
Query-Centric Regression for In-DBMS Analytics
Qingzhi Ma

University of Warwick

Q.Ma.2@warwick.ac.uk

Peter Triantafillou

University of Warwick

P.Triantafillou@warwick.ac.uk

ABSTRACT
Research in enriching DBs with Machine Learning (ML) models

is receiving increasingly greater attention. This paper experi-

mentally analyzes the problem of empowering data systems with

(and its users with access to) regression models (RMs). The paper

offers a data system’s perspective, which unveils an interesting

‘impedance mismatch′ problem: ML models aim to offer a high

expected overall prediction accuracy, which essentially assumes

that queries will target data using the same distributions of the

data on which the models are trained. However, in data man-

agement it is widely recognized that query distributions do not

necessarily follow data distributions. Queries using selection op-

erators target specific data subspaces on which, even an overall

highly-accurate model, may be weak. If such queried subspaces

are popular, large numbers of queries will suffer. The paper will

reveal, shed light, and quantify this ‘impedance mismatch′ phe-
nomenon. It will study in detail 8 real-life data sets and data from

TPC-DS and experiment with various dimensionalities therein. It

will employ new appropriate metrics, substantiating the problem

across a wide variety of popular RMs, ranging from simple linear

models to advanced, state-of-the-art, ensembles (which enjoy ex-

cellent generalization performance). It will put forth and study a

new, query-centric, model that addresses this problem, improving

per-query accuracy, while also offering excellent overall accuracy.

Finally, it will study the effects of scale on the problem and its

solutions.

1 INTRODUCTION
A new dominating trend has emerged for the next-generation

data management and analytics systems based on integrating

ML models and data management platforms [10, 15, 24, 25, 35,

36, 42, 45]. Additional efforts pertain to connectors to back-end

databases, which allow for statistical analyses and related queries

on DB data, like MonetDB.R [37], SciDB-Py [23], and Psycopg

[48]. Another class of efforts concerns learning from past an-

swers to predict the answers to future analytical queries, e.g.

for approximate query processing engines, which provide ap-

proximate answers to aggregate queries, using ML techniques

[3–5, 41], or for tuning database systems [2], and for forecasting

workloads [32]. Yet another class of efforts concerns model and

query-prediction serving, like the Velox/Clipper systems [16, 17]

managing ML models for predictive analytics. Finally, vision

papers suggest the move towards model selection management
systems [29], where a primary task is model selection whereby

the system is able to select the best model to use for the task at

hand.

In this realm, regression models, being a principal means for

predictive analytics, are of particular interest to both analysts

and data analytics platforms. RMs are playing an increasingly

important role within data systems. Examples of its extended

use and significance include many modern DBs which provide

©Copyright 2020 for this paper held by its author(s). Published in the proceedings of

DOLAP 2020 (March 30, 2020, Copenhagen, Denmark, co-located with EDBT/ICDT

2020) on CEUR-WS.org. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

support for regression, such as XLeratorDB [6] for Microsoft

SQL Server, Oracle UTL_NLA [1, 51], IBM Intelligent Miner [47],

which provide SQL interfaces for analysts to specify regression

tasks. Academic efforts include MADLib (over PostgreSQL) [24],

MAD [15], and MauveDB [18], which integrates regression mod-

els into a RDBMS. [39, 40] uses User-Defined Functions (UDFs)

to compute statistical machine learning models and data summa-

rization. DBEst [33], an approximate query processing engine,

uses ML models (regressions and density estimators) to provide

answers for popular queries. Similarly, FunctionDB [46] builds re-

gression models so that future queries can be evaluated using the

models. Furthermore, [43] integrates and supports least squares

regression models over training data sets defined by join queries

on database tables. Thus, in general, RMs are useful for query

processing and data analytics tasks. In addition, RMs are help-

ful for many other key tasks: imputing missing values, testing

hypotheses, data generation, fast visualization, etc.

Motivations
Given the above increasing interest in bridging ML and RMs with

DBs, we focus on how seamless this process can be. ML models

(and RMs in particular) are trained to optimize a loss function

(invariably concerning overall expected error). We refer to this

as a workload-centric view, as the aim is to minimize expected

error among all queries in an expected workload. In essence, this

assumes query distributions are (expected workload is) similar to

that of the training data. In contrast, data systems research has

long recognized that query workloads follow patterns generally

different to data distributions. Hence, queries on data subspaces

(e.g., using range or equality selection predicates), where an

ML model is weak, will suffer from high errors. And, if such

queries are popular, many queries will suffer. This gives rise to

the need for a “query-centric perspective ”: We define query-
centric regression as a model which strives to ensure both high

average accuracy (across all queries in a workload) as well as

high per-query accuracy, whereby each query is ensured to enjoy

accuracy close to that of the best possible model.

The ML community’s general answer to such problems is

to turn to ensemble methods, in order to lower variance and

generalize better (e.g., to different distributions). We wish to shed

light into this possible impedance mismatch problem and see if it

holds for simpler and even for state-of-the-art ensemble RMs. We

further wish to (i) quantify the phenomenon: We shall use several

real data sets (from the UCI ML repository and TPC-DS data)

and a wide variety of popular RMs and new metrics that reveal

workload-centric and query-centric performance differences, and

(ii) see if the problem can be addressed by adopting a query-

centric perspective, (using a new ensemble method) whereby the

error observed by each query is as low as possible (which will

also indirectly ensure high workload-centric performance).

The above bear strong practical consequences. Consider a

data analyst using python or R, linked with an ML library (like

Apache Spark MLLib, Scikit-Learn, etc.), or using a DB connector

like MonetDB.R or SciDB-Py, or a prediction serving system like

Clipper, etc– and the following use cases.

Scenario 1: The analyst uses a predicate to define a data sub-

space of interest and calls a specific RMmethod: It would be great

if she knew which RMs to use for which data subspaces.

Scenario 2: Alternatively, the system could select the best RM

automatically for the analyst’s query at hand.

With this paper we wish to inform the community of this DB-

RM impedance mismatch problem, study and quantify it, and lay

the foundation for seamless use of RMs for in-DBMS analytics,

offering this query-centric perspective.

2 BACKGROUND
Our study employs a set of representative and popular RMs,

grouped into two categories: Simple and ensemble RMs.

2.1 Simple Regression Models
Simple RMs include linear regression (LR), polynomial regres-

sion (PR), decision tree regression (DTR), SVM Regression (SVR),

Nearest Neighbours Regression (NNR), etc. An introduction to

these simple regression models is omitted for space reasons.

Table 1 summarizes the known asymptotic time complexity

for training for key regression models. And more detailed com-

parisons are made and discussed in §3.5.

Table 1: Complexity of typical regression models

LR PR DTR

O(d2n) O(d4n) [O(dnloд(n)), O(n2d)]

NNR SVR Gaussian Process

O(n(d + k)) or O(ndk) O(vn2) O(n3)

Note: d is the dimension of the data points, n is the number of points

in the training data, k is the number of neighbors for KNN regression,

v is the number of support vectors for SVM regression.

2.2 Ensemble Methods
Ensemble methods are powerful methods that combine the pre-

dictions and advantages from base models. It is often observed

that prediction accuracy is improved by combining the prediction

results in someway (e.g., using weighted averaging of predictions

from various base models) [8]. Ensemble learning is also useful

for scaling-up data mining and model prediction [44]. There have

been many well-developed ensemble methods, including aver-

aging based ensemble methods, bootstrap aggregating (bagging)

[9], boosting [20, 21], stacking [50], mixture of experts [26], etc.

Averaging-based ensemble methods calculate the weighted

average of predictions from all models. This incurs higher com-

putational costs and higher response time.

Boosting refers to a family of algorithms that could potentially

convert “weak models”to “strong models”. AdaBoost [20], short

for “adaptive boosting”, is a popular boosting algorithm. Unlike

bootstrap aggregating whose models are trained in parallel, the

prediction models in AdaBoost are trained in sequence. AdaBoost

was firstly proposed to solve classification problems, and was

applied to solve regression problems later on. Randomization

may be incorporated into boosting, so that its response time is

reduced [22].

The objective of gradient boosting is to minimize the loss

function:

L(yi , f (xi)) = MSE =
∑

(yi − f (xi))
2

(1)

And the predictions are updated in the direction of gradient

descent, which is

f (xi)
r+1 = f (xi)

r + α ∗
∂L(yi , f (xi)

r)

∂ f (xi)r
(2)

where r is the iteration number. Gradient boosting (GBoost) usu-

ally uses only the first-order information; Chen et al. incorporate

the second-order information in gradient boosting for conditional

random fields, and improve its accuracy [12]. However, the base

models are usually limited to a set of classification and regression

trees (CART). Other regression models are not supported.

XGBoost [11] is a state-of-art boosting method, and is widely

used for competitions due to its fast training time and high accu-

racy. The objective of XGBoost is

obj(Θ) = L(Θ) + Ω(Θ) (3)

where L(Θ) is the loss function, and controls how close predic-

tions are to the targets. Ω(Θ) is the regularization term, which

controls the complexity of the model. Over-fitting is avoided if

the proper Ω(Θ) is selected. The base models (booster) can be

gbtree, gblinear or dart [49]. Gbtree and dart are tree models

while gblinear is linear.

3 EXPERIMENTAL SETUP
All experiments run on an Ubuntu system, with Intel Core i5-7500

CPU @ 3.40GHz × 4 processors and 32GB memory.

3.1 Hypotheses
The study rests on testing, validating, and quantifying two key

hypotheses:

Hypothesis 1. Different RMs, exhibit higher accuracy for dif-
ferent regions of the queried data spaces. Likewise for different data
sets. Such differences can be large and may occur even though said
RMs may enjoy similar overall accuracy.

The corollary of Hypothesis 1 is that, even if our analysts in

Scenario 1 knew of highly-accurate RMs, many of their analytical

queries would be susceptible to large errors. Hypothesis 1 aims

to test whether the loss function used by even top-performing

RMs, minimizing overall expected accuracy errors, ’hides’ this

issue. En route, the analysis will quantify this problem across

many different RMs, data sets, and dimensionalities.

Hypothesis 2. Given Hypothesis 1, a model equipped with
knowledge of the accuracy distribution of RMs in the query space,
can near-optimally serve each query.

Such a model, coined QReg, which is a classifier-based ensem-

ble method that bears a query-centric perspective, will be studied

here to validate Hypothesis 2. Hypothesis 2 aims to show that

integrating an RM model within a DB can be done in a query-

centric manner, avoiding the aforementioned problems. Thus,

offering a solution for Scenario 2.

3.2 Data Sets and Dimensionality
To test the hypotheses, eight real-world data sets with different

characteristics from the UCI machine learning repository [31]

are used, varying the dimensionality from 2 to 5, as well as a

large fact table from the TPC-DS benchmark [38].

Data set 1 is a collection of YouTube videos showing input

and output video characteristics along with the transcoding time

and memory requirements. Data set 2 contains Physicochemical

properties of Protein Tertiary Structure. Tasks include predicting

the Size of the residue (RMSD) based on nine properties. There are

45730 decoys and size varies from 0 to 21 armstrong. Data set 3 is

an hourly data set containing the PM2.5 gas concentration data in

Beijing. The task is to predict PM2.5 concentration (uд/m3), and

the independent variables include pressure (PRES), Cumulated

wind speed (Iws), etc. Data set 4 is an online news popularity

data set and tasks include predicting the number of shares in

social networks (popularity). There are totally 39797 records in

this data set. Data set 5 contains 9568 data points collected from

a Combined Cycle Power Plant over 6 years (2006-2011), and the

task is to predict the net hourly electrical energy output (EP) of

the plant. Data set 6 is the YearPredictionMSD data set used to

predict the release year of a song from audio features. Most of

the songs are commercial tracks from 1922 to 2011. Data set 7

contains the recordings of 16 chemical sensors exposed to two

dynamic gas mixtures at varying concentrations. The goal with

this data set is to predict the recording of one specific chemical

sensor based on other sensors and the gas mixtures. This is a

time-series data set containing more than 4 million records in

total. Data set 8 records the individual household electric power

consumption in one household for more than four years, and

there are two million records.

We further employ table store_ sales from the popular TPC-

DS benchmark [38]. Typical columns used for the experiments in-

clude ss_wholesale_cost, ss_list_price, ss_ sales_price,
ss_ext_sales_price and ss_ext_wholesale_cost.

3.3 Evaluation Metrics
Accuracy is measured using the Normalized Root Mean Square

Error (NRMSE) metric, defined as:

NRMSE =

√∑n
t=1(ŷt−yt)2

n
ymax − ymin

(4)

NRMSE shows overall deviations between predicted and mea-

sured values; it is built upon root mean square error (RMSE),

and is scaled to the range of the measured values. It provides

a universal measure of prediction accuracy between different

regression models.

The NRMSE ratio r , compares the prediction accuracy of

one RMi against that of any other RMj , and is defined as: r =
NRMSEi
NRMSEj . If NRMSEj ≤ NRMSEi , this ratio shows how worse

RMi is compared to RMj .

The above are standard metrics used for comparing accuracy.

However, our study calls for additional metrics. Inherent in our

study is the need to reflect the differences in accuracy observed

by a query as they depend on the model used. For this we define

the concept of Opportunity Loss as a natural way to reflect how

much the query loses in accuracy by using a sub-optimal model.

Assuming RMopt is the RMwith the lowest NRMSE, we define

Opportunity Loss OLi as

OLi =
NRMSEi
NRMSEopt

− 1, (5)

which quantifies as a % the error (the opportunity loss) due to

not using the best model RMopt and using RMi instead.

Furthermore, we define

ROLi , j =
OLi
OLk
, (6)

as Relative Opportunity Loss , which quantifies how much better

RMk does vs RMi in improving on the opportunity loss.

Intuitively, our aim (with testing Hypothesis 1) is to show that,

despite which single model is used, some queries will always be

processed by sub-optimal models. So we wish to quantify this op-

portunity loss. Furthermore, our aim (with testing Hypothesis 2)

is to show that a new ensemblemodel can help significantly allevi-

ate this problem. The ROLi , j metric will help quantify how much

a model (QReд) improves on this opportunity loss for queries.

3.4 Architecture
Assume that the data system maintains m regression models.

When a query arrives, the system needs to identify the model

with the least prediction error for this query. We treat this model

selection problem as a classification problem. Fig. 1 shows the

architecture of this classified regression QReд 1
.

Figure 1: Architecture of the classified predictionmethod.

There are two layers in the system. (i) The model mainte-
nance layer, deploys and maintains the base regression models.

(ii) The query classification layer implements the core of QReg.
A query is first passed to the pre-trained classifier. Because the

classifier “knows”the prediction ability of each model in the vari-

ous queried data spaces, the query will be assigned to the model

that performs best locally for this query’s data space. Unlike

typical ensemble methods, only one model is invoked for each

query (hence QReg is less computationally intensive).

Two configurations are studied for QReд: Simple QReg uses

LR, PR, and DTR. Advanced QReg uses GBoost and XGBoost as

its base models.

3.5 Candidate Base Models
When decidingwhichmodels to include the following key criteria

are considered.

(a.) Model training time. This should be as low as possible

and should exhibit good scalability as the number of the training

data points increases.

Given the asymptotic complexity, as summarised in §2.1, a

number of experiments were conducted to quantify the training

times for various regression models. Fig. 2 is a representative

result for data set 4 using 4 dimensions. It shows howmodel train-

ing time (for six regression models) is impacted as the number

of training instances increases.

Model training time is shown to behave acceptably with re-

spect to the number of instances in the training data set for LR,

PR, DTR, and kNN regression. The training time of Support Vec-

tor Regression – Radial Basis Function tends to increase much

more aggressively as the number of training points increases. The

experiment was repeated for all data sets. The above conclusion

holds across all experiments and are omitted for space reasons.

1
The source code for QReд is available at https://github.com/qingzma/qreg

https://github.com/qingzma/qreg

Figure 2: Training time of typical regression models.

(b.) Query response time: In the classifier training process,

predictions are made from each base prediction model. To reduce

the overall training time as well as the query response time, the

models should have as low response time as possible.

(c.) Prediction accuracy: An interesting issue arises from

using different regression models together, as inQReд. If the base
regression models have large differences in accuracy levels, then

this may result in QReд having poor accuracy. This is a direct

result of errors introduced during the separate classification pro-

cess. Therefore, care must be taken so to ensure that base models

enjoy similar and good accuracy levels.

3.6 Model Training Strategy
Fig. 3 shows the model training strategy of QReд. The data set is
partitioned into three subsets: (i) Training_Data set_1 is used

to train the base models; (ii) Training_Dataset _2 is used to

train the classifier in QReд; (iii) Testing_Dataset is used to

evaluate the accuracy of QReд.

Main
Dataset

Training
Dataset 1

Training
Dataset 2

Testing
Dataset

Model 1

Model 2

Model n

...

Predictions 1

Predictions 2

Predictions n

... New
dataset
to build

classifier

Figure 3: Model training of QReд.

After partitioning the data set,m base models are trained upon

Training_Dataset_1. The selection of base models is in princi-

ple open and depends on the users’ choice (taking into account

the above issues). Each base model fi (x) makes predictions ŷi
of each data point x in Training_Dataset_2. A comparison is

made between the predicted ŷi and the real label y to find the

best prediction model for each query x.
Having the individual predictions and associated errors, a new

data set is generated by combining the data point x and the index

i of the best model for this query, depicted [x, i]. This data set is
then used to build the classifier reflecting the prediction ability

of base models in the query space. The classifier is the core of

QReд, and a well-designed classifier could potentially grasp the

prediction ability of eachmodel in the query space correctly. Thus,

the prediction accuracy can be significantly improved compared

to individual prediction models.

Note that the original data set is partitioned into 3 subsets

instead of 2. This is done in order to ensure that different train-

ing data sets are used to train the base models and the classifier,

respectively, which avoids potential over-fitting problems. In

addition, models are fine-tuned via cross-validation using Grid-
SearchCV() in the scikit-learn package.

4 EVALUATING HYPOTHESIS I
Consider data set 3, the Beijing PM2.5 data set [30], using Cu-

mulated Wind Speed (IWS) and Pressure (PRES) as the features,

yielding a 3-dimensional regression problem.

Fig. 4.(a) shows the distribution of the model with the least

error for all data points. LR, PR, and DTR are used as the base RMs

(Simple QReд). Fig. 4.(b) shows the distribution of best models

when ensemble models GBoost and XGBoost are used (Advanced

QReд).

990 1000 1010 1020 1030 1040
Pressure (hPa)

0
100
200
300
400
500

Cu
m

ul
at

ed
 w

in
d

sp
ee

d
(m

/s
)

LR
PR
DTR

(a) Simple models

990 1000 1010 1020 1030 1040
Pressure (hPa)

0
100
200
300
400
500

Cu
m

ul
at

ed
 w

in
d

sp
ee

d
(m

/s
)

GBoost
XGboost

(b) Ensemble models

Figure 4: Distribution of best models for Beijing PM2.5.

Take QReд using simple models as an example. LR dominates

in the upper-central region. PR dominates at the lower central

regions. DTR performs best in the rest of the space. the NRMSEs

for LR, PR and DTR are 8.48%, 8.84%, and 8.32%, respectively.

However, if for each point the best model can be selected to make

the prediction (as shown in Fig. 4), the corresponding ("optimal")

NRMSE drops to 7.19%. This is a large improvement in accuracy.

Figures like Fig. 4 can help analysts decide on which models

to use when querying this space.Similar figures exist for all data

sets studied in this work and are omitted due to space reasons.

Table 2: Win-counts of simple RMs.

Data set
ID

Count of
LR

Count of
PR

Count of
DTR

1 6468 6919 5366

2 3606 4133 6217

3 1077 1580 1472

4 3618 4826 4155

5 980 885 1307

6 62749 51953 57007

7 9646 4029 4953

8 35702 28800 40311

Table 2 adopts a different perspective. It shows the number of

most accurate predictions ("wins") made by each simple RM, per

data set. First, note that all models have a good number of wins.

Second, no model has the highest number of wins across all data

sets. So, there is no single winner. DTR enjoys the most wins for

data sets 2, 5, and 8; PR makes the most accurate predictions for

data sets 1, 3, and 4; LR wins for data sets 6 and 7.

Table 3 zooms in, augmenting Table 2 by showing the NRMSEs

when different simple RMs win. For example, for data set 1, we

know from Table 2 that LR wins 6468 times. For these, the LR’s

NRMSE was 11.08%, as indicated by Table 3, whereas for PR was

enormous and for DTR was 18.28% – see the 3 numbers in cell

[1,2] in Table 3. Similarly, for the 6919 queries where PR won,

LR’s NRMSE was 11.82%, as indicated by Table 3 whereas for PR

was 9.35% and for DTR was 11.68% – see the 3 numbers in cell

[1,3].

Table 3: NRMSE values when different RMs win.

Data set
ID

NRMSE
where
LR wins

NRMSE
where
PR wins

NRMSE
where
DTR wins

Overall
NRMSE

11.08% 11.82% 14.23% 12.32%

1 ≫1000% 9.35% ≫1000% ≫1000%

18.28% 11.68% 10.60% 14.06%

27.68% 23.78% 28.61% 27.02%

2 30.96% 20.20% 27.85% 26.72%

34.24% 26.18% 21.81% 26.79%

8.47% 8.00% 8.99% 8.48%

3 9.91% 6.60% 10.04% 8.84%

10.54% 7.99% 6.65% 8.32%

2.46% 4.96% 5.55% 4.62%

4 3.82% 2.62% 4.49% 3.67%

4.07% 3.54% 2.51% 3.41%

16.69% 15.97% 19.91% 17.90%

5 18.75% 13.94% 18.79% 17.56%

21.07% 16.99% 15.30% 17.72%

11.06% 12.43% 13.39% 12.29%

6 12.15% 11.47% 12.77% 12.15%

12.30% 12.04% 12.15% 12.17%

80.48% 113.75% 106.84% 95.85%

7 210.45% 83.39% 104.22% 165.31%

118.60% 111.17% 76.58% 107.31%

8.81% 10.02% 10.49% 9.82%

8 10.36% 8.05% 10.04% 9.66%

11.13% 9.99% 8.29% 9.80%

Each [i,j] cell shows 3 values for data set i , for the cases where model

j wins. j = 2 (3, or 4) represents LR, (PR, or DTR) respectively. The top

number in each cell shows the NRMSE for LR, the middle shows the

NRMSE of PR, and the bottom the NRMSE for DTR.

Consider data set 4. When LR wins, its error is markedly lower

(almost half) that of PR and DTR–unlike their overall NRMSEs

which show LR to be the worst model.

To further facilitate a query-centric perspective, we delve into

the performance of the queries for which each RM reached a

top-20% performance. For data set 1, for example, this includes

the best 20% of the 6468 queries for which LR wins, the best 20%

of the 6919 queries for PR wins, and the best 20% of the 5366

queries for DTR wins. Hence, the NRMSE of interest does not

come from all the queries, but from the top 20% queries for which

the least error was achieved by a simple RM. Table 4 shows these

results, along with the overall NRMSE of each simple RM for the

whole set of queries. Again, note that the overall NRMSEs are

quite close. However, individual differences are very large. For

data set 1, for instance, the top 20% of queries when LR wins

enjoy an NRMSE that is about half of the NRMSE of the others.

Interestingly, the same holds for PR and DTR! Similar conclusions

hold for the other data sets.

Table 4: NRMSEs for the top 20% queries per simple RM.

Data Set
ID

NRMSE
where
LR wins

NRMSE
where
PR wins

NRMSE
where
DTR wins

Overall
NRMSE

3.61% 5.36% 6.67% 5.36%

1 7.06% 2.92% 6.33% 5.72%

7.96% 5.78% 3.42% 6.01%

18.35% 16.14% 16.10% 16.89%

2 21.26% 12.39% 12.88% 16.04%

24.14% 17.09% 7.97% 17.69%

3.03% 3.64% 4.83% 3.902%

3 4.89% 1.44% 4.07% 3.76%

5.35% 2.78% 2.12% 3.69%

0.96% 2.33% 2.74% 2.15%

4 2.33% 0.63% 1.56% 1.66%

2.54% 1.40% 0.78% 1.74%

7.56% 9.77% 9.44% 8.98%

5 10.00% 7.75% 8.11% 8.68%

12.11% 10.55% 4.85% 9.69%

4.11% 5.26% 5.500% 5.00%

6 5.22% 4.12% 4.82% 4.74%

5.42% 4.76% 4.13% 4.80%

42.14% 109.35% 95.42% 87.25%

7 106.72% 80.88% 82.48% 90.80%

79.49% 106.48% 65.26% 85.47%

3.07% 5.57% 3.65% 4.23%

8 4.37% 3.77% 3.67% 3.95%

5.17% 5.92% 1.60% 4.63%

The corresponding data for the advanced ensemble RMs is

highly similar and we omit it for space reasons.

Table 5: Win counts of ensemble RMs.

Data set
ID

Count of
tree boosting

Count of
XGBoost

1 10334 8419

2 7037 6919

3 2653 1476

4 2142 10457

5 1596 1576

6 92916 78793

7 6991 11637

8 52949 51864

5 EVALUATING HYPOTHESIS II
This hypothesis aims to substantiate whether it is possible to

develop a method that can learn from the key findings of the

previous section and leverage them in order to address Scenario

2, automating the decision as to which RM to use, relieving the

DB user/analyst of the conundrum, towards a query-centric RM.

Specifically, we study if and at what costs a method can: (i) near-

optimally select the best regression model for any query at hand

and (ii) achieve better overall accuracy than any single (simple

or ensemble) method.

It is natural to treat this problem as a model selection problem,

using a classifier for the method selection. We show a new ensem-

ble method,QReд, whichmaterializes a query-centric perspective

achieving the above two aims.
2
We have considered various clas-

sifiers forQReд, including SVM-linear classifiers, SVM classifiers

using the RBF kernel,and the XGBoost classifier, etc. A compre-

hensive comparison between various classifiers is made. Unless

explicitly stated otherwise, results for the XGBoost classifier

are shown, due to its overall prediction accuracy and scalability

performance.

990 1000 1010 1020 1030 1040
Pressure (hPa)

0
100
200
300
400
500

Cu
m

ul
at

ed
 w

in
d

sp
ee

d
(m

/s
)

LR
PR
DTR

(a) Simple QReд

990 1000 1010 1020 1030 1040
Pressure (hPa)

0
100
200
300
400
500

Cu
m

ul
at

ed
 w

in
d

sp
ee

d
(m

/s
)

GBoost
XGboost

(b) Advanced QReд

Figure 5: QReд distribution of base models.

Fig. 5 shows the RMs chosen by Simple and Advanced QReд
for each corresponding query, giving a feeling of the overall RM

distribution suggested by QReд. The model distribution shown

resembles the distribution of the truly optimal models across the

queried data space, as shown in Fig. 4. Thus, QReд does a good

job in selecting (near-) optimal RMs per query. As per Scenario

1, presenting such visualisations can be of real value to analysts.

Workload-centric Perspective: Simple QReg
A workload-centric perspective assumes that the query distribu-

tion is identical to the data distribution, as described in §1. Simple

QReд uses simple regression models, including LR, PR, and DTR.

Fig. 6 shows the NRMSE ratio r as defined in Equation (4) for all

data sets in 3-d space. An NRMSE ratio r larger than 1 means

QReд has less prediction error than the other base model. QReд
is shown to outperform or be as good as any of its base models.

Specifically, for data sets 2, 3, 5, 6, and 8, QReд performs slightly

better than other regression models, whereas for data sets 1, 4,

and 7, we can see QReд being significantly superior versus LR,

or PR, or DTR.

Fig. 7 compares the prediction error between Simple QReд
against the more sophisticated ensemble methods, including

AdaBoost, GBoost, and XGBoost. Fig. 7 shows that the even

Simple QReд often achieves better prediction accuracy than any

of the sophisticated ensemble methods. For example, up to 25%

reduction in NRMSE is achieved by Simple QReд for data set 1

in 3-d space.

Workload-centric Perspective: Advanced QReg
For the majority of the cases, Simple QReд is shown to outper-

form simpler RMs and occasionally more complex ensemble mod-

els. For the remainder we concentrate on Advanced QReд con-

structed using GBoost and XGBoost.

Delving deeper, we now show the NRMSE ratios between

GBoost (or XGBoost) and QReд, broken down to sub-collections

2
NB: the aim here is not to find the best method to achieve this, but to show that

this is achievable and that significant gains can be achieved using easy to deploy

methods.

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.1

1.2

1.3

1.4

1.5

NR
M

SE
 R

at
io

LR vs QReg
PR vs QReg
DTR vs QReg

Figure 6: Accuracy of Simple QReд vs LR, PR, DTR.

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

NR
M

SE
 R

at
io

AdaBoost vs QReg
GBoost vs QReg
XGBoost vs QReg

(a) 2d

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

NR
M

SE
 R

at
io

AdaBoost vs QReg
GBoost vs QReg
XGBoost vs QReg

(b) 3d

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

NR
M

SE
 R

at
io

AdaBoost vs QReg
GBoost vs QReg
XGBoost vs QReg

(c) 4d

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

NR
M

SE
 R

at
io

AdaBoost vs QReg
GBoost vs QReg
XGBoost vs QReg

(d) 5d

Figure 7: Accuracy of QReд vs ensemble RMs

of points in the data space, specifically, for the sub-collection of

points where XGBoost regression (or GBoost regression) has the

best prediction accuracy.

Fig. 8 shows bands of 2 bars each. Each band of bars shows the

NRMSE ratio between other RM and the best RM for the collection

of points. Take the 4-d data set 1 as an example, for the collection

of points where XGBoost has the best prediction accuracy. The

NRMSE ratio between GBoost (second best RM) and XGBoost

(collection-best RM) is 1.3288 (orange bar in the figure), while

the corresponding NRMSE ratio between QReд and XGBoost is

1.0780 (green bar in the figure). This shows that for this collection

of points where XGBoost has the best prediction accuracy, GBoost

suffers from a 32.88% error relative to the optimal, while using

QReд reduces this to 7.80%.

As another example, consider the collection of points where

XGBoost has the best prediction accuracy in the 5-d data set 8.

The NRMSE ratio between GBoost (second best RM) and XGBoost

is 1.1458, while the NRMSE ratio between QReд and XGBoost

is 1.0316. Thus, the relative opportunity loss is 0.1458/0.0316 =

4.61, which means the error caused by using GBoost (relative to

the best model) is 4.61 times the error caused by QReд for the

collection of points where XGBoost has the best accuracy. The

relative opportunity loss is much larger for data sets 4 and 5.

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8

NR
M

SE
 R

at
io

XGboost
QReg

(a) 4-d GBoost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8

NR
M

SE
 R

at
io

GBoost
QReg

(b) 4-d XGBoost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8

NR
M

SE
 R

at
io

XGboost
QReg

(c) 5-d GBoost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8
NR

M
SE

 R
at

io
GBoost
QReg

(d) 5-d XGBoost win collection

Figure 8: Workload-centric collection-level NRMSE ratio

Fig. 9 shows the ratio r of NRMSE between the base (ensemble)

methods and Advanced QReд for the whole data sets. Improve-

ment in 2-d space is typically small, but from d=4, we start seeing

larger improvements brought about by QReд. For 2-d case, the

accuracy of GBoost and XGBoost regressor are high and almost

equal, which explains why QReд cannot improve things further.

For the 3-, 4-, and 5-d cases, almost all ratios are above the hori-

1 2 3 4 5 6 7 8
Dataset ID

0.996

0.998

1.000

1.002

1.004

NR
M

SE
 R

at
io

GBoost vs QReg
XGBoost vs QReg

(a) 2-d

1 2 3 4 5 6 7 8
Dataset ID

1.000

1.025

1.050

1.075

1.100

NR
M

SE
 R

at
io

GBoost vs QReg
XGBoost vs QReg

(b) 3-d

1 2 3 4 5 6 7 8
Dataset ID

0.95

1.00

1.05

1.10

1.15

NR
M

SE
 R

at
io

GBoost vs QReg
XGBoost vs QReg

(c) 4-d

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.1

1.2

NR
M

SE
 R

at
io

GBoost vs QReg
XGBoost vs QReg

(d) 5-d

Figure 9: r between QReg and base ensemble models

zontal line r = 1. It shows that models do very well for most data

sets. However, there are some cases where QReд is significantly

better than other ensemble methods, for example against GBoost

for the 5-d data set 4 and against XGBoost for the 4-d data set

8. We see that QReд can improve accuracy across data sets and

dimensionalities.

Comparing Fig. 9 with Fig. 8, we see that even though the over-

all NRMSE of various RMs is similar, different RMs give different

accuracy in different subspaces of the data. Interestingly, this

figure also shows that for different data sets different ensemble

methods win (as we have seen previously), showcasing the need

for a method like QReд.

Query-centric Perspective: Advanced QReg
As discussed before, we calculate the NRMSE error for the full

collection of points where a single ensemble model wins. To

zoom into the context of query-centric prediction serving, we

now focus only in the top 20% of queries with the least error, as

done previously. To summarize relative performance, the relative

opportunity loss between RMs and QReд is shown in Table 6.

Table 6: ROL w.r.t. QReд when different ensemble RMs
win for their top 20% queries.

Data set
ID

where
GBoost wins

where
XGBoost wins

1 3.00 2.39

2 2.77 2.68

3 75.50 2.00

4 0.99 >1000

5 2.77 1.87

6 5.67 1.77

7 7.13 3.44

8 2.64 5.29

The values shown exactly are the ROL of using as a second-

best RM GBoost (XGBoost) vs QReд when XGBoost (GBoost)

wins. For example, cell [1,2]=3.00, says that if XGBoost was used

(instead of the optimal in this case GBoost) it would result in

an error that is 3 times higher than if QReд was used. In other

words, previous results have shown that, regardless of which RM

is chosen, this RM will be suboptimal for certain queries. So these

ROL values show how QReд can minimize this cost when being

suboptimal.

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8

2.0

NR
M

SE
 R

at
io

XGboost
QReg

(a) 4-d GBoost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.2

1.4

1.6

1.8

2.0
NR

M
SE

 R
at

io
GBoost
QReg

(b) 4-d XGboost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.5

2.0

2.5

3.0

NR
M

SE
 R

at
io

XGboost
QReg

(c) 5-d GBoost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.5

2.0

2.5

3.0

NR
M

SE
 R

at
io

GBoost
QReg

(d) 5-d XGboost win collection

Figure 10: Query-centric collection-level NRMSE ratio

Similar to Fig. 8, Fig. 10 shows the NRMSE ratio for the 4-

5 dimensional space, but in the query-centric (the top 20% of

queries) perspective. Focus on the collection of points where

XGBoost has the best prediction accuracy in the 5-d data set 8

as an example. The NRMSE ratio between GBoost (second best

RM) and XGBoost is 1.3842, while the NRMSE ratio between

QReд and XGBoost is 1.0872. Thus, the relative opportunity loss

is 0.3842/0.0872 = 4.4, which means the error caused by using

GBoost is 4.4 times as the error caused byQReд for the collection

of points where XGBoost has the best prediction accuracy.

It is noticeable that the NRMSE ratio fromQReд is always less

than that from the second best model, and is very close to 1. Thus,

for the most vulnerable queried spaces (where a single ensemble

model wins by far), QReg can near-optimally achieve the same

accuracy, reconciling the otherwise unavoidable loss.

QReg Training Time
Fig. 11 shows the results of our study focusing on the scalability

ofQReд, seeing the performance overheads that need be paid for

QReд’s accuracy improvement. There exists an approximately

Figure 11: Comparison of model training time

linear relationship between the model training time and number

of training points. Even for a relatively high number of train-

ing points, (e.g., hundreds of thousands), the training time for

QReд is shown to be a few dozen of seconds. Although this is

an order of magnitude worse than XGBoost in absolute value it

is acceptable for medium-sized data sets. Also, about 90% of the

training time is spent for getting predictions from the individual

base models. In the current version of the code, predictions are

received sequentially from base models; doing this in parallel,

would reduce the total training time.

6 QREG SCALABILITY
As discussed in §5, the total training time of QReд increases

approximately linearly as the data size increases. This limits its

application to very large data sets. An approach for addressing

this issue is to build samples from the data and trainQReд on the

samples. We study the implications of this approach on QReд’s
performance and observe also whether our Hypotheses hold for

this case as well.

6.1 Sample Size Planning
One major question is how big the sample size should be? A

smaller sample requires less training time, but might lead to poor

accuracy. According to the tasks, various strategies could be used

to determine the sample size. For general purposes, Cochran’s

formula [13] is usually used to determine the sample size for a

population.

n0 =
z2p(1 − p)

e2
(7)

where n0 is the sample size, z is the selected critical value of

desired confidence level, p is the degree of variability and e is the
desired level of precision. For instance, we need to determine the

sample size of a large population whose degree of variability is

unknown. p = 0.5 indicates maximum variability, and produces

a conservative sample size. Assume we need 95% confidence

interval with 1% precision, the corresponding sample size n0 =
9604. For datasets with a finite size, the sample size is slightly

smaller than the value obtained in eq. (7).

For regression-specific tasks, sample size planning techniques

include power analysis (PA) [14], accuracy in parameter esti-

mation (AIPE) [28], etc. The sample sizes obtained from both

methods are different, and the magnitude is usually hundreds

or thousands. [27] proposes a method to combine these meth-

ods with a specified probability, while [34] recommends that the

largest sample size should be used.

For classification-specific tasks, [19] finds that many predic-

tion problems do not require a large training set for classifier

training. [7] uses learning curves to analyze the classification

performance as a function of the training sample size, and con-

cludes that 5-25 independent samples per class are enough to

train classification models with acceptable performance. Also,

75-100 samples will be adequate for testing purposes.

In this study, the sample size varies from 10k, 100k to 1m,

which are conservative compared to the values obtained by the

PA and AIPE methods for regression tasks, or the size for classi-

fication tasks.

6.2 Workload-centric Perspective
We show results for data sets 6, 7, 8 and Table store_sales from
the TPC-DS data set. Data sets 6, 7, 8 contain 2-4 million records,

and Table store_sales is scaled-up to 2.6 billion records. We

use reservoir sampling to generate uniform random samples for

these data sets. Experiments are done using Advanced QReд.

Table 7: Win counts of ensemble RMs.

Data set ID
Count of
GBoost

Count of
XGBoost

6 16209 17124

7 15854 17479

8 13757 19576

store_sales 13415 17003

Table 7 shows the occurrences of best predictions (wins) made

by each model, for the samples of size 100k. Similarly to Table 2

in §4, each base model is shown to win for a substantial per-

centage of queries (or, equivalently for a considerable part of the

data set). This supports Hypothesis I that there is not a single

regression model capable of dealing with various data sets, and

each regression model is only good at sub-spaces of the data sets.

Similar to §5, this section focuses on the workload-centric

evaluation but for sample-based QReд. We show the NRMSE

ratio r between XGBoost (or GBoost) and QReд, broken down

to subcollections of points in the data space, specifically, for the

subcollection of points where GBoost (or XGBoost regression)

has the best accuracy.

Consider the collection of points where XGBoost has the best

prediction accuracy in the 5-d data set 7. The NRMSE ratio r
between GBoost regression (second best RM) and XGBoost re-

gression (best RM) is 1.2107, while the NRMSE ratio between

QReд and XGBoost regression is 1.0499. Thus, the corresponding

ROL between GBoost and QReд is 0.2107 /0.0499 = 4.22, which

means for this collection of points, GBoost induces 4.22 times

higher error than QReд.
The same conclusion holds for the query-centric perspective,

and is omitted for space reasons.

6 7 8 store_sales
Dataset ID

1.00

1.05

1.10

1.15

1.20

NR
M

SE
 R

at
io

XGboost
QReg

(a) 4-d GBoost win collection

6 7 8 store_sales
Dataset ID

1.00

1.05

1.10

1.15

1.20

NR
M

SE
 R

at
io

GBoost
QReg

(b) 4-d XGBoost win collection

6 7 8 store_sales
Dataset ID

1.0

1.1

1.2

1.3

1.4

NR
M

SE
 R

at
io

XGboost
QReg

(c) 5-d GBoost win collection

6 7 8 store_sales
Dataset ID

1.0

1.1

1.2

1.3

1.4

1.5
NR

M
SE

 R
at

io
GBoost
QReg

(d) 5-d XGBoost win collection

Figure 12: Workload-centric collection-level NRMSE ratio

6.3 Model Training Time
The training time of sample-based QReд consists of two parts:

(a) Sampling time to generate samples from the base tables; (b)

Training time to train QReд over the samples. Fig. 13 shows

Figure 13: Sample Size vs Training Time for store_sales

the training time ofQReд for the 100m store_sales table, while
sample sizes vary {10k, 100k, 1m}. It takes ca. 68-72s to generate

the samples. For 10k (100k, 1m) samples, it takes less than 3s (22s,

150s) to train QReд. With 100k samples, QReд performs excel-

lently. So, in conclusion, sample-based QReд is scalable and both

hypotheses hold even when models are trained from samples.

6.4 Application to AQP engines.
Previous experiments demonstrate the strength of QReд. In this

section, QReд is applied to DBEst, a newly model-based approxi-

mate query processing (AQP) engine [33]. DBEst adopts classical

machine learning models (regressors and density estimators) to

provide approximate answers to SQL queries. We replace the

default regression model in DBEst (XGBoost) with Advanced
QReд, and compare the accuracy with DBEst using other ensem-

ble methods, including XGBoost and GBoost. The well-known

TPC-DS dataset is scaled up with scaling factor of 1000, which

contains ∼ 2.6 billion tuples (1TB). 96 synthetic SQL queries cov-

ering 13 column pairs are randomly generated for SUM and AVG
aggregate functions. DBEst sample size is set to 100k.

Fig. 14 shows the relative error achieved by DBEst using vari-

ous regression models. For SUM, the relative errors using XGboost
or GBoost are 8.35% and 8.10%. However, if Advanced QReд is

SUM AVG OVERALL
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

R
el

at
iv

e
E

rr
or

(%
)

DBEst XGBoost

DBEst GBoost

DBEst Advance QReg

Figure 14: Application of QReg to DBEst

used, the relative error drops to 7.77%. AlthoughAdvanced QReд
is build upon XGBoost and GBoost, the relative error of DBEst

using Advanced QReд is better than DBEst using XGBoost or

GBoost only. For further comparison, if the linear regression is

used in DBEst, the relative error becomes 21.20%, which is much

higher than DBEst using Advanced QReд. Thus, a query-centric
regressor, like QReд, improves the prediction accuracy and is

very important in-DBMS analytics.

7 MAJOR LESSONS LEARNED
The key lessons learned by this study are:

• Different RMs are better-performing for different data sets

and, more interestingly, for different data subspaces within

them. This holds for simpler models and, perhaps surpris-

ingly, for advanced ensemble RMs, which are designed to

generalize better.

• Each examined RM is best-performing (a winner) for a

significant percentage of all queries. Necessarily, this im-

plies that, for a significant percentage of queries, regard-

less of which (simple or ensemble) RM is chosen by a DB

user/analyst, a suboptimal RM will be used.

• When said suboptimal RMs are used, significant additional

errors emerge for a large percentage of queries.

• Best practice, which suggests using a top-performing en-

semble, is misleading and leads to significant errors for

large numbers of queries. In several cases, despite the

fact that different RMs had a very similar overall error

(NRMSE), a significant fraction of queries face very large

differences in errorwhen using seemingly-similarly-performing

RMs. Thus, sophisticated and simpler RMs cannot cope

well, in order to appease query-sensitive scenarios, where

query distributions may target specific data subspaces.

• A query-centric perspective, as manifested withQReд, can
offer higher accuracy across data sets and dimensionalities.

This applies to overall NRMSEs. More importantly, it ap-

plies to query-centric evaluations. The study revealed that

when QReд is used, there are significant accuracy gains,

compared to using any other non-optimal RM (which as

mentioned is unavoidable).

• Accuracy improvements are achieved with small over-

heads, even with very large data sizes, using sampling.

8 CONCLUSIONS
The paper studied issues pertaining to the seamless integration

of DBMSs and regression models. The analysis revealed the com-

plexity of the problem of choosing an appropriate regression

model: Different models, despite having overall very similar ac-

curacy, are shown to offer largely-varying accuracy for different

data sets and for different subsets of the same data set. Given this,

the analysis sheds light on solutions to the problem. It showed

and studied in detail the performance ofQReд, which can achieve
both high accuracy over the whole data set and near-optimal

accuracy, per query targeting specific data subsets. The analy-

sis also showed the impact of key decisions en route to QReд,
such as selecting different constituent base regression models.

In addition, it studied issues pertaining to scalability, showing

that even with large data sets, the same issues hold and the same

model solution can be used to achieve per-query and overall

high accuracy. In general, the proposed QReд offers a promising

approach for taming the generalization-overfit dilemma when

employing ML models within DBMSs.

ACKNOWLEDGMENTS
This work was supported in part by the ‘Tools, Practices and

Systems’theme of the UKRI Strategic Priorities Fund (EPSRC

Grant EP/T001569/1) & The Alan Turing Institute (EPSRC grant

EP/N510129/1).

REFERENCES
[1] 2005. Database PL/SQL Packages and Types Reference. https://docs.oracle.

com/cd/B28359_01/appdev.111/b28419/u_nla.htm#CIABEFIJ

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Ma-

chine Learning. In Proceeding of ACM SIGMOD.
[3] C. Anagnostopoulos and P. Triantafillou. 2015. Learning Set Cardinality in

Distance Nearest Neighbours. In Proceeding of IEEE International Conference
on Data Mining, (ICDM15).

[4] C. Anagnostopoulos and P. Triantafillou. 2015. Learning to Accurately COUNT

with Query-Driven Predictive Analytics. In Proceeding of IEEE International
Conference on Big Data.

[5] C. Anagnostopoulos and P. Triantafillou. 2017. Query-Driven Learning for

Predictive Analytics of Data Subspace Cardinality. ACM Trans. on Knowledge
Discovery from Data, (ACM TKDD) (2017).

[6] Anon. 2018. XLeratorDB. http://westclintech.com/

[7] Claudia Beleites, Ute Neugebauer, Thomas Bocklitz, Christoph Krafft, and

Jürgen Popp. 2013. Sample size planning for classification models. Analytica
chimica acta 760 (2013), 25–33.

[8] Christopher M Bishop. 2006. Pattern recognition and machine learning.
springer.

[9] Leo Breiman. 1996. Bagging predictors.Machine learning 24, 2 (1996), 123–140.
[10] Zhuhua Cai, Zekai J Gao, Shangyu Luo, Luis L Perez, Zografoula Vagena, and

Christopher Jermaine. 2014. A comparison of platforms for implementing

and running very large scale machine learning algorithms. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data. ACM,

1371–1382.

[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting

system. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 785–794.

[12] Tianqi Chen, Sameer Singh, Ben Taskar, and Carlos Guestrin. 2015. Efficient

second-order gradient boosting for conditional random fields. In Artificial
Intelligence and Statistics. 147–155.

[13] William G Cochran. 2007. Sampling techniques. John Wiley & Sons.

[14] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Rout-
ledge.

[15] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. 2009. MAD

skills: new analysis practices for big data. Proc. VLDB Endow. (2009).
[16] Dan Crankshaw, Peter Bailis, Joseph Gonzalez, Haoyuan Li, Zhao Zhang,

Michael Franklin, Ali Ghodsi, and Michael Jordan. 2015. The missing piece

in complex analytics: Low latency, scalable model management and serving

with Velox. In Conference on Innovative Data Systems Research (CIDR).
[17] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J Franklin, Joseph E

Gonzalez, and Ion Stoica. 2016. Clipper: A Low-Latency Online Prediction

Serving System. arXiv preprint arXiv:1612.03079 (2016).
[18] A. Deshpande and S. Madden. 2006. MauveDB: supporting model-based user

views in database systems. In ACM SIGMOD.
[19] Kevin K Dobbin and Richard M Simon. 2006. Sample size planning for devel-

oping classifiers using high-dimensional DNA microarray data. Biostatistics 8,
1 (2006), 101–117.

[20] Yoav Freund and Robert E Schapire. 1995. A desicion-theoretic generalization

of on-line learning and an application to boosting. In European conference on
computational learning theory. Springer, 23–37.

[21] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.

[22] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational
Statistics & Data Analysis 38, 4 (2002), 367–378.

[23] L Gerhardt, CH Faham, and Y Yao. 2018. SciDB-Py. http://scidb-py.readthedocs.

io/en/stable/.

[24] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,

Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan

Feng, Kun Li, et al. 2012. The MADlib analytics library: or MAD skills, the

SQL. Proceedings of the VLDB Endowment 5, 12 (2012), 1700–1711.
[25] Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish

Tatikonda, and Frederick R Reiss. 2015. Resource elasticity for large-scale

machine learning. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. ACM, 137–152.

[26] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.

1991. Adaptive mixtures of local experts. Neural computation 3, 1 (1991),

79–87.

[27] Michael R Jiroutek, Keith E Muller, Lawrence L Kupper, and Paul W Stewart.

2003. A new method for choosing sample size for confidence interval–based

inferences. Biometrics 59, 3 (2003), 580–590.
[28] Ken Kelley and Scott E Maxwell. 2003. Sample size for multiple regression:

obtaining regression coefficients that are accurate, not simply significant.

Psychological methods 8, 3 (2003), 305.
[29] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. [n.

d.]. Model Selection Management Systems: The Next Frontier of Advanced

Analytics. SIGMOD Rec. 44 ([n. d.]).
[30] Xuan Liang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang, Hui

Huang, and Song Xi Chen. 2015. Assessing Beijing’s PM2. 5 pollution: severity,

weather impact, APEC and winter heating. In Proc. R. Soc. A, Vol. 471. The
Royal Society, 20150257.

[31] M. Lichman. 2013. UCI Machine Learning Repository. http://archive.ics.uci.

edu/ml

[32] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,

and Geoffrey J Gordon. 2018. Query-based workload forecasting for self-

driving database management systems. In Proceedings of the 2018 International
Conference on Management of Data. ACM, 631–645.

[33] Qingzhi Ma and Peter Triantafillou. 2019. Dbest: Revisiting approximate query

processing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data. ACM, 1553–1570.

[34] Scott E Maxwell, Ken Kelley, and Joseph R Rausch. 2008. Sample size planning

for statistical power and accuracy in parameter estimation. Annu. Rev. Psychol.
59 (2008), 537–563.

[35] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean

Owen, et al. 2016. Mllib: Machine learning in apache spark. The Journal of
Machine Learning Research 17, 1 (2016), 1235–1241.

[36] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean

Owen, et al. 2016. Mllib: Machine learning in apache spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[37] Hannes Muehleisen, Anthony Damico, and Thomas Lumley. 2018. MonetDB.R.

http://monetr.r-forge.r-project.org/.

[38] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-DS.

In Proceedings of the 32nd international conference on Very large data bases.
VLDB Endowment, 1049–1058.

[39] Carlos Ordonez. 2010. Statistical model computation with UDFs. IEEE Trans-
actions on Knowledge and Data Engineering 22, 12 (2010), 1752–1765.

[40] Carlos Ordonez, Carlos Garcia-Alvarado, and Veerabhadaran Baladandayutha-

pani. 2014. Bayesian variable selection in linear regression in one pass for

large datasets. ACM Transactions on Knowledge Discovery from Data (TKDD)
9, 1 (2014), 3.

[41] Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari. 2017. Database Learning:

Toward a Database that Becomes Smarter Every Time. In Proceeding of ACM
SIGMOD.

[42] Christopher Ré, Divy Agrawal, Magdalena Balazinska, Michael Cafarella,

Michael Jordan, Tim Kraska, and Raghu Ramakrishnan. 2015. Machine learn-

ing and databases: The sound of things to come or a cacophony of hype?. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, 283–284.

[43] M. Schleich, D. Olteanu, and R. Ciucanu. 2016. Learning Linear Regression

Models over Factorized Joins. In ACM SIGMOD.
[44] Riyaz Sikora et al. 2015. A modified stacking ensemble machine learning

algorithm using genetic algorithms. InHandbook of Research on Organizational
Transformations through Big Data Analytics. IGI Global, 43–53.

[45] N. Polyzotis T. Condie, P. Mineiro and M. Weimer. 2013. Machine learning for

big data. In ACM SIGMOD. 939–942.
[46] A. Thiagarajan and S. Madden. 2008. Querying continuous functions in a

database system. In ACM SIGMOD.
[47] D. S. TKach. 1998. Information Mining with the IBM Intelligent Miner. IBM

White Paper.

[48] Daniele Varrazzo. 2014. Psycopg. http://initd.org/psycopg/.

[49] Rashmi Korlakai Vinayak and Ran Gilad-Bachrach. 2015. DART: Dropouts

meet multiple additive regression trees. In Artificial Intelligence and Statistics.
489–497.

[50] David H Wolpert. 1992. Stacked generalization. Neural networks 5, 2 (1992),
241–259.

[51] D. Wong. 2013. Oracle Data Miner. Oracle White Paper.

https://docs.oracle.com/cd/B28359_01/appdev.111/b28419/u_nla.htm#CIABEFIJ
https://docs.oracle.com/cd/B28359_01/appdev.111/b28419/u_nla.htm#CIABEFIJ
http://westclintech.com/
http://scidb-py.readthedocs.io/en/stable/
http://scidb-py.readthedocs.io/en/stable/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://monetr.r-forge.r-project.org/
http://initd.org/psycopg/

	Abstract
	1 Introduction
	2 Background
	2.1 Simple Regression Models
	2.2 Ensemble Methods

	3 Experimental Setup
	3.1 Hypotheses
	3.2 Data Sets and Dimensionality
	3.3 Evaluation Metrics
	3.4 Architecture
	3.5 Candidate Base Models
	3.6 Model Training Strategy

	4 Evaluating Hypothesis I
	5 Evaluating Hypothesis II
	6 QReg Scalability
	6.1 Sample Size Planning
	6.2 Workload-centric Perspective
	6.3 Model Training Time
	6.4 Application to AQP engines.

	7 Major Lessons Learned
	8 Conclusions
	Acknowledgments
	References

