the system being

Fig. 3. IOT attack tree

basic action (b) protection action (α)

b1. use tools and techniques weaknessα1. Access restriction, IPSs to
block exploit behaviors

b2. email attachments α2. Watch out for malicious or compromised websites

b3. crack password α3. avoid simple passwords that are easy to guess

b4. install rogue access point α4. wireless intrusion detection systems (IDS)

b5. explore weak authentication α5. Use encrypted protocols

b6.rogue access point α6. wireless intrusion detection systems (IDS)

b7. deauth attack α7. use a non-standard channel and hid it
Table 1. List of basic, protection actions

compromised. As it is often the case in security analysis, it is difficult to obtain
precise data (all basic action and protection action), and our guesses are not
intended to reflect reality, but rather to illustrate our formalism.

S◦∧(S1∧(sα1/b1 , S2∨(S3∧(sα2/b2 , sα3/b3), S4∧(sα4/b4 , sα5/b5))), sα6/b6 , sα7/b7).
(4)

Securing the leaf node (in our belief) provide better protection rather than
a single defence node to protects the intermediate node, by applying protec-
tion actions at each leaf node, the risk of an attack occurring through the OR
refinement will be eliminated.

4 Analysing Attack Protection Trees via Automata

Formal methods play an essential role in developing safety-critical systems. At
the heart of formal methods, (formal) specification and verification are used to
model and analyse security, safety, and system behaviour. Model-checking has

proven to be a successful technique for requirements verification, design, and
analysis for various real-time systems [23]. Although at this point, we did not
consider attributes for attack protection tree, we make use of UPPAAL [24],
a model checker, to analyze attack protection trees. One of the strengths of
UPPAAL is; the ability to model systems with quantitative attributes (time,
cost. e.t.c).

We provide a compositional semantics of APT in terms of finite-state au-
tomata (FSM). We translate the entire APT element into an FSM and then
analyse the APTs by formulating security and safety properties of interest as
queries in CTL logic [25].

As an example, consider a modern critical infrastructure where different in-
dependent systems made up of a larger critical system that is essential for the
functioning of a society and economy [26]. Sometimes, these systems can be
composed of different inter-dependent components (systems) to provide bet-
ter performance. For example, agriculture and water supply; modern irrigation
systems (agriculture) heavily depend on the use of water (water supply) from
sources such as a local reservoir or dams. However, cyber-attacks are considered
one of the major threats and most challenging problems to such critical infras-
tructures. To model and analyze this system using attack protection tree, we
partition it into 3 three; the infrastructure model, the attacker model, and the
protection model.

4.1 Infrastructure model

The infrastructure model provides an abstract interaction view of the behaviour
of different components in the system. Using UPPAAL, we model these com-
ponents as locations, create channels that synchronise B ∈ A to indicates the
desire of the attacker to influence the locations. In Fig 4, we presented the in-
frastructure model in UPPAAL, we created 4 channels (attck, succ, unsucc,

attack failed) and use them to trace the attackers actions. The attck chan-
nel is for initiating the action, succ channel synchronises successful actions of
the attacker while the failed actions are passes through unsucc channel. The
attack failed channel returns the attacker to the initial location. The loca-
tions in Fig. 4 for the infrastructure model are; S0, S1, S2, S3. S0 indicates the
initial state where the attacker execute actions, when the actions are successful,
In the case of protection action α ∈ D(s) is true on b ∈ A(s), the attacker will
be left with no option since the transition will be to failed location. S1 and S2
are intermediate locations which could be reach depending the actions of the
attacker, while S3 is represent the target goal.

4.2 Attacker model

Since the attacker has no strong influence on the system without b ∈ A(s) being
successful, successful execution of the action will results in a transition to the
next location while unsuccessful will force the system to failed location. The

Fig. 4. UPPAAL analysis of APT model

attacker model in Fig. 4 models the behaviour of the received broadcast from
the infrastructure model.

4.3 Protection model

As for the protection model, the main aim is to have a protection action that
will counter the basic action of the attacker. We set this as a guard condition,
depicted as protect model in one of the sections in Fig 4. In the Figure, the
expression a == false at location S0 → S1 restrict the transition of attck while
be possible only then the variable a is false while the assignment b = false, is
an update whenever the basic action is failed in the attack failed.

5 Conclusion and future work

This paper provides a gentle introduction to attack protection tree, we formalise
the definition and apply the concept in some examples. As for this work, we
did not consider scenarios concerning a given parameter (quantification) to an-
alyze APT. As earlier mentioned, this work serves as preliminary for the future
work ahead. We plan to extend APT to analyze case studies incorporating real-
istic values, dynamic attackers’ actions. Furthermore, we plan to introduce time
information in the future.

This is particularly interesting because attack trees only represent static vary-
ing ways in which a system can be attacked. Applying realistic values will allow
us to analyze properties such as time, cost, difficulty, etc. At the same time, since
the attackers’ actions are dynamic, we will investigate the timing of actions in
the system. This will lead our work to study information flow properties as a

new way in which a system can be attacked, we will model the system with sce-
narios whereby some attacks/ protection could be available only in some given
time. Hence we plan to associate with functions A, D other parameters such as
time, cost, e.t.c. For example, by A(s, t) and D(s, t) we will express attacker’s
and defender’s actions at time t, respectively.

References

1. Bruce Schneier. Attack trees. Dr. Dobbs journal, 24(12):21–29, 1999.
2. Marlon Fraile, Margaret Ford, Olga Gadyatskaya, Rajesh Kumar, Mariëlle

Stoelinga, and Rolando Trujillo-Rasua. Using attack-defense trees to analyze
threats and countermeasures in an atm: a case study. In IFIP Working Conference
on The Practice of Enterprise Modeling, pages 326–334. Springer, 2016.

3. Chee-Wooi Ten, Chen-Ching Liu, and Manimaran Govindarasu. Vulnerability as-
sessment of cybersecurity for scada systems using attack trees. In 2007 IEEE
Power Engineering Society General Meeting, pages 1–8. IEEE, 2007.

4. Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Attack countermeasure trees
(act): towards unifying the constructs of attack and fense trees. Security and
Communication Networks, 5(8):929–943, 2012.

5. Muhammad Ali Siddiqi, Robert M Seepers, Mohammad Hamad, Vassilis Preve-
lakis, and Christos Strydis. Attack-tree-based threat modeling of medical implants.
In PROOFS@ CHES, pages 32–49, 2018.

6. Zaruhi Aslanyan and Flemming Nielson. Pareto efficient solutions of attack-defence
trees. In International Conference on Principles of Security and Trust, pages 95–
114. Springer, 2015.

7. Stefano Bistarelli, Marco DallAglio, and Pamela Peretti. Strategic games on de-
fense trees. In International Workshop on Formal Aspects in Security and Trust,
pages 1–15. Springer, 2006.

8. Barbara Kordy, Piotr Kordy, and Yoann van den Boom. Sptool–equivalence checker
for SAND attack trees. In International Conference on Risks and Security of
Internet and Systems, pages 105–113. Springer, 2016.

9. Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense trees for eco-
nomic evaluation of security investments. In First International Conference on
Availability, Reliability and Security (ARES’06), pages 8–pp. IEEE, 2006.

10. Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Rolando
Trujillo-Rasua. Attack trees with sequential conjunction. In IFIP International
Information Security and Privacy Conference, pages 339–353. Springer, 2015.

11. Aivo Jürgenson and Jan Willemson. Serial model for attack tree computations. In
International Conference on Information Security and Cryptology, pages 118–128.
Springer, 2009.

12. James P McDermott. Attack net penetration testing. In NSPW, pages 15–21,
2000.

13. Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. Time-
dependent analysis of attacks. In International Conference on Principles of Secu-
rity and Trust, pages 285–305. Springer, 2014.

14. Rajesh Kumar, Stefano Schivo, Enno Ruijters, Bura Mehmet Yildiz, David Huis-
tra, Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga. Effective analysis of
attack trees: A model-driven approach. In International Conference on Funda-
mental Approaches to Software Engineering, pages 56–73. Springer, Cham, 2018.

15. Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen, Axel Legay,
Mads Chr Olesen, and Danny Bøgsted Poulsen. Modelling attack-defense trees us-
ing timed automata. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 35–50. Springer, 2016.

16. Florian Kammüller. Attack trees in isabelle. In International Conference on In-
formation and Communications Security, pages 611–628. Springer, 2018.

17. GC Dalton, Robert F Mills, John M Colombi, Richard A Raines, et al. Analyzing
attack trees using generalized stochastic petri nets. In Information Assurance
Workshop, pages 116–123, 2006.

18. Per H̊akon Meland, Daniele G Spampinato, Eilev Hagen, Egil Trygve Baadshaug,
Krister-Mikael Krister, and Ketil Sandanger Velle. Seamonster: Providing tool
support for security modeling. Norsk informasjonssikkerhetskonferanse, NISK,
2008.

19. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Atsyra: an integrated en-
vironment for synthesizing attack trees. In International Workshop on Graphical
Models for Security, pages 97–101. Springer, 2015.

20. Xiaochun Wang, Xiali Wang, and D Mitchell Wilkes. A divide-and-conquer ap-
proach for minimum spanning tree-based clustering. IEEE Transactions on Knowl-
edge and Data Engineering, 21(7):945–958, 2009.

21. Vineet Saini, Qiang Duan, and Vamsi Paruchuri. Threat modeling using attack
trees. Journal of Computing Sciences in Colleges, 23(4):124–131, 2008.

22. Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Cyber security analysis using
attack countermeasure trees. In Proceedings of the Sixth Annual Workshop on
Cyber Security and Information Intelligence Research, page 28. ACM, 2010.

23. Anders Hessel, Kim G Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,
and Arne Skou. Testing real-time systems using uppaal. In Formal methods and
testing, pages 77–117. Springer, 2008.

24. Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John H̊akansson, Paul
Pettersson, Wang Yi, and Martijn Hendriks. Uppaal 4.0. 2006.

25. François Laroussinie and Ph Schnoebelen. Specification in ctl+ past for verification
in ctl. Information and Computation, 156(1-2):236–263, 2000.

26. John Moteff, Claudia Copeland, and John Fischer. Critical infrastructures: What
makes an infrastructure critical? Library of Congress Washington DC Congres-
sional Research Service, 2003.

