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ABSTRACT
The popularity of the Resource Description Framework (RDF)

and SPARQL has thrust the development of high-performance

systems to manage data represented with this model. Former

approaches adapted the well-established relational model apply-

ing its storage, query processing, and optimization strategies.

However, the borrowed techniques from the relational model are

not universally applicable in the RDF context. First, the schema-

free nature of RDF induces intensive joins overheads. Also, opti-

mization strategies trying to find the optimal join order rely on

error-prone statistics unable to capture all the correlations among

triples. Graph-based approaches keep the graph structure of RDF

representing the data directly as a graph. Their execution model

leans on graph exploration operators to find subgraph matches

to a query. Even if they have shown to outperform relational-

based systems in complex queries, they are barely scalable and

optimization techniques are completely system dependent. In

this paper, we propose optimization strategies for graph-based

RDF management systems. We intend to take the strengths of

relational databases and propose logical structures generically

depicting graph-based query execution. First, we define novel

statistics collected for clusters of triples to better capture the

dependencies found in the original graph. Second, we redefine

an execution plan based on these logical structures. Finally, we

introduce an algorithm for selecting the optimal execution plan

based on a customized cost model.
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1 INTRODUCTION
The versatility of the Resource Description Framework (RDF) has

contributed to its rapid expansion not only as a standard data

model in the semantic Web but also as the preferred representa-

tion for data from diverse domains (e.g. genetics, biology). The

RDF model uses triples consisting of a subject, a predicate and

an object < s,p,o > to represent data and SPARQL as its query

language. Currently, public RDF data sets (known as knowledge

bases) with billions of triples are extensive sources of information

(e.g. DBPedia
1
, Bio2RDF

2
) popularly queried and aggregated. As

1
https://wiki.dbpedia.org/

2
https://bio2rdf.org/
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the volume of available RDF data grows, the need for high perfor-

mance RDF data management systems becomes more noticeable.

To cope with the proliferation of RDF datasets, early works

used the well-established relational model as backend, storing

RDF triples directly into tables (single-table [3, 10], vertical par-

titioning [1]). In these approaches, a SPARQL query, generally

specified as a sequence of triple patterns (TPs), is mapped to a

SQL statement. Although, considerable research efforts were ded-

icated to these relational-based strategies, they rapidly suffered

from many intensive join overheads induced by the schema-free

nature of RDF. Some optimization strategies borrowed from the

relational model strive to reduce the evaluation cost by finding

an optimal execution order of a query expressed as a sequence

of TPs. For example, deciding the optimal join order for the TPs

of the query shown in Figure 2 (e.g. [(tp1 ▷◁?f tp2) ▷◁?f tp3])
Furthermore, these strategies are not universally applicable in

the RDF context. Firstly, because they rely on statistics that are

very error-prone since they are gathered on the entire collection

of data (contrary to the relational model where statistics are cal-

culated per table entity). Capturing statistics for datasets without

an explicit schema is not a simple task. Former approaches col-

lected statistics at the predicate level and assumed independence

between triples. However, as shown later by [6, 11] these assump-

tion led to considerable underestimations since RDF triples are

highly correlated. Capturing these correlations may prompt to

exponentially huge statistics whose maintenance is very com-

plex. Although, some heuristics have been introduced [20], they

are still not sufficient to estimate the cardinalities of complex

queries involving several joins. Moreover, these query optimiza-

tion strategies do not tackle the leading issue which is the in-

tensive joins product of the unsuited direct mapping of RDF to

tables. Even with an optimal join order, the join operation would

still be the bottleneck at query runtime especially for complex

queries (which are more and more frequent in SPARQL).

Graph-based processing systems (e.g. [22]) keep the graph

structure of RDF representing the data directly as a graph. In

these systems, the graph essence of RDF is maintained and query

processing is turned into a subgraphmatching problem. They out-

perform relational-based systems when solving complex queries

[9, 22]. However, as shown in [2, 9] they are less scalable since

their processing is mostly based on main memory. There have not

been generic optimization strategies specifically built for these

systems. There is not a single logical layer enclosing their execu-

tion model (as a graph exploration) and their data organization;

without a common scheme optimization strategies will still be

completely system dependent. Even though the relational-based



optimization strategies were not ideal, they offered some com-

fort to the designer since they allowed to organize the execution

regardless of how the data were stored on disk (i.e. if the data

are stored in a single table, binary tables).

In this paper, we propose optimization strategies for graph-

based RDF management systems. Our strategies fit both central-

ized and distributed approaches. We took the strengths of the

logical execution modeling from the relational databases and

propose first logical structures to portray the query execution

based on the exploration of the query and input graphs. We re-

define an execution plan based on these structures and present

an algorithm that generates and picks based on a cost model

the optimal execution plan for a given query. Our cost model

relies on statistics, but in contrast to former approaches estimat-

ing statistics on the global graph we collect them for clusters of

triples (that we named graph fragmentsGf ) logically connected

in the original graph. Our cost model considers the interactions

between graph fragments to estimate the network and disk costs

of a given query plan.

The contributions of the paper are summarized as follows:

(1) We formalize a logical model describing the query execu-

tion of RDF systems based on graph exploration methods.

(2) We present the essential statistics collected for each graph

fragment.

(3) We detail what is to the best of our knowledge the first

cost model to compare execution plans based on the disk

and network costs in graph-based systems.

(4) We present a study of the problem allowing to choose

the optimal execution plan. We prove its complexity and

proffer a branch and bound like algorithm to efficiently

explore and select the optimal execution plan in terms of

our logical structures.

The rest of the paper is organized as follows. First, Section 2

presents the state of the art of the optimization strategies pro-

posed for RDF systems. Then, Section 3, introduces the prelimi-

nary definitions used to describe the query execution based on

graph exploration. Section 4 presents the cost model allowing to

compare the equivalent plans and introduces an algorithm to find

the best execution plan. Next, section 5 presents the experimental

study. Finally, Section 6 summarizes the work and gives insights

on future researches.

2 RELATEDWORK
In this section, we summarize the most relevant optimization

strategies adopted by triple stores in the state of the art. We clas-

sify them according to whether the strategy is applied before or
during the query execution (BQE and DQE respectively). In the

first category we consider approaches of organization, indexing

and distribution of data; all of them have been implemented by

different systems with the aim of finding the best query perfor-

mance. The second category depicts optimization strategies at

query runtime.

2.1 BQE strategies
2.1.1 Data organization. The earliest RDF processing systems

adapted the prominent relational model. The naïve approach em-

braced by Sesame [3] stores the data in a single table of three

columns (subject, predicate, object). Its major drawback is the

processing of self-joins that turns quite expensive when SPARQL

queries become more complex. The property table approach

(Jena2[10]) reduces the number of self-joins storing the data

in a wider table whose dimensions correspond to the number of

distinct subjects and predicates. The overheads of this approach

are the great number of null values and the treatment of multi-

valued properties. The vertical partitioning approach proposed

in SW-Store[1] overcomes this drawback storing the data in n
binary tables, where n is the number of distinct predicates. Still,

overheads exists when many predicates are involved in a single

query. Most recent approaches have tried to find the implicit

schema of the data in an RDF dataset. These approaches use

the characteristic sets [11] to distinguish entities and store the

data of similar entities together (e.g. EAGRE [21], [15]). Other ap-

proaches maintain the graph structure of RDF data representing

the data as adjacency lists (e.g. gStore [22]). The main disad-

vantage of this approaches is related to scalability to large RDF

graphs [9].

2.2 DQE strategies
Before describing optimization strategies applied during query

execution, let us classify SPARQL evaluation approaches. In cen-

tralized systems, the evaluation is either join-based (e.g. [10]) or

graph-matching based (e.g. [14]). The first approaches comprise

all systems translating each single graph pattern into SQL and

combining the results on each iteration using the join operation

(on a single or multiple tables). Indexing the data enhance the per-

formance since the joins are performed as merge-joins (e.g. [12]).

Graph matching approaches on the other side break a SPARQL

query into subgraphs, and to avoid invalid intermediate results

since at every iteration only valid subgraph bindings are kept.

The static query optimization strategies use maintained sta-

tistics about the data to determine an optimal query plan. The

estimation of the cardinality is the base measure used to evaluate

and compare execution plans for a specific query.

Cardinality Estimation in RDBMS. It has been longly seen as a

key component in the query optimization and it is a well estab-

lished field in the the relational database world[8]. It is usually

solved by using various summarization techniques such as one-

dimensional synopsis (e.g. one-dimensional histograms[17]) Even

if the cardinality estimation used in the relational model would

seem useful for the semantic Web, its estimation has been less

successful due to the heterogeneous, string-oriented nature and

to the fact that queries in RDF contain many self-joins [16].

Cardinality Estimation in SPARQL. Currently, several studies
have investigated the cardinality estimation issues for SPARQL

queries. A line of work uses very simplistic models based on

RDF-specific statistical synopses including counters of frequent

predicate-sequences in paths of the data graph[13]. Similarly,

other approaches use one-dimensional histograms and pre-compute

the number of occurrences of all predicates pairs to estimate the

triple pattern and joined triple patterns selectivities[19]. The first

approach was implemented in RDF-3X and the second in Jena

ARQ optimizer. The drawback of these approaches is that the

formulas assume statistical independence between tuples, which

produce large estimation errors[6]. The second line of work in-

troduced a specific kind of summary based on a schema-level

synopsis for RDF data while preserving as much of its structure

as possible[18]. Finally, the third line of approaches collected

statistics for tuple groups based on characteristic sets[6, 18], or

by summarizing the graph into large entities[7].

Contrarily to existing techniques, the set of strategies pro-

posed in this paper are independent of the physical storage and



query evaluation models of any system. Our assumptions are

only that the data are logically clustered based on the predicates

and that the main query evaluation operator is based on a graph

exploration strategy. We propose a set of techniques allowing

to find the best way to explore the data graph in order to evalu-

ate a SPARQL query. We rely on a novel cost model that takes

into account the correlation between predicates and nodes. Our

proposal is not only adapted to centralized systems but also to

parallel systems that rely on graph exploration as query eval-

uation technique. In this kind of systems, our cost model will

consider the interactions between fragments to estimate the disk

and network costs.

3 PRELIMINARIES
3.1 RDF and SPARQL
The Resource Description Framework (RDF) has been widely

accepted as the data model for the Linked Open Data and the

semantic Web. The model uses triples consisting of a subject,

a predicate and an object < s,p,o > as its main abstract struc-

ture. The model provides flexibility without explicitly enforcing

a schema. A collection of interlinked RDF triples could be repre-

sented as a graph as shown in Figure 1. The graph of the example

contains data related to air traffic control. The RDF graph is

formally defined in Definition 3.1.

Definition 3.1. (RDF Graph) An RDF graph is denoted as G =
⟨Vc , LV , E, LE ⟩ whereVc is a collection of vertices corresponding

to all subjects and objects, LV is a collection of vertex labels, E
is a collection of directed edges that connect the corresponding

subjects and objects, and LE is a collection of edge labels. Given

an edge e ∈ E, its edge label is its property .

SPARQL is the most popular query language for RDF. A simple

SPARQL query consists of a query form (e.g. SELECT in Figure 2),

a Basic Graph Pattern (BGP) and a set of SPARQL operations (e.g.

FILTER). A Basic Graph Pattern is composed of triple patterns

(TPs). TPs are expressed in a triple form and they are composed

of at least one of S, P, O being a variable. An example query

with three TPs and its graph representation is shown in Figure

2. In our work, we consider only SPARQL queries with bounded

predicates. A SPARQL query can also be represented as a graph

as described in Definition 3.2.

Definition 3.2. (Graph Query) A Graph Query is denoted as

Q = (V , LV , E, LE ), where V = Vp ∪ Vc is the union of the sets

of variable and bounded vertices. LV is the set of vertex labels,

the labels of variable vertices are distinguished with a leading

question mark symbol. E and LE represent the set directed edges

between vertices and its labels respectively.

3.2 Overview of Query Evaluation
In this section, we discuss the main definitions allowing to model

the logical organization of data in clusters keeping its graph

structure. Then, we detail the query evaluation operators based

on graph exploration on the clustered data.

3.2.1 Graph storage. In contrast to several of the approaches

mentioned in Section 2.1.1 in which the graph structure of the

loaded RDF data is broken, we strive to preserve it. The storage

model groups RDF data first such that implicit structures within

the data are automatically discovered. Data are firstly grouped
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SELECT ?c ?f ?m WHERE {
?c <:has_flight> ?f . #tp1
?f <:departure> <El Prat> . #tp2
?f <:plane_model> ?m . #tp3
}

Figure 2: SPARQL query Q

into Data Stars (formally defined in Definition 3.3). Data stars al-

low identifying the triples related to a specific instance grouping

the data by subject (or object).

Definition 3.3. (Data Star) Given a node x (named data star

head) in a RDF graph G, a Data Star DS(x) is the set of triples
related to node x with a direct edge. We name Forward Data
Star and Backward Data Star to the sets

−→
DS(x) = {(x,p,o)|∃p,o :

(x,p,o) ∈ G} and
←−
DS(x) = {(s,p, x)|∃s ,p : (s,p, x) ∈ G} respec-

tively.

Data Stars extend the notion of a record in the relational data-

base model. The primary key of aDS(x) corresponds to its head x .
Records are grouped in tables in a RDBMS, following this logic we

group records describing similar entities into sets named Graph
Fragments.

When building the Graph Fragments, ontologies could be ap-

plied since they intend to provide an overall schema of the data

stored in an RDF graph. However, several studies show that

there is still a very partial use of ontology classes and sometimes

subjects share triples with properties coming from different on-

tological sources [15]. Consequently, we decided to group Data

Stars in Graph Fragments based on the combination of properties

characterizing an entity using Characteristic Sets [11].

Each subject s in the graphG has a characteristic set defined as

−→cs (s) = {p |∃o : (s,p,o) ∈ G}. Similarly, for the objects we define

←−cs (o) = {p |∃s : (s,p,o) ∈ G}. A Forward Graph Fragment

−−→
Gf

groups Forward Data Stars having the same characteristic set.

Backward Graph Fragment

←−−
Gf are formed similarly. Its formal

definition is given in Definition 3.4.

Definition 3.4. (Graph Fragment) A Graph Fragment is a set

of Data Stars, it is named a Forward Graph Fragment

−−→
Gf if it

groups Forward Data Stars such that

−−→
Gf = {

−→
DS(x)|∀i,j

−→cs (xi ) =
−→cs (x j )}. Likewise, a Backward Graph Fragment

←−−
Gf is defined as

←−−
Gf = {

←−
DS(x)|∀i,j

←−cs (xi ) =
←−cs (x j )}.

It is shown that indexing and compressing the data of frag-

ments in B+Trees improves significantly the performance at



query runtime[9, 12]. In the rest of the paper we assume that the

data are indexed using this structure, however the estimations

and the cost model are easily generalized to other data struc-

tures. Additionally, the data could be stored as Forward Graph

Fragments, Backward Graph Fragments or using both structures.

In the definitions of the following section, we assume that both

types of fragments are available, yet this is not a mandatory

condition.

3.2.2 Query execution. In this section we formalize the logical

structures used to describe the query evaluation. As previously

mentioned, a SPARQL query can also be represented as a directed

graph whose nodes are either variables (e.g. ?f, ?m in Figure 2)

or bounded values (e.g. <El Prat>). Let us first recall how a

SPARQL query is evaluated in most of the state-of-the-art sys-

tems. Traditionally, a SPARQL query is evaluated in a TP by TP

manner [4]. A query execution plan is then seen as a join of TPs

on a variable. For example, an execution plan for the query of

Figure 2 composed of three single triple patterns is:

tp1 ▷◁?f tp2 ▷◁?f tp3

This representation can become quite complex when several

TPs are involved in the query. Optimization strategies for these

approaches seek to find the optimal execution order of triple

patterns according to pre-computed statistics.

To shorten the logical query plan, TPs can be grouped if they

share a common variable on the subject (or object). We name

these structures Forward Query Stars and Backward Query Stars

if they group the triples on subject or object respectively. Further-

more, as it will be shown later, with these structures the query

execution can be easier tracked following a graph exploration

approach. Both structures are formally described in Definition

3.5.

Definition 3.5. (Query Star) LetQ be the SPARQL query graph.

A Forward Query Star

−→
QS(x) is the set of triple patterns such

that

−→
QS(x) = {(x,p,o)|∃p,o : (x,p,o) ∈ Q}, x is named the head

of the Query Star. Likewise, a Backward Query Star

←−
QS(x) is

←−
QS(x) = {(s,p, x)|∃s ,p : (s,p, x) ∈ Q}. We use

−→
QS,
←−
QS to denote

the set of forward and backward graph stars and qs to denote

indistinctly a forward and backward query star.

The execution of a query can be expressed as a join of Query

Stars. Since we consider two copies of the data, (one copy stored

as

−−→
Gf and another as

←−−
Gf ), the execution plans consider both types

of Query Stars. An execution plan is composed of a sequence of

joined Query Stars as shown in Definition 3.6.

Definition 3.6. (Execution Plan) An execution plan is an order

function applied on a set of Query Stars. The function denotes

the order in which the mappings for each Query Star will be

found. We denote by P = [QS1,QS2, ...,QSn ] the plan formed by

executing QS1, then QS2,..., and finally QSn .

Let us consider for instance that the optimal query plan for the

query of Figure 2 is P1 = [
←−
QS(?m)1,

−→
QS(?f )2,

←−
QS(?f )3]. The exe-

cution engine starts processing

←−
QS(?m)1 by loading all the back-

ward fragments whose characteristic set contains all the predi-

cates (in this case only the plane_model predicate) of
←−
QS(?m)1.

Assuming that the backward fragments

←−−
Gf 11 and

←−−
Gf 12 are the

only backward fragments matching the predicates of the query

star, the execution scans both fragments and finds the mappings

←−−
Gf

11

−−→
Gf

13

−−→
Gf

14

←−−
Gf

16

←−−
Gf

17

−−→
Gf

15

←−−
Gf

18

←−−
Gf

12

←−−
QS (?m)

−−→
QS (?f )

←−−
QS (?f )

Figure 3: Execution Plan

to the variables ?m and ?f. These mappings are sent to the for-

ward graph fragments whose characteristics match the predicates

of the second Query Star

−→
QS(?f )2. In this way, only the perti-

nent mappings with respect to

←−
QS(?m)1,

−→
QS(?f )2 are kept. The

process continues similarly for the following query stars.

It is evident that an Execution Plan represents a way to explore

the graph. Indeed, finding the optimal execution plan conveys to

find the best way to explore the data graph. In the next section

we detail the optimization strategy followed to find the optimal

query plans in terms of Query Stars. We define an acceptable

query plan and then depict the algorithm used to generate them.

Then we present the cost model in terms of disk and network

cost applied to decide on the optimal plan.

4 GRAPH-BASED QUERY OPTIMIZATION
In this section, we present our cost-based optimization strategy

which allows comparing execution plans (based on Query Stars).

Firstly, we define an acceptable plan and we detail the statistics

allowing to evaluate the cost of an execution plan based on the

disk and network cost. Next we define the problem of finding an

optimal plan andwe describe a branch and bound based algorithm

used to generate the list of candidate execution plans.

4.1 Acceptable Execution Plan AP
In the last section, we defined an Execution Plan P as an order

function applied to a set of Query Stars. An execution plan P

is called an Acceptable Execution Plan if it fulfills the following

conditions:

(1) Coverage: All nodes and predicates of the given query

are covered by the set of Query Stars of the plan. For

example, for the query of Figure 2, the execution plan

[
←−
QS(?m),

−→
QS(?f )] is not a valid plan since the node ?c and

the edge has_flight are not covered by the plan.

(2) Instantiated head: This condition guarantees that for a plan
P = [SQ1, ..., SQn ], ∀i>1SQ , the head of the SQi must be

already instantiated. We use this condition to avoid to a

cartesian product when mappings are exchanged between

two star queries. For example, the plan shown in Figure 4a

is not acceptable since the head of the second query star

(

−→
QS(?c) is not instantiated before finding the mappings

for this query star. A plan in which the head has been

instantiated is shown in Figure 4b.

The formal definition of an Acceptable Plan is given in Propo-

sition 4.1.

Proposition 4.1. (Acceptable Plan) AP Let us consider Q as
a given query,

−→
QS and

←−
QS as the sets of forward and backward
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Figure 4: Head instantiation examples

graph star queries respectively, T as the set of triple patterns and
the following functions:

• Tr: q ∪
−→
QS ∪

←−
QS → T It returns the set triple patterns of a

graph.
• Nd: q ∪

−→
QS ∪

←−
QS → V It returns the nodes of a graph.

• Head:
−→
QS ∪

←−
QS → V a function that returns the head of a

query star.

An acceptable planAP is a tuple < X , f > where X ⊂
−→
QS ∪

←−
QS

and f : X → {1...|X |} is the order function of query stars such
that:

(1)

⋃
QS ∈X Tr (QS) = Tr (q)

(2) ∀i ∈ {2...|X |},head(f −1(i)) ∈
⋃i−1
j=1 Nd(f −1(j))

4.2 Cost model
In this section, we present a novel cost model used to compare

execution plans P. As for distributed databases, the cost is ex-

pressed with respect to the estimated total time. The total time

is the sum of all time components (CPU, I/O, Communication),

however, the I/Os and the communication costs are generally

the dominant factors. Our cost estimation considers both the

disk and communication costs for each query star on the plan as

shown in Equation 1. The parameters TI/0 and TTR are the time

of a disk I/0 and the time to transmit a data unit from one site

to another respectively. The estimated number of of I/O’s and

network packets transmitted are represented by DC and NC

and their calculation is described in the next sections.

Total_Cost(P) =
∑

qs ∈ P

TI/0 ∗ DC(qs) +TTR ∗ NC(qs) (1)

Both the disk and network costs are estimated based on sta-

tistical information about each graph fragment Gf (Definition

3.4). For the disk cost, the statistics allow estimating the number

of Data Stars loaded on each fragment that contains potential

query matches. Likewise, for the network cost, the number of

intermediate results exchanged between fragments at different

sites is estimated based on the same statistics. In the next section,

we describe the statistical data collected for each graph fragment.

4.2.1 Fragment statistics. We rely on statistical data are col-

lected for each Graph FragmentGfk . The statistical data collected

Table 1: Collected Statistics

Statistic Description

(a) dist(Gfk ) # of data stars in Gfk .
(b) count(pi ,Gfk ) # of edges with predicate pi in Gfk .
(c) dist_NE(pi ,Gfk ) # of distinct nodes linked to the data

star heads in Gfk with respect to pi .
(d) SF (Gfk ,Gfj ,pi ) Proportion of the # of nodes in Gfk

pointing to Gfj with respect to pi .

for a graph fragment Gfk (forward or backward) whose char-

acteristic set is cs = {p1, ...,pm }, considering that pi ∈ cs are
summarized in Table 1. Some examples of statistics for the exam-

ple graph of Figure 1 are given in Figure 5.

Let us consider the statistics shown in Figure 5. The statistics

for the backward graph fragment

←−−
Gf 4 are shown in Figure 5a.

The dist(
←−−
Gf 4) is 3 since the fragment contains three data stars

whose heads are AF37, IB62 and IB83. Both count(pi ,Gfk ) and
dist_NE(pi ,Gfk ) are calculated only for the predicate has_flight
(identified as 1 in the Figure) since it is the only predicate in the

fragment’s characteristic set. There are three edges in the frag-

ment having has_flight as a predicate, therefore count(pi ,Gfk ) =
3. For this fragment, dist_NE(pi ,Gfk ) = 2 since there are two

distinct nodes (Air France and Iberia) linked to the data star

heads of

←−−
Gf 4.

The selectivity factor SF (Gfk ,Gfj ,p) between two graph frag-

ments with respect to a predicate is the ratio of the number of

edges in a node pointing to the data star’s head located in an-

other fragment. For example, in Figure 5c, the selectivity factor

SF (
←−−
Gf 5,

←−−
Gf 4, 2) (2 is the id of the predicate arrival) is 2/2 since

out of the 2 edges of the predicate arrival in
←−−
Gf 5, 2 nodes (AF37

and IB83) are the heads of data stars located in

←−−
Gf 4.

For simplicity and to keep the same notation, the selectiv-

ity of two graph fragments sharing the same head is repre-

sented as SF (Gfk ,Gfj ,−1). For example, the selectivity factor

SF (
−−→
Gf 3,

←−−
Gf 5,−1) in Figure 5b is 1/2 since out of the two heads

in

−−→
Gf 3, one of them is a head of a data star in the graph fragment

←−−
Gf 5 (shown in Figure 5c).

4.2.2 Disk cost. We present in this section the different for-

mulations that allow estimating the number of pages targeted by

a plan. We assume that the data on each fragment are stored as

a clustered B+Tree as done in [9, 12]. Our disk cost is related to

this data structure. However if the fragments were stored using

another data structure, only the parameters of the function calcu-

lating the number pf disk pages (NDP ) would change. The disk

cost for a single query star is given in Equation 2. In this equation,

theNP function allows estimating the number of pages targeted

by a query star in a fragment and, the tuple (Gfj ,kj ) represents
the estimation of the number of data stars kj in the fragment

Gfj involved in the evaluation of such a query. In the following

sections, we detail the function NP(Gf ,k) and we present the

formulations to estimate the number of data stars read on each

graph fragment (k).

DC(qsi ) =
∑

(Gf j ,kj )∈ inputqsi

NDP (Gf j ,kj ) (2)
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Figure 5: Subset of statistics for G of Figure 1
.

The number of pages per fragment. Let us now detail the func-

tionNP estimating the number of pages read from the disk given

a graph fragment Gfj and a number of data stars kj as inputs:

NDP (Gfj ,k) =
NGfj∑
i=1

rf (i)

where,

rf (i) =

{
k

NGfj
∗ BGfj i f i = HGfj

ri ∗ rf (i + 1) otherwise

The parameters and properties in the previous function are

defined as follows:

(1) BGfj : number of disk pages in the last level.

(2) HGfj : number of levels.

(3) ri : reduction factor for the ith level. Given two levels "i"
and "i + 1", and "Z " and L as the number of pages for the

level "i" and "i + 1" respectively, ri is defined as by Z/L.
(4) NGfj : number of data stars in the fragment Gf (i.e., num-

ber of keys in the leaf level of the B+Tree).

(5) rf (i): is the number of pages to be manipulated at the ith

tree level.

As it is shown in last equation, the number of pages NP is

the sum of the number of pages manipulated at all levels.

The number of data stars k . In this part we explain the pro-

cedure to obtain the number of data stars per each star query

(represented as k). To better understand the procedure, let us

recall the graph exploration execution model illustrated in Figure

3. For a given plan, the execution is done finding the mappings

of one query star after another. This execution model guides the

estimation of data stars per query stars. We start calculating the

number of data stars for the first query star (Input). Then we

estimate the number of data stars that we get after executing

this query star(Valid Input). Next, we estimate the number of

data stars sent to the next query star for each predicate (Output).
Finally, using the selectivity factor and the output, we calculate

the input of the next query star. This procedure continues until

the last query star.

Let us introduce the estimation of the Input of the first query
star. We distinguish two cases:

(i) If the head of the star query is a variable:

input_DSqs1 = {(Gfj ,k)|Gfj |= qs1 ∧ k = dist(GFj )}

(ii) If the head of the star query is a constant:

input_DSqs1 = {(Gfj , 1) | Head(qs1) ∈ GFj ∧Gfj |= qs1}

The input of a query star is expressed as a set of tuples (Gf j ,kj ).
Gf j is a Fragment satisfying the predicates of qs1 and kj is the
number of data stars targeted by this query.

The Valid input data stars is calculated for each (Gfj ,k) ∈
input_DSqsi and it is expressed as follows:

valid_DSqsi = {(Gfj ,k
′) | k ′ = ⌈k ∗ min

e ∈Edдes(qsi )
f (e)⌉}

Where

f (e) =

{
1

dist_NE(e .label ,Gfj )
, i f e .node is constant

1 ,otherwise

In the f (e) function, we calculate a reduction factor for each

predicate (e .label) to consider an estimation of the number of

data stars found in the fragment after the execution of the star

query.

For each tuple (Gf j ,k
′) ∈ valid_DSqsi , we calculate the

output_DSqsi expressed as a set of triplets (Gf j ,pi ,k
′′) where

Gf j is the fragment from the input, pi is a predicate of the qsi
and k ′′ is the number of distinct edдe .node related to pi with
respect to the valid input. The Output is calculated as follows:

output_DSqsi = {(Gf j ,pi ,k
′′)|pi ∈ edдes(qsi )∧k

′′ = ⌈NDSpi ⌉}

Where

NDSpi =

{
1 , i f e .node is const

k ′
dist (Gfj )

∗ dist_NE(pi ,Gfj ) ,otherwise

NDSpi is the number of data stars head related to each predicate.

After computing the output of the first query star, We can now

compute the input of the second query star. For each star order

greater than one in the plan, the input is computed as follows:

input_DSqsi = {(Gfj ,k) / Gfj |= qsi ∧ k = ⌈NDS⌉}

To calculate the Input we of qsi if the head of the query star is

a variable we consider two cases:

(i) Neighbor star queries: In this case, the last evaluated query

star is a neighbor of the current query star, therefore in this case

we can use the selectivity factors. The data stars heads targeted

in the fragment "Gfj " are computed as follows:

NDS =
∑

(Gf k ,p,k ′′)∈outputqsi−1

k ′′ ∗ SF (Gfk ,Gfj ,p)

Where p is the edge between qsi and qsi−1.
(ii) Same head star queries: In this case, the current query star

has the same head of the last evaluated query star so there is

no link between the star queries. In this case, when Head(qsi )
is restricted, the number of data stars is equal to the product



between the selectivity of the query star head in the fragment

that satisfies qsi .

NDS =
∑

(Gf k ,k ′)∈valid_inputqsi−1

k ′ ∗ SF (Gfk ,Gfj ,−1)

If the head of the query star is a bounded value, the input is

calculated similarly to the first query star:

input_DSqsi = {(Gfj , 1) | Head(qsi ) ∈ GFj ∧Gfj |= qsi }

4.2.3 Net cost. We present in this section the formulations to

estimate the number of network packets exchanged between frag-

ments in different machines. Unlike the Disk Cost in which we

estimate the number of data stars loaded by each graph fragment

in a query star, the Network Cost aims to estimate the number

of mappings sent from one graph fragment to another.

As a recall, a mapping is a binding between the nodes of the

query star and the corresponding values in the input graph. For

example, the mappings of the first query star of Figure 3 are the

bindings for variables ?m and ?f in the input graph (e.g. ?m→

B737, ?f→ IB83). As illustrated in Figure 3, these mappings are

sent to the graph fragments of the following query stars. The total

network cost is equivalent to the sum of mappings exchanged

between fragments located in different sites (illustrated with

dotted arrows in Figure 3).

The network cost is shown in Equation 3 as the sum of ex-

changed packages between graph fragments. The functionNNP
returns the number of packages exchanged between two frag-

ments given a number of mappingsM and its size S .

NC(qsi ) =
∑

(Gf k ,Gf j ,M )
∈ output_MPqsi

NNP (Gf k ,Gf j ,M) (3)

Number of exchanged packages. Let us detail the functionNNP
calculating the number of packages as the product between the

number of mappingsM , its size S and the output of the function

loc(Gfk ,Gfj ) returning 1 if the fragments are located on distinct

sites and 0 otherwise. Its formulation is as follows:

NNP (Gf k ,Gf j ,M) =
(
M ∗ sizei ∗ loc(Gf k ,Gf j )

)
/sizepack

The parameter sizei represents the size of a single mapping

for the current query star and all the previously found mappings

and sizepack indicates the size of a single package transmitted

over the network.

The estimation of the number of mappingsM from one query

star to another is done at the graph fragment level of each query

star. We start calculating the number of data stars loaded per

graph fragment for the first query star (input_MP ). Then, based
on this input, we estimate for each graph fragment the number

of mappings produced after the execution of the first query star

(valid_MP ). These mappings, named valid mappings, are multi-

plied by the selectivity factors between the graph fragments of

the first and second query stars to obtain the output mapping
for each pair of graph fragments. The output mapping of the

first query star becomes the input of each fragment in the fol-

lowing query star. The next mappings are estimated following

the same methodology (calculating the input mappings, valid

input mappings and the output mappings for each fragment in

the query stars). Next, we detail the formulas used to calculate

the mappings at each step.

Input mapping: The input of the first query star is computed

similarly as the inputs of the first query star for the disk cost in

which we distinguish two cases:

(i) If the head of the query star is a variable:

input_MPqs1 = {(Gfj ,M)|Gfj |= qs1 ∧M = dist(GFj )}

(ii) If the head of the star query is a constant:

input_MPqs1 =

{
(Gfj , 1) | Head(qs1) ∈ GFj ∧Gfj |= qs1
(Gfj , 0) | Head(qs1) ∈ GFj ∧Gfj ̸ |= qs1

Valid mapping: The valid mapping of the query star is com-

puted using the input mapping calculated in the previous step.

The valid input estimates how many variable bindings exist after

executing the current query star. For each input ((Gfj ,M)) we
calculate the product between the number of mappings in the

inputM and the estimated number of mappings after the execu-

tion of the current query star. The valid input is calculated for

each input (Gf j ,M) as follows:

valid_MPqsi = {(Gf j ,M
′) | M ′ = M ∗ P(qsi ,Gf j )}

The number of mappings after the execution of the current query

star are the product of the mappings for each edge of the query

star. For each edge e of the query, we calculate a permutation

between n and k where n is the difference of the mean number of

edges on each data star of the fragment having the same predicate

as e .label and the number of edges in the query star pointing to

a constant node. The value of k equals to the number of edges in

the query pointing to a variable node. More precisely,

P(qsi ,Gf j ) =
∏

e ∈Edдes(qsi )

n!

(n − k)!

where,

n =
⌈
count(e .label,Gfj )/dist(Gfj )

⌉
− N_const(e .label,qsi )

k = count(e .label,qsi ) − N_const(e .label,qsi )

and N_const is a function returning the number of edges labeled

as e .label in the query star pointing to a bounded node.

Output mapping: After computing the valid_MP of the first

query star, we calculate the number of exchanged results between

fragments using the selectivity factor. This value is calculated for

each graph fragment from the current query star qsi to the graph
fragments of the next query star qsi+1. For each valid mapping

found previously, the output mapping is a set of triples defined

as follows:

output_MPqsi = {(Gfk ,Gfj ,M
′′)|Gfj |= qsi+1 ∧M

′′ = ⌈IntMP⌉}

The intermediate mappings IntMP is a function returning the

number of mappings sent to each graph fragment based on the

selectivity factor.

IntMP =

{
M ′ ∗ SF (Gfk ,Gfj ,p) , i f qsi has neiдhbor
M ′ ∗ SF (Gfk ,Gfj ,−1) ,otherwise

The input of the following query star is calculated as follows:

input_MPqsi = {(Gfj ,M) | Gfj |= qsi ∧M = Nbr_MP(Gfj )}

The total number of mappings for a single graph fragment is the

sum of all the mappings received from all the graph fragments

in the previous query star. It is calculated as:

Nbr_MP(Gfj ) =
∑

(Gfk ,Gfi ,M ′′)∈output_MPqsi−1∧Gfi=Gfj

M ′′



4.3 Stars Ordering and Selection Problem
Several execution plans can be used to evaluate a given query. In

Section 4.2 we develop a cost model allowing to compare equiva-

lent plans for a query. Finding an optimal acceptable execution

plan AP∗ consists in selecting the acceptable plan for a given

query such that it minimizes a given cost function (defined in

Equation 1). We name this problem as the Stars Ordering and

Selection problem since we seek to find the optimal ordering of

Query Stars in the plan. Its definition and complexity are given

in Proposition 4.2 and Theorem 1 respectively.

Proposition 4.2. Stars Ordering and Selection (SOS) problem
Given a query q, find an acceptable plan P∗ such that:

minimize Total_Cost(P∗) (Eq. 1)

Theorem 1. The Stars ordering and Selection (SOS) problem is
NP-Hard.

Theorem 1 is explained as follows: our problem is as difficult

as the well-known problems belonging to the NP-Hard class.

There is no efficient (polynomial) algorithm that can solve this

problem. Then we face two cases: either an exact and exponential

algorithm or a polynomial and not exact algorithm. In the next

section we describe a branch and bound based algorithm allowing

to find the optimal query plan based on some parameters. Due

to the lack of space the proof of this theorem is found online
3
.

4.4 Optimal P Finding Algorithm
We present in this section our parametric algorithm allowing

to find the best plan for a given query. Our algorithm relies on

a branch and bound strategy to enumerate candidate solutions.

To prune invalid execution plans it relies on the concepts of

Allowed_Stars and Star_Distance defined next.

Allowed Stars. This concept guarantees that all the generated
execution plans are acceptable plansAPs. For a given planX , an

Allowed_Star is the set containing the query stars (forward and

backward) such that any of them can be added to X and produce

an AP. For the example query of Figure 2, the Allowed_Star

set for the plan [
−→
QS(?c)] is {

−→
QS(?f ),

←−−
QS(El Prat)} since both

plans ([
−→
QS(?c),

−→
QS(?f )], [

−→
QS(?c),

←−
QS(El Prat)]) are acceptable.

The formal definition is given in Proposition 4.3.

Proposition 4.3. (Allowed stars) Let X be a valid plan, the
allowed stars set is defined as follows:

Allowed_stars(X ) = {qs |qs ∈
−→
QS ∪

←−
QS and [X ,qs] is an AP}

Stars Distance. This user-defined parameter allows skipping

some combination that the user does not want to explore based

on the concept of distance. The distance between two stars in

a query graph is the number of edges separating the heads of

the star queries by considering the shortest path. For example,

for the query in Figure 2, the distance between the star queries

−→
QS(?c) and

←−
QS(?m) is 2 since between the heads of both heads

there are two predicates (has_flight and plane_model). The
distance between stars allows considering only plans that privi-

lege to evaluate neighbors’ stars. The formal definition is given

in Proposition 4.4.

Proposition 4.4. (Stars Distance) Given two query starsQS(x)
and QS(y), the distance between both queries is given by:

distance(QS(x),QS(y)) = |{p |p is a path between x and y}|
3
Theorem 1’s proof & Experimental Queries: https://www.lias-lab.fr/~amesmoudi/

papers/dolap2020/SOS-NP-hardness-proof.pdf
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Figure 6: Decision Tree for Query of Figure 2

Algorithm overview. The optimal execution plan discovery

algorithm follows a branch and bound strategy in which the set

of candidate plans is enumerated in a decision tree. The root of

the tree contains the union of the sets of forward and backward

query stars for a specific query. Each node of the decision tree

contains a candidate plan, the Allowed_stars set for this plan
and its cost (cost function described in Section 4.2). The children

nodes are the execution plans resulting from adding a query

star from the set of Allowed_stars to the execution plan of the

parent node. The Allowed_stars set is empty if the node’s plan

is an AP. If the cost of the plan in the node is greater than the

cost of the best plan (at that moment), then the node will not be

expanded to its children nodes even if there are still query stars

in the Allowed_stars set. The cost of the best plan is initialized

to infinite so the firstAP generated becomes the best plan at an

early exploration.

Let us consider the example tree shown in Figure 6 inwhich the

the first star query to be explored is

−→
SQ(?c), withAllowed_Stars =

{
←−
SQ(El Prat),

−→
SQ(?f )} and with a cost c1. Since c1 is not greater

than infinite, we must continue expanding the node to the query

stars in the Allowed_Stars set of
−→
SQ(?c). The tree is expanded

and the child node contains the plan [
−→
SQ(?c),

−→
SQ(?f )] which is

an AP because its Allowed_stars is empty. Since the cost c2 of
the plan is lower than infinite, the plan of the node becomes the

best query plan (at the moment). The tree continues to expand

creating the child [
−→
SQ(?f ),

←−
SQ(El Prat)]. Assuming that the cost

c3 > c2, the node will not be expanded even if the star query

−→
SQ(?f ) is still in the Acceptable_stars set of the node. The algo-
rithm continues exploring similarly until no more star queries in

the root could be expanded and the best possible plan has been

found.

The tree exploration technique is given in Algorithm 1. The

initialization is done in steps 1-3. We start by creating a node

under the root of the decision tree (step 5). Each node of the

decision tree is characterized by three elements: the plan, the

allowed query stars and the cost. In steps 6-8 we initialize the

elements for the node created in step 5. Then in step 9, we call

a function named Add_Query_Star for each query star. This

function is described in Algorithm 2.

The Add_Query_Star function (Alg. 2) receives as parameters

a query star, the node of the decision tree, the best plan (at the

moment) and the stars distance. It starts calculating the node’s

elements: it adds the query star to the plan (step 1), then calculates

the allowed star (step 2) and the cost as defined in Section 4.2 (step

3). Next, if the cost of the plan is smaller than the cost of the plan

defined as best plan then we call the Enumerate_Child_Branch
function (step 5) defined in Algorithm 3. If the cost is greater,

then it exits (step 7).

The Enumerate_Child_Brach (Alg. 3) function has as inputs

the node of the decision tree, the best plan at the moment and the

https://www.lias-lab.fr/~amesmoudi/papers/dolap2020/SOS-NP-hardness-proof.pdf
https://www.lias-lab.fr/~amesmoudi/papers/dolap2020/SOS-NP-hardness-proof.pdf


Algorithm 1: Optimal P Finding

INPUTS: d: stars distance,
−→
QS(x),

←−
QS(x): forward and

backward star queries

OUTPUT: P: Best Plan
1: P .Plan ←− [ ]

2: P .Cost ←− ∞
3: T : decision tree

4: for qs ∈
−→
QS(x) ∪

←−
QS(x) do

5: Create a new node N in T
6: N .Plan ←− [ ]

7: N .Allowed_QSs ←− [ ]

8: N .Cost ←− 0

9: Add_Query_Star (qs,N ,P,d)
10: end for
11: Return P

Algorithm 2: Add_Query_Star

INPUTS: qs: Query Star,N : decision Tree node,P: Best

Plan, d: stars distance

1: N .Plan ←− N .Plan ∪ qs
2: N .Allowed_QSs ←− Allowed_Stars (N.Plan)
3: N.Cost←− Total_Cost(N.Plan) ◁ Defined in Sect. 4.2

4: if N .Cost < P .Cost then
5: Enumerate_Child_Branch(N ,P,d)
6: else
7: EXIT (i.e., abandon this branch)

8: end if

stars distance. If the set of allowed stars is empty, we consider the

plan of this node and its cost as the new best plan and minimal

cost respectively (steps 1-3). If there are query stars in the allowed

stars set, then for each element that fulfills the distance constraint

we call the Add_Query_Star function (steps 5-11).

Algorithm 3: Enumerate_Child_Branch

INPUTS: N : decision Tree node, P: Best Plan, d: stars

distance

1: if N .Allowed_QSs is empty then
2: P .Plan ←− N .Plan
3: P .Cost ←− N .Cost
4: else
5: for qs ∈ N .Allowed_QSs do
6: qsl ←− last query star in N .Plan

7: if distance(head(qsl ),head(qs) ≤ d) then
8: N’←− a copy of N

9: Add_Query_Star (qs,N ′,P)
10: end if
11: end for
12: end if

5 EXPERIMENTAL EVALUATION
We conducted our experiments in the QDAG system [9], storing

the data as graph fragments and solving queries using a graph-

exploration approach. We evaluated firstly the time needed to

generate the proposed statistics. We do not give the total loading

times for the tested datasets (they are found in [5, 9]), instead we

prove that the dimensions and generation time of the proposed

statistics is negligible compared to the size and the loading times

of the datasets. Next, to study the accuracy of the estimations of

data stars and mappings obtained with the cost model of Section

4.2, we compared the predicted value (of data stars and mappings)

with the real number of structures exchanged in the solution

of the plan considered as best plan. Finally, we evaluated the

precision of the algorithm selecting the optimal execution time

based on a precision measure that we define in Sect 5.4.

5.1 Experimental setup
Hardware: We conducted all experiments on a machine with

an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz CPU, 1TB hard

disk and 32GB of RAM. Ubuntu server 16.04 LTS is used as an

operating system.

Datasets: We created statistics and evaluate execution times ex-

ecuting queries
3
on real and synthetic datasets. We utilize the

popular LUBM (16GB) and Watdiv (15GB) benchmarks as syn-

thetic datasets and a Yago2 (41GB) and DBLP (32GB) as real

datasets.

5.2 Collection of statistics
The evaluation of the process of statistics generation are sum-

marized in Table 2. As it is shown, the size of the statistics is

very small compared to the actual size of the data, just a few

MB for all the datasets. For example, in the Yago dataset (41GB)

the statistics are stored in a file of only 82MB (0.2%). The time

in minutes to generate the statistics is shown in the column ST.
The time to generate the statistics is negligible compared to the

loading times of the real database (in real datasets it was less than

10% of the loading time). In our case, we intentionally worked

with a hardware with limited specifications to prove that the

generation of statistics is scalable. We are able to generate the

statistics without loading the entire database to main memory.

Table 2: Size of statistics M: millions, ST: Statistics,
LT: loading time

Dataset

Triples

(M)

|
−−→
Gf | |

←−−
Gf |

ST

(MB)

%

Size

ST

(min)

%

LT.

LUBM 19.9 11 13 0.008 0.00005 0.50 4.4

Watdiv 109 39,855 1,181 198 0.2 84.2 71.6

Yago 284 25,511 1,216 82 1.32 84.1 9.4

DBLP 207 247 26 0.196 0.0006125 4.7 3.6

5.3 Evaluation of cost model
We evaluated the estimations of our model measuring the relative

error in the estimation of data stars and mappings for the query

selected as best query. The results of these estimations are shown

in Figure 7 (plotted with logarithmic scale for readability). The

relative error is greater in queries that do not send back any

result. However, as it is seen later, this estimation does not affect

the choice of the best execution plan.

5.4 Optimal P Algorithm
We defined a precision measure to evaluate the choice of the

plan made by the selection algorithm. We sorted the execution

plans for each query based on their execution time. The precision

measures how far is the best plan proposed by the algorithm

compared to the actual best plan in terms of execution time. The
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Figure 7: Relative Error Estimation
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Figure 8: Precision of Best P Algorithm

precision is defined as:

Precision(P) = (#Plans − Pos(P))/(#Plans − 1)

where Pos is a function returning the plan’s rank with respect to

the sorted plans in terms of execution time. The results for each

dataset are shown in Figure 8. For all datasets, the prediction of

the best execution time escapes is either the best possible plan

(according to the execution time) or one of the top best.

6 CONCLUSION
In this paper, inspired from the relational model, we first pro-

vided logical structures to model the execution plan based on

graph exploration techniques. Then, we proposed a novel cost

model comparing equivalent logical execution plans based on

statistics collected for clusters of triples (that we denoted graph

fragments). The cost model estimates the disk and network in-

teractions for a specific logical plan. Furthermore, we studied

formally the complexity of the problem related to the choice of

the best execution plan and we proposed a branch and bound

like algorithm allowing to find the best plan for a specific query.

For experimentations, we used synthetic and real datasets. The

results showed that cardinality estimations based on our model

are very precise even if the collected statistics’ size is negligible.

For future work, we plan to explore other optimization strate-

gies such as real time execution plan auto-adaptation, also we

plan to use Machine Learning techniques on runtime logs.
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