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ABSTRACT
This talk presents a formal approach to carrying out privacy pre-
serving text perturbation using a variant of Differential Privacy (DP)
known as Metric DP (mDP). Our approach applies carefully cali-
brated noise to vector representation of words in a high dimension
space as defined by word embedding models. We present a privacy
proof that satisfies mDP where the privacy parameter ε provides
guarantees with respect to a distance metric defined by the word
embedding space. We demonstrate how ε can be selected by analyz-
ing plausible deniability statistics backed up by large scale analysis
on GloVe and fastText embeddings. We also conduct experiments
on well-known datasets to demonstrate the tradeoff between pri-
vacy and utility for varying values of ε on different task types. Our
results provide insights into carrying out practical privatization on
text-based applications for a broad range of tasks.
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1 METRIC DIFFERENTIAL PRIVACY
Over the last decade, Differential Privacy (DP) [5] has emerged as
a de facto standard for privacy-preserving data analysis algorithms.
One reason for such success is the robustness of DP against critical
pitfalls exhibited by previous attempts to formalize privacy in the
context of data analysis algorithms. Several variants of DP have
been proposed in the literature to address a variety of settings de-
pending on whether, for example, privacy is defined with respect to
aggregate statistics andMachine Learning (ML) models (curator DP)
[5], or privacy is defined with respect to the data points contributed
by each individual (local DP) [8].

Since our application involves privatizing individual sentences
submitted by each user, Local DP (LDP) would be the ideal privacy
model to consider. However, LDP has a requirement that renders it
impractical for our application: it requires that the secret sentence
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xs has a non-negligible probability of being transformed into any
other sentence x̂s , no matter how unrelated xs and x̂s are. Unfortu-
nately, this constraint makes it virtually impossible to enforce that
the semantics of xs are approximately captured by the privatized
sentence x̂s , since the space of sentences is exponentially large in
the length |xs |, and the number of sentences semantically related
to xs will have vanishingly small probability under LDP.

To address this limitation we adopt metric DP (mDP) [1, 4], a
relaxation of local DP that originated in the context of location
privacy to address precisely the limitation described above. In par-
ticular, mDP allows a mechanism to report a user’s location in
a privacy-preserving manner, while giving higher probability to
locations which are close to the current location, and negligible
probability to locations in a completely different part of the planet.
Metric DP was originally developed as an abstraction of the privacy
model proposed in [2] to address the privacy-utility trade-off in
location privacy. To the best of our knowledge, our paper [6, 7] was
the first to use mDP in the context of language data.

Figure 1: Contour plots of different metrics [11]. Left to
right: L1 Manhattan distance, L2 Euclidean distance, L∞
Chebyshev distance, Lp Minkowski distance (L3 shown here)

Formally, mDP is defined for mechanisms whose inputs come
from a set X equipped with a distance function d : X × X → R+
satisfying the axioms of a metric (i.e. identity of indiscernibles, sym-
metry and triangle inequality). The definition of mDP depends on
the particular distance function d being used and it is parametrized
by a privacy parameter ε > 0. We say that a randomized mechanism
M : X → Y satisfies ε-mDP if for any x ,x ′ ∈ X the distributions
over outputs ofM(x) andM(x ′) satisfy the following bound: for all
y ∈ Y we have

Pr[M(x) = y]

Pr[M(x ′) = y]
≤ eεd (x,x

′) . (1)

We note that mDP exhibits the same desirable properties of DP (e.g.
composition, post-processing, robustness against side knowledge,
etc.), but we shall not be using these properties explicitly in our
analysis; we refer the reader to [4] for further details.

The type of probabilistic guarantee described by (1) is charac-
teristic of DP: it says that the log-likelihood ratio of observing any
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particular output y given two possible inputs x and x ′ is bounded
by εd(x ,x ′). The key difference between mDP and local DP is that
the latter corresponds to a particular instance of the former when
the distance function is given by d(x ,x ′) = 1 for every x , x ′. Un-
fortunately, this Hamming metric does not provide a way to classify
some pairs of points inX as being closer than others. This indicates
that local DP implies a strong notion of indistinguishability of the
input, thus providing very strong privacy by “remembering almost
nothing” about the input. In contrast, metric DP is less restrictive
and allows the indistinguishability of the output distributions to be
scaled by the distance between the respective inputs. In particular,
the further away a pair of inputs are, the more distinguishable the
output distributions can be, thus allowing these distributions to
remember more about their inputs than under the strictly stronger
definition of local DP.

A point of consideration for mDP is that the meaning of the
privacy parameter ε changes if one considers different metrics, and
is in general incomparable with the ε parameter used in standard
(local) DP. Thus, in order to understand the privacy consequences
of a given ε in mDP one needs to understand the structure of the
underlying metric d .

2 PRIVACY MECHANISM
Our privacy mechanism is described over the metric space induced
by word embeddings as follows:

Algorithm 1: Privacy Preserving Mechanism
Input: string x = w1w2 · · ·wℓ , privacy parameter ε > 0
for i ∈ {1, . . . , ℓ } do

Compute embedding ϕi = ϕ(wi )

Perturb embedding to obtain ϕ̂i = ϕi + N with noise density
pN (z) ∝ exp(−ε ∥z ∥)

Obtain perturbed word ŵi = arдminu∈W ∥ϕ(u) − ϕ̂i ∥
Insert ŵi in ith position of x̂

release x̂

3 STATISTICS FOR PRIVACY CALIBRATION
We now present a methodology for calibrating the ε parameter of
our mDP mechanism M based on the geometric structure of the
word embedding ϕ used to define the metric d . Our strategy boils
down to identifying a small number of statistics associated with
the output distributions of M, and finding a range of parameters ε
where these statistics behave as one would expect from a mecha-
nism providing a prescribed level of plausible deniability. We recall
that the main reason this is necessary, and why the usual rules of
thumb for calibrating ε in traditional (i.e. non-metric) DP cannot be
applied here, is because the meaning of ε in mDP depends on the
particular metric being used and is not transferable across metrics.
We start by making some qualitative observations about how ε
affects the behavior of mechanismM. For the sake of simplicity we
focus the discussion on the case where x is a single word x = w , but
all our observations can be directly generalized to the case |x | > 1.
We note these observations are essentially heuristic, although it is
not hard to turn them into precise mathematical statements.

A key difference between LDP and mDP is that the former pro-
vides a stronger form of plausible deniability by insisting that almost
every outcome is possible when a word is perturbed, while the later
only requires that we give enough probability mass to words close
to the original one to ensure that the output does not reveal what
the original word was, although it still releases information about
the neighborhood where the original word was.

More formally, the statistics we look at are the probability Nw =

Pr[M(w) = w] of not modifying the input word w , and the (effec-
tive) support of the output distribution Sw (i.e. number of possible
output words) for an inputw . In particular, given a small probability
parameter η > 0, we define Sw as the size of the smallest set of
words that accumulates probability at least 1 − η on inputw :

Sw = min |{S ⊆ X : Pr[M(w) < S] ≤ η}| .

Intuitively, a setting of ε providing plausible deniability should have
Nw small and Sw large for (almost) all words inw ∈ W.

These statistics can also be related to the two extremes of the
Rényi entropy [10], thus providing an additional information-theoretic
justification for the settings of ε that provide plausible deniability
in terms of large entropy. Recall that for a distribution p overW
with pw = PrW ∼p [W = w], the Rényi entropy of order α ≥ 0 is
given by

Hα (p) =
1

1 − α
log

( ∑
w ∈W

pαw

)
.

The Hartley entropy H0 is the special case of Rényi entropy
with α = 0. It depends on vocabulary size |W| and is therefore a
best-case scenario as it represents the perfect privacy scenario for
a user as the number of words grow. It is given by H0 = log2 |W|.
Min-entropy H∞ is the special case with α = ∞ which is a worst-
case scenario because it depends on the adversary attaching the
highest probability to a specific word p(w). It is given by H∞ =

− log2 max
w ∈W

(p(w)).

This implies that we can see the quantities Sw and Nw as prox-
ies for the two extreme Rényi entropies through the approximate
identities H0(M(w)) ≈ log Sw and H∞(M(w)) ≈ log 1/Nw , where
the last approximation relies on the fact that (at least for small
enough ε),w should be the most likely word under the distribution
ofM(w).

4 WORD EMBEDDINGS
A word embedding ϕ : W → Rn maps each word in some vocabu-
lary to a vector of real numbers.

The geometry of the resulting embedding model has a direct
impact on defining the output distribution of our redaction mecha-
nism. To get an intuition for the structure of these metric spaces –
i.e., how words cluster together and the distances between words
and their neighbors – we ran several analytical experiments on two
widely available word embedding models: GloVe [9] and fastText
[3]. We selected 319, 000 words that were present in both the GloVe
and fastText embeddings. Though we present findings only from
the common 319, 000 words in the embedding vocabularies, we
carried out experiments over the entire vector space (i.e., 400, 000
for GloVe and 2, 519, 370 for fastText).
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Figure 2: Distribution of distances between a given vector
and its k closest neighbors for GloVe and fastText

Our experiments provide: (i) insights into the distance d(x ,x ′)
that controls the privacy guarantees of our mechanism for different
embedding models; and (ii) empirical evaluation of the plausible
deniability statistics Sw and Nw for the mechanisms obtained using
different embeddings.

5 CHOOSING AWORD EMBEDDING MODEL
Our analysis gives a reasonable approach to selecting ε by means
of the proxies provided by the plausible deniability statistics. In
general, tuning privacy parameters in (metric) differential privacy
is still a topic under active research, especially with respect to what
ε means for different applications. Task owners ultimately need
to determine what is best for their users based on the available
descriptive statistics.
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Figure 3: Average Sw andNw statistics for GloVe and fastText

In Fig. 3, we present the average values of Sw and Nw statistics
for GloVe and fastText. We observe that similar values over fast-
Text cover a broader range of ε values when compared to GloVe.
However, the average values are not sufficient to make a conclusive
comparison between embedding models. The shape of the distri-
bution needs to be further considered when selecting ε for similar
values of Nw or Sw . For example, the average value of Sw for GloVe
at ε = 29 is about the same as that for fastText at ε = 33 (both have
an average Sw value of ≈ 750). However, from Fig. 4, we discover
that they both have slightly different distributions with GloVe being
slightly flatter and fastText more skewed to the right. Similar results

for matching average values of Nw for GloVe at ε = 29 and fastText
at ε = 36 are also presented in Fig. 4.
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Figure 4: Comparing the distribution of similar average Sw
and Nw results for GloVe and fastText

6 MORE CALIBRATION STATISTICS
In this section, we highlight the results of empirical Sw and Nw
plausible deniability statistics for 300 dimension fastText and 50
dimension GloVe embeddings. The results were designed to yield
comparable numbers to those presented for 300 dimension GloVe
embeddings.
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