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ABSTRACT

Recently, large scale graph data management, querying and pro-
cessing have experienced a renaissance in several timely applica-
tion domains (e.g., social networks, bibliographical networks and
knowledge graphs). However, these applications still introduce
new challenges with large-scale graph processing. Therefore,
recently, we have witnessed a remarkable growth in the preva-
lence of work on graph processing in both academia and industry.
Querying and processing large graphs is an interesting and chal-
lenging task. Recently, several centralized/distributed large-scale
graph processing frameworks have been developed. However,
they mainly focus on batch graph analytics. On the other hand,
the state-of-the-art graph databases can’t sustain for distributed
efficient querying for large graphs with complex queries. In par-
ticular, online large scale graph querying engines are still limited.
In this paper, we present a research plan shipped with the state-
of-the-art techniques for large-scale property graph querying and
processing. We present our goals and initial results for querying
and processing large property graphs based on the emerging and
promising Apache Spark framework, a defacto standard platform
for big data processing. In principle, the design of this research
plan is revolving around two main goals. The first goal focuses on
designing an adequate and efficient graph-based storage backend
that can be integrated with the Apache Spark framework. The
second goal focuses on developing various Graph-aware opti-
mization techniques (e.g., graph indexing, graph materialized
views), and extending the default relational Spark Catalyst op-
timizer with Graph-aware cost-based optimizations. Achieving
these contributions can significantly enhance the performance
of executing graph queries on top of Apache Spark.

1 INTRODUCTION

Graphs are everywhere. They are intuitive and rich data mod-
els that can represent strong connectivity within the data. Due
to their rich expressivity, graphs are widely used in several ap-
plication domains including the Internet of Things (IoT), social
networks, knowledge graphs, transportation networks, Semantic
Web, and Linked Open Data (LOD) among many others [17]. In
principle, graph processing is not a new problem. However, re-
cently, it gained an increasing attention and momentum, more
than before, in several timely applications [22]. This is due to the
ongoing huge explosion in graph data alongside with a great avail-
ability of computational power to process this data. Nowadays,
several enterprises have or planned to use graph technologies for
their data storage and processing applications. Moreover, Graph
databases are currently widely used in the industry to manage
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Figure 1: A simple example of a Property Graph

graph data following the core principles of relational database
systems [10]. Popular Graph databases include Neo43!, Titan?,
ArangoDB3 and HyperGraphDB* among many others.

In general, graphs can be represented in different data mod-
els [1]. In practice, the two most commonly-used graph data
models are: Edge-Directed/Labelled graph (e.g. Resource Descrip-
tion Framework (RDF®)) for representing data in triples (Subject,
Predicate, and Object), and the Property Graph (PG) data model [9].
The PG model extends edge-directed/labelled graphs by adding
(multiple) labels for the nodes and types for the edges, as well as
adding (multiple) key-value proprieties for both nodes and edges
of the graph. In this paper, we focus on the PG model, as it is
currently the most widely used and supported graph data model
in industry as well as in the academia. In particular, most of the
current top and widely used graph databases use the property
graph data model [8]. This great success and wide spread of PG
model is due to its great balance between conceptual and intuitive
simplicity, in addition to its rich expressiveness [20]. Figure 1
illustrates an example of a simple property graph.

Recently, several graph query languages have been proposed
to support querying different kinds of graph data models [1]. For
example, the W3C community has developed and standardized
SPARQL, a query language for querying the RDF-typed graphs [16].
Gremlin [19] has been proposed as a functional programming
graph query language that supports the property graph model,
and optimized for supporting graph navigational/traversal queries.
Oracle has designed PGQL [21], an SQL-like graph query lan-
guage which also supports querying the property graph data
model. Facebook also presented GraphQl [13], a REST-API like
graph query language for accessing the web data as a graph
of objects. Neo4j designed Cypher [9] as its main query lan-
guage which targets querying the property graph data model in
a natural and intuitive way. In practice, Cypher is currently the
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most popular graph query language, and has been supported by
several other graph-based projects and graph databases includ-
ing SAP HANAO, RedisGraph7, Agens Graphg, MemGraphg, and
Morpheus!® (Cypher for Apache Spark) [7].

Problem Statement: With the continuous increase in graph
data, processing large graphs introduces several challenges and
detrimental issues to the performance of graph-based applica-
tions [12]. In particular, one of the common challenges of large-
scale graph processing is the efficient evaluation of graph queries.
In particular, the evaluation of a graph query mainly depends on

the graph scope (i.e. the number of nodes and edges it touches) [20].

Therefore, real-world complex graph queries may unexpectedly
take a long time to be answered [18]. In practice, most of cur-
rent graph databases architecture are typically designed to work
on a single-machine (non-clustered). Therefore, graph querying
solutions can only handle the Online Transactional Processing
(OLTP-style) query workload, which defines relatively simple
computational retrievals on a limited subset of the graph data.
For instance, Neo4j is optimized for subgraph traversals and for
medium-sized OLTP query workloads. Whereas, for complex On-
line Analytical Processing (OLAP-style) query workload (where
the query needs to touch huge parts of the graph, and complex
joins and aggregations are required), graph databases are not the
best solution.

In this paper, we provide an overview of the current state-of-
the-art efforts in solving the large scale graph querying along
side with their limitations (Section 2). We present our planned
contributions based on one of the emerging distributed process-
ing platforms for querying large graph data, Morpheus!! (Section
3). We present our initial results in Section 4, before we conclude
the paper in Section 5.

2 STATE OF THE ART

Distributed processing frameworks can be utilized to solve the
graph scalability issues with query evaluation. Apache Spark
represents the defacto standard for distributed big data process-
ing [2]. Unlike MapReduce model, Spark uses the main mem-
ory for parallel computations over large datasets. Thus, it can
be up to 100 times faster than Hadoop [24]. Spark maintains
this level of efficiency due to its core data abstraction which is
known as Resilient Distributed Datasets(RDDs). An RDD is an
immutable, distributed and fault tolerant collection of data el-
ements which can be partitioned across the memory of nodes
in the cluster. Another efficient data abstraction of Spark is the
Spark DataFrames. DataFrames are organized according to a spe-
cific schema into named and data-typed columns like a table in
the relational databases. Spark proposes various higher level li-
braries on top of RDDs and DataFrames abstractions, GraphX [11]
and SparkSQL [3] for processing structured and semi-structured
large data.

Spark-SQL is a high-level library for processing structured as
well as semi-structured large datasets. It enables querying these
datasets stored in DataFrames abstraction using SQL. Spark-SQL
acts as a distributed SQL query engine over large structured
datasets. In addition, SparkSQL offers a Catalyst optimizer in its
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core for improving query executions [4]. Catalyst optimizer is
mainly a rule-based optimizer, adding optimization rules based on
functional programming constructs in Scala language. It can also
apply variety of relational cost-based optimizations for improving
the quality of multiple alternative query execution plans.

GraphX extends the low level RDD abstraction, and introduces
a new abstraction called Resilient Distributed Graphs (RDG). In
a graph, RDG relates records with vertices and edges and pro-
duces an expressive computational primitives’ collection. GraphX
chains the benefits of graph-parallel and data-parallel systems.
However, GraphX is not currently actively maintained. Besides,
GraphX is based on the low level RDGs. Thus, it cannot exploit
the Spark 2’s Catalyst query optimizer that supports only Spark
DataFrames API. Moreover, GraphX is only available to Scala
users.

GraphFrames is a graph package built on DataFrames [5].
GraphFrames benefits from the scalability and high performance
of DataFrames. They provide a uniform API for graph processing
available from Scala, Java, and Python. GraphFrames API imple-
ments DataFrame-based graph algorithms, and also incorporates
simple graph pattern matching with fixed length patterns (called
’motifs’). Although GraphFrames are based on Spark DataFrames
API, they have a semantically-weak graph data model (i.e. based
on un-typed edges and vertices). Moreover, The motif pattern
matching facility is very limited in comparison to other well-
established graph query languages like Cypher. Besides, other
important features which are present in Spark GraphX such as
partitioning are missing in the GraphFrames package.

In practice, by default, Spark does not support processing
and querying of property graph data model, despite is wide-
spread use. To this extent, the Morpheus project has come to the
scene. In particular, the Morpheus project has been designed to
enable the evaluation of Cypher over large property graphs using
DataFrames on top of Apache Spark framework. In practice, this
framework enables combining the scalability of the Spark frame-
work with the features and capabilities of Neo4j by enabling
the Cypher language to be integrated into the Spark analytics
pipeline. Interestingly, graph processing and querying can be
then easily interwoven with other Spark processing analytics
libraries such as Spark GraphX, Spark ML or Spark-SQL. More-
over, this enables easy merging of graphs from Morpheus into
Neo4j. Besides more advanced capabilities of Morpheus such as
the ability to handle multiple graphs (i.e. graph Composability)
from different data sources even if they are not graph sources (i.e
relational data sources), it has the ability to create graph views
on the data as well.

Figure 2 illustrates the architecture of Morpheus framework.
In Morpheus, Cypher queries are translated into Abstract Syntax
Tree (AST). Then, Morpheus core system translates this AST into
DataFrame operations with schema and Data-Type handling. It
is worth noting that DataFrames in Spark use schema, while
Neo4j or generally property graphs optionally use a schema (i.e.
schema free data model). Therefore, Morpheus provides a Graph
Data Definition Language GDDL for handling schema mapping.
Particularly, GDDL expresses property graph types and maps
between those types and the relational data sources. Moreover,
the Morpheus core system manages importing graph data that
can reside in different Spark storage backends such as HDFS (i.e.
in different file formats), Hive, relational databases using JDBC,
or Neo4j (i.e. Morpheus Property graph data sources PGDs), and
exporting these property graphs directly back to those Spark
storage backends. This interestingly means that graph data can
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Figure 2: Morpheus Architecture

be read from these native Spark data sources without altering nor
copying the original data sources to Morpheus. Particularly, it is
like you plug-in these storage backends to the Morpheus frame-
work as shown in Figure 2. The native Spark Catalyst optimizer
is used in Morpheus pipeline for making various core query op-
timizations for the generated relational plan of operations. Last
but not least, Morpheus runs these optimized query plans on the
Spark cluster using distributed Spark runtime environment.

3 RESEARCH PLAN

In general, Morpheus has been designed to enable executing
Cypher queries on top of Spark. However, on the backend, the
property graphs are represented and maintained using Spark
relational DataFrames. Therefore, Cypher graph-based queries
are internally translated into relational operations over these
DataFrames. Therefore, Spark still performs operations on the
property graph as tabular data and views with specified schema.
Thus, adding a graph-aware optimization layer for Spark can
significantly enhance the performance of graph query execution
on the property graph data. In this research plan, we are focus-
ing on two main aspects for enhancing querying and processing
large property graphs in the context of the Morpheus project. The
first aspect is to design an efficient Spark-based storage backend
for persisting property graphs. The other aspect is to provide
graph-aware optimizations for query processing inside Morpheus
such as Graph indexing, Graph Materialized Views, and last but
not least graph cost-based optimizations on top of the default
Spark Catalyst optimizer. In order to achieve these aspects in
our research plan, we focus on answering the following Research
Questions (RQs):

RQ1: Graph Persistence(Which storage backend achieves
better performance ?): Large graphs require well-suited per-
sistence solutions that are efficient for query evaluations and
processing [20]. As mentioned earlier, graph data in Morpheus
can settle on multiple different data sources such as HDFS with
its different file formats (e.g. Avro, Parquet, and CSV), Neo4;j,
Hive, or other kinds of relational DBs (Figure 3). Therefore, first
of all, we need to investigate which Spark storage backend for
the large property graph data is the best performing one in the
context of Morpheus. Deciding on the best performing storage
backend with large property graphs plays a major role in enhanc-
ing the performance of Morpheus, and further gives us useful
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Figure 3: Comparison of Spark PG storage backends

insights for the subsequent optimizations (i.e. graph Indexing and
Partitioning). Further, figuring out the top performing backends
helps optimizing the query plan afterwards. For instance, if the
best performing storage backend is a Columnar-Oriented backend
(e.g. ORCQ), it is better for making more pushing projections down
in the query plan. Whereas, if it is a Row-Oriented backend, it is
better to make more pushing selections down in the plan.

RQ2: Graph Indexes (How can we use Graph Indexing
for Better Performance?): The default method for processing
graph queries is to perform a subgraph matching search against
the graph dataset [14]. Several graph indexing techniques have
been proposed in the literature. In practice, building a graph
index is a multi-faceted process. That is, it depends on using
the graph structural information for enumerating and extracting
the most frequent features (i.e. graph sub-structures), and then
building a data structure of these features. These data structures
are such as Hash Tables , Lattices, Tries or Trees [14]. The indexed
features can be in the form of simple graph patterns/paths, trees,
graphs, or a mix of graphs and trees. Further, selecting these
features to be indexed can be done exhaustively via enumerating
all such features across the whole graph data set [15], or via
mining the graph data set for frequent patterns or features (i.e.
Discriminative Features) [23, 26]. This mining is recommended
in building a graph index as the size of the created graph index
should be reasonable. It is also worth noting that, most of the
existing graph indexing algorithms are only able to handle un-
directed graphs with labelled vertices [14].

Currently, Morpheus doesn’t use any indexing mechanism for
property graphs while executing graph queries. To this end, we
aim to build an efficient indexing scheme of the property graphs
in an offline mode (taking into consideration its schema, as well as
its storage backend). Then, this index will be used for reducing the
search space for the complex graph pattern matching task. Thus,
consulting this index for executing the graph query workload is
better than exhaustive vertex-to-vertex correspondence checking
from the query to the graph which involves a lot of expensive join
operations in the relational representation. In our plan, we don’t
consider the overhead of updating the built index, as Morpheus is
currently supporting only read operations, and thus no insertions
and deletions happen to the already generated property graph.

RQ3: Graph Materialized Views (How can we use Graph
Views for better performance?): Morpheus and most of graph
databases tend to compute each query from scratch without be-
ing aware of the previous query workloads [25]. Particularly,
if we repeatedly execute the same query using Morpheus, the
execution plan always stays the same and yields no changes in
the execution plan nor in time improvement. Moreover, Spark-
SQL registered DataFrames are (by default) non-materialized
views [3]. Spark-SQL can materialize/cache DataFrames in mem-
ory, but this cannot well capture the graph structural information.
To this direction, we aim to provide a solution for this limitation,



leveraging the potentials of graph materialized views and the
previous graph query workload. In Particular, we aim to use the
information from the previous query workload to list and mate-
rialize the most frequent substructures and proprieties that will
be stored (preferably in memory) for accelerating the incoming
graph queries.

It is worthy to note that, graph materialization has its side
effects regarding the memory space that you need to sacrifice
for keeping those views. This also comes with another challenge
concerning the selection of best proper views (i.e. graph sub-
structures and properties of interest) to materialize and keep in
memory [25]. This means that Materialization in our case, will
take into consideration the graph structure. Thus materialization
will be only for specific ’frequent/hot’ sub-structures rather than
materializing the entire query results.

RQ4: Graph Cost-Based Optimization (How can we use
graph CBO for better performance?): In general, Spark SQL
uses the Catalyst optimizer to optimize all the queries written
both in explicit SQL or in a DataFrame Domain Specific Language
(DSL). Basically, Catalyst is a Spark library built as a relational-
based optimization engine. Each rule in the rule-based part of
Catalyst focuses on a specific optimization. Catalyst can also
apply various relational cost-based optimizations for improving
the quality of multiple alternative query physical execution plans.
Although there are several efforts for optimizing the cost-based
techniques in Spark-SQL such the work proposed recently in [6]
optimizing (Generalized Projection/Selection/Join) queries, these
optimizations are not graph-aware cost optimizations. To this ex-
tent, providing Graph-aware Cost-Based-Optimizations (GCBOs)
for selecting the best execution plan of the graph query (using
best guess approach that takes into account the important graph
structural information/statistics about the graph dataset instead
of basic relational statistics) will have better optimization and
performance for addressing such graph queries in Spark.

To tackle this challenge, we aim to provide a graph-aware
query planner which will be implemented as a layer on top of the
default Spark Catalyst for providing a GCBO query plan, taking
into account the statistics of the property graph that resides in
Morpheus storage backend. Particularly, the new graph plan-
ner/optimizer can select the best join of tables order based on
selectivity and cardinality estimations of graph patterns in the
graph query for filter and join operators. Therefore, at the query
time, the new GCBO can suggest a more optimized query plan
for the Catalyst to follow.

4 PRELIMINARY RESULTS

In this section, we describe our initial experimental results for
answering RQ1. In particular, we have designed a set of micro and
macrobenchmarking experiments for evaluating the performance
of different Spark storage backends supported by the Morpheus
framework. These storage backends are: Neo4j, Hive, and HDFS
with its different file formats (CSV,Parquet, and ORC). Notably,
we don’t copy data from these Spark storage backends, we only
evaluate Morpheus performance with the data already resides in
them. We have used the Cypher LDBC Social Network Benchmark
(SNB) BI benchmark query workload!?. Our selected queries are
read only queries (i.e. no updates are supported by Morpheus).
Hardware and Software Configurations: Our experiments
have been performed on a Desktop PC running a Cloudera Vir-
tual Machine (VM) v.5.13 with Centos v7.3 Linux system, running

2https://github.com/ldbc/Idbc_snb_implementations/tree/master/cypher/queries

on Intel(R) Core(TM) i15-8250U 1.60 GHzX64-based CPU and 24
GB DDR3 of physical memory. We also used a 64GB virtual
hard drive for our VM. We used Spark V2.3 parcel on Cloud-
era VM to fully support Spark-SQL capabilities. We used the
already installed Hive service on Cloudera VM (version:hive-
1.1.0+cdh5.16.1+1431), and neo4j V3.5.8.

Benchmark Datasets: Using the LDBC SNB data generator'3,
we generated a graph data set (in CSV format) of Scale Factor
(SF=1). We used this data to create a property graph in Neo4;j
using Neo4j import tool'*. The generated property graph has
more than 3M nodes, and more than 17M relationships. We also
created a graph of tables and views of the same schema inside
Hive. Further, we used Morpheus Framework to read this property
graph either from Hive or Neo4;j to store the same graph into
HDFS into Morpheus supported file formats (CSV, ORC, Parquet).

For both experiments (Micro and Macro Benchmarking), we
run the experiments for all queries five times (excluding the first
cold-start run time, to avoid the warm-up bias, and computed an
average of the other four run times). Notably, we take the (In)
function of average run times in the Macro-Benchmark experi-
ment!>,

Morpheus Macro-Benchmark: For the Macro Benchmark-
ing experiment, we selected 21 BI queries (i.e. which are valid to
run in the current Morpheus Cypher constructs)!®. The results of
Figure 4 show that Hive has the lowest performance in general
for running most of the queries even those that are not complex
with 70% of low performance than others. HDFS backends in gen-
eral outperform Neo4j and Hive with 100% of better performance.
In particular, Parquet format in HDFS has the best performance.
It outperforms ORC and CSV format in most cases of running the
queries with 42%. While both CSV and ORC achieve only 28.5%
of higher performance.

Morpheus Micro-Benchmark: In our Micro-benchmark ex-
periment, we run 18 Atomic/micro level BI queries'’. The results
of Figure 5 show that Neo4;j has the lowest performance in general
for running the first 12 queries with 66% of low performance than
others. Hive starts to perform worse than Neo4;j (and all other
systems) only when the number of joins increase and sorting
being applied on queries from Q13 to Q18 While, HDFS back-
ends in general outperform Neo4j and Hive with 94.4% of better
performance. In particular, Parquet format in HDFS has the best
performance, it outperforms ORC and CSV in most queries with
55%. While CSV and ORC only outperform with 22.2% and 16.6%,
respectively.

5 CONCLUSIONS AND FUTURE WORK

We are living in an era of continuous huge growth of more and
more connected data. Querying and processing large graphs is an
interesting and challenging task. The Morpheus framework aims
at integrating Cypher query language to work as a graph query
language on top of Spark. Morpheus translates Cypher queries
into relational Dataframes operations that can fit in the Spark-
SQL environment. Morpheus depends mainly on default Spark
Catalyst optimizer for optimizing those relational operators. No
graph indexing nor graph materialized views are maintained
in Morpheus or Spark SQL framework for optimizing property

Bhttps://github.com/ldbc/ldbc_snb_datagen
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15The code and results of our initial experiments is available on https://github.com/
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graph data querying and processing. In this PhD work, we focus
on tackling these challenges by designing an efficient storage
backend for persisting property graphs for Morpheus. In addition,
we aim at providing graph-aware techniques (e.g., indexes, materi-
alized views) for Spark to optimize the graph queries, in addition
to other graph-aware CBO for Spark Catalyst Optiomizer. We
believe that achieving these contributions as our future research
plan can significantly enhance the performance of executing
graph queries using the Morpheus framework.
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