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ABSTRACT

Representation learning has transformed the field of machine learn-
ing. Advances like ImageNet, word2vec, and BERT demonstrate the
power of pre-trained representations to accelerate model training.
The effectiveness of these techniques derives from their ability to
represent words, sentences, and images in context. Other entity
types, such as people and topics, are crucial sources of context in
enterprise use-cases, including organization, recommendation, and
discovery of vast streams of information. But learning represen-
tations for these entities from private data aggregated across user
shards carries the risk of privacy breaches. Personalizing represen-
tations by conditioning them on a single user’s content eliminates
privacy risks while providing a rich source of context that can
change the interpretation of words, people, documents, groups,
and other entities commonly encountered in workplace data. In
this paper, we explore methods that embed user-conditioned repre-
sentations of people, key phrases, and emails into a shared vector
space based on an individual user’s emails. We evaluate these rep-
resentations on a suite of representative communication inference
tasks using both a public email repository and live user data from
an enterprise. We demonstrate that our privacy-preserving light-
weight unsupervised representations rival supervised approaches.
When used to augment supervised approaches, these representa-
tions are competitive with deep-learned multi-task models based
on pre-trained representations.

1 INTRODUCTION

Pre-trained embeddings are a crucial technique in machine learn-
ing applications, especially when task-specific training data is
scarce. For instance, groundbreaking work in image captioning
was enabled by reusing the penultimate layer of an object recog-
nition system to summarize the content of an image[24]. More
recently, contextualized embeddings are setting the state-of-the-art
in a range of natural language processing tasks [12]. Training mod-
els to extract reusable representations from data is now an obvious
investment. The next key research question is which context to
leverage.

Our research is situated in the area of User Understanding: or-
ganizing the information, documents, and communications that
are available to each user within an organization. Users now com-
monly retain huge mailboxes of written communication; members
of larger organizations also have access to large repositories of
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access-controlled documents that are not publicly available. Our
goals are to help each user find, classify, and act upon these grow-
ing information stores, then to acquire and organize information,
including facts and relationships among these entities. A crucial en-
abling step is to build reusable representations of this information.

Most representation learning uses large, publicly-available docu-
ment stores to build generic embeddings. We believe there is also
great value in user-conditioned representations: representations of
phrases and contacts for each user learned on the information
uniquely available to that user. First, building user-conditioned rep-
resentations provides a huge amount of context. Often when there
are ambiguous or overloaded concepts, the key people surrounding
their usage can disambiguate. Furthermore, a given user may extend
the meanings of a given concept as they document and communi-
cate new ideas. Perhaps most importantly, training a model based
on only the communications and documents available to a given
user provides a clear and intuitive notion of privacy. Whenever we
train on data beyond any user’s normal visibility, there is some po-
tential for capturing and surfacing information outside their view.
Differential Privacy helps limit the exposure of any individual user,
but preventing leakage across groups is more difficult. For instance,
certain privileged information may be discussed heavily by many
members of an administrative board, yet this information should
not be shared broadly across the whole organization. When training
a user’s model on only data that that user can see, the possibility
for leaking information is removed. From the perspectives of both
leveraging a crucial signal as well as maintaining user privacy and
trust, user-conditioned representations hold great promise.

User-conditioned learning comes at a cost. Data density de-
creases dramatically. State-of-the-art deep learned representations
typically train on billions of tokens [12], whereas an individual
user’s inbox may only have a few thousand emails. Thus, we ex-
plore shallower personalized approaches with lower sample com-
plexity (though shallow models can be mixed with deep generic
models for empirical gains [10]). Furthermore, training must be
performed for every user separately within the organization; in our
case, this entails separate training runs for hundreds of millions of
users. Because the information available to the user is constantly
changing, maintaining fresh representations is also a challenge.

As computation and storage become cheaper, the overhead of
maintaining user-conditioned models is tractable only if the models
are light-weight. Furthermore, we focus on task-agnostic repre-
sentations that benefit a range of scenarios, amortizing the cost of
computation. Finally, using models trained only on one user’s data
benefits privacy, which is an increasing concern for organizations
and individuals.
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1.1 Contributions

We present the first efforts in building per-user representations:
content-based representations that embed disparate entities, includ-
ing contacts and key phrases, into a common vector space. These
entity representations are different for each user: the same key
phrase and contact may have very different representations across
two users depending on their context. We focus on slow-changing
entities like contacts and key phrases to minimize the impact of
delayed retraining: although one’s impression of their collaborators
may shift over years, months, or perhaps weeks, a representation
that is a few days old is still useful. To embed rapidly arriving
and changing items such as documents and emails, we present ap-
proaches that assemble representations of rapidly changing entities
from their content, including related contacts and key phrases.
We evaluate these representations on a range of downstream
tasks, including action-prediction and content-prediction. Simple,
unsupervised approaches, especially non-negative matrix factoriza-
tion (NMF) [25], produce substantial improvements in accuracy, out-
performing task-specific and multi-task neural network approaches.
We compare user-conditioned representations to representations
learned at the organization-level, where data from multiple users
are combined together into a larger undifferentiated store. User-
conditioned representations mostly outperform the organization-
level approaches, despite decreased data density, presumably be-
cause the additional context provides helpful signals to models. Fur-
thermore, user-conditioned representations sidestep issues related
to privacy preservation by not mixing data across user mailboxes.

2 RELATED WORK

Email mining [35] has been widely studied from different angles
both for content and action classification. Spam detection has re-
ceived considerable attention both from a content identification
and filtering view [8] as well as from a process perspective [16].
Folder prediction is another task that can help better organize in-
coming emails [22]. Email content has also been used for social
graph analysis to learn associations between people, both for re-
cipient prediction [4] and sender prediction [17]. Action prediction
tasks that have been considered in the context of emails include
reply prediction [40], attachment prediction [15, 37], and generic
email action prediction [6]. In this paper, we use recipient pre-
diction, sender prediction, and reply prediction as representative
tasks to evaluate the quality of our learned representations. All
prior work on these and similar tasks has relied on per-task feature
engineering and supervised model training. We show how entity
representations generated in a task-agnostic manner can be used
both in an unsupervised and in a supervised setting for these tasks.

Entity representations have been used extensively to provide
personalized recommendations. Most such models build global rep-
resentations of users and items in the same latent space and then
determine the similarity between the user and item through cosine
similarity. The user embeddings can be built in a collaborative fil-
tering setting by leveraging a user’s past actions such as clicks [30],
structured attributes items interacted with, ratings offered on past
items [5], or even past search queries [2]. An extension to such
approaches is to combine embeddings of words or phrases with
other types of data [33], such as embeddings of users [27] or their
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previously favored items [1]. Our entity representations also embed
phrases with contacts, but they are task-agnostic.

Personalized language models have shown benefits in speech
recognition [26], dialog [23], information retrieval [38], and col-
laborative filtering [19]. These approaches model the user, but the
representations are not generated on a per-user level; instead, all
users share the same representation for an item or phrase. In our
approach, the same item (phrase or contact) will have a different
representation according to each user, since the entity representa-
tions are generated per user only considering the data available to
that user. Nawaz et al. [29] present a technique to perform social
network analysis to identify similar communities of contacts within
a user’s own data but their approach is limited to a single task. Yoo
et al. [41] describe an approach for obtaining representations of
emails using personalized network connectivity features and con-
tacts. Their representations are used as inputs to machine learning
models to predict the importance of emails. In our approach, key
phrases, contacts, and emails are all embedded in the same space.
Thus, we can use the task-agnostic representations for a variety of
tasks and obtain similarity scores for any pair of entities.

Starspace [39] introduces a neural-based embedding method that
maps different types of entities (graphs, words, sentences, docu-
ments, etc.) to the same space. While the entities are embedded
in the same space, like our work, their training uses global infor-
mation, and the loss function on which the network is trained is
task-dependent. Our approach allows reusing the same representa-
tions obtained using local data across a variety of tasks.

Our evaluation tasks bear some similarity to the evaluation of
knowledge base completion through embeddings of text and en-
tities [36]. However, our entities are not curated knowledge base
entities; they are phrases and people known to a particular user.

In query expansion, locally trained embeddings can outperform
global or pre-trained embeddings [13, 32] by incorporating more
relevant local context. We exploit a similar insight in training only
on the user’s own data and directly incorporating her context. Amer
et al. [3] present an approach that trains a per-user representation,
though their per-user embeddings perform worse than global or
pre-trained embeddings. In this paper, we demonstrate methods to
train per-user representations that can not only outperform global
representations but also generate them in a task-agnostic manner.

3 ENTITY REPRESENTATIONS

We developed representations for three entity types: key phrases,
contacts, and emails. Key phrases (typically noun phrases) [18] can
appear anywhere in the body or subject of an email. Restricting
to extracted key phrases limits the total number of entities for
which representations must be learned. By “contacts,” we refer
to individual email addresses that appear in the From, To, or CC
fields of an email. For slow-changing entities like key phrases and
contacts, we can periodically regenerate a stored representation. We
represent fast-changing entities such as emails with light-weight
compositions of pre-trained entity embeddings (contact and key
phrase embeddings) to minimize computational expense.

Since the median inbox size will be small (in both our data sets it
is around seven thousand emails) there is not enough data per user
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to train useful deep learned representations. Indeed, our early at-
tempts to train user-conditioned word2vec [28] embeddings yielded
poor results and are not reported here. Therefore we only consid-
ered approaches that were likely to perform well at low data density.

3.1 Key Phrase and Contact Representations

We compute unsupervised entity representations for contacts and
key phrases by associating them with concatenated documents.
These concatenated documents are assembled from the user’s orig-
inal documents; the emails in our experiments have From, To, CC,
Body, and Subject fields. Given a particular entity e, its concate-
nated document de is the concatenation of every email m in a user’s
inbox such that e appears in any of those fields. This concatenation
is done on each field f independently: every new concatenated
document d, will have a corresponding field d, ¢ for each field f
in the original document. We use P to denote concatenation.

de,f = @ mg, where M, = {m: 3f such thate € mf} (1)

meM,

Stop words on the Scikit-learn stopword list are removed, as are
terms that appear in more than 30% or less than 0.25% of training
emails. We then generate a sparse numerical entity-by-term matrix,
using TF-IDF for most methods or just TF matrix in the case of LDA.
Initially one matrix is computed for each field f using the relevant
portion of the concatenated document collection Dy = {d., f}e.
Each matrix is scaled according to a weighting factor wy to balance
its contributions, and finally these matrices are concatenated to
form a single matrix 7.

T= Qf} \/w_f - term-matrix(Dy), where ;wf =1 (2

The weights of the different email fields are treated as hyperpa-
rameters and tuned empirically to perform well on the evaluation
tasks. We found that weights of 0.4, 0.3, 0.2, 0.05, and 0.05 for the
Body, Subject, From, To, and CC fields worked well. The rows of T
are sparse representations of entities — a simple and safe baseline.
We explored LDA, LSA, and NMF as a means of encouraging softer
matching through dimensionality reduction.

3.1.1 TF-IDF. Our baseline representation technique is sparse
unigram TF-IDF vectors produced from the concatenated docu-
ments.

3.1.2  Latent Dirichlet Allocation (LDA). Latent topic models us-
ing LDA [7] over the term frequency matrix of the concatenated
documents (not the TF-IDF matrix) learn a mixture of topics for
each document. These learned vectors can act as entity represen-
tations. We can vary the number of latent topics to determine the
dimensionality of the resulting embeddings.

3.1.3  Latent Semantic Analysis (LSA). A classic method for re-
ducing sparsity, LSA [11] builds a low-rank approximation of a TF-
IDF matrix T using the singular value decomposition: T = USVT.

3.1.4 Non-negative Matrix Factorization (NMF). The SVD re-
construction has a few problems: the values of the matrix may be
positive or negative, and there is no explicit regularization term.
Together, these issues may lead to strange or divergent weights,
especially when the data is difficult to model with lower rank.
Non-negative matrix factorization (NMF) addresses these issues by
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Figure 1: Process of creating concatenated documents to represent
contacts and key phrases given the count matrix from an email cor-
pus. We also demonstrate how this matrix can be factorized into a
low rank approximation to encourage inference over sparse items.
The left matrix W can be interpreted as entity representations. Fur-
thermore, we can derive a mapping from the words, phrases, and
contacts in an email into this representation space using the pseu-
doinverse H" of the right matrix H. Other low rank approximation
and composition approaches are explored as well.

constraining the low-rank matrices to be positive and adding a reg-
ularization term [25]. Specifically, given an input matrix T € R"™*",
we try to find matrices W € R™*? and H € R%*" to minimize

IT — WH[ + A(IW[ + |HI) ©)

where A is a regularization weight and | - | is the Frobenius norm.
The W matrix serves as a representation for the entities. We ef-
ficiently compute NMF through the Hierarchical Least Squares
algorithm [21].

3.2 Email Representations

The vocabulary of key phrases and contacts in one’s mailbox is
likely to grow slowly, and their meanings and relationships will also
evolve gradually. By comparison, many new emails arrive every
day, so the “vocabulary” of email entities is constantly increasing.
Thus, while it is possible to train representations for email in the
same way that we do for key phrases and contacts, updating email
representations on an ongoing basis would imply vast storage and
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From: terrie.james@enron.com

Subject: Enron Prize

To: kenneth.lay@enron.com

Cec: cindy.olson@enron.com, kelly.kimberly@enron.com,

karen.denne@enron.com, christie.patrick@enron.com,
rosalee.fleming@enron.com
Date: Mon, 12 Nov 2001 16:51:33 -0800 (PST)

Ken,

I wanted to let you know that I spoke with WLO.King at the Baker Institute earlier
today. Everything is ready for tomorrow's activities.

There will be a great deal of media coverage for the event. Many media outlets will
be accessing the live video feed of Chairman Greenspan's speech. However, the
media will not be able to interview any participants directly. Chairman Greenspan
will only answer written questions|submitted by the audience (including media), and
those questions will be vetted twice. I will be receiving the media advisory that has
been distributed and the most current media attendee list from the Baker Institute
tomorrow. I will provide that to you as early as possible.

Figure 2: Example email with sender , recipients , [ key phrases ,

and replied-to annotations. Each task is constructed by obscuring

arelevant entity, then reconstructing it given the remaining context.

computation requirements. So we handle emails differently, com-
puting representations on demand through compositions of other
entity representations. In this paper, we explored four different
email composition models: Centroid, Pointwise Max, Pseudoin-
verse, and the combination of Centroid and Pseudoinverse.

3.2.1 Centroid. One simple email representation is the average
of the representations of all key phrases and contacts in an email.

3.2.2  Pointwise Max. Another commonly used pooling opera-
tion is max — we retain the largest value along each dimension. This
approach increases the sensitivity to strongly-weighted features in
the underlying key phrase and contact representations.

3.2.3 Pseudoinverse. The H matrix from Equation 3 can serve
as a map from the low-rank concept space into the word/entity
space. Although H is not a square matrix and hence not invertible,
the Moore-Penrose pseudoinverse of H, namely H*, can act as a
map from email content into the entity representation space. We
multiply the TF-IDF vector associated with a given email by H* to
project into the entity representation space. Unlike the previous
two models, this has the benefit of including information from
non-key phrase unigrams from the email.

3.24  Centroid + Pseudoinverse. Centroid and pseudoinverse
representations are summed to combine the benefits of each.

4 EVALUATION METHODOLOGY
4.1 Evaluation Tasks

We evaluate entity representations according to their performance
on four email mining tasks: sender prediction, recipient prediction,
related key phrase prediction, and reply prediction. The first three
tasks are content prediction tasks, whereas in reply prediction we
use the email content to predict a user action.

Content prediction tasks are formulated as association tasks. We
remove a target entity from an email and randomly select nineteen
distractor entities from the user’s inbox not already present in the
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Figure 3: Task-specific neural network architectures: (a) multiclass
model for predicting which entity is present in a given email; (b)
binary matching model for predicting whether a given entity is
present in a given email; (c) multi-task multiclass model jointly
trained on all evaluation tasks.

email. We use the cosine similarity between the email represen-
tation and the twenty candidate target entity representations to
predict the true target. Reply prediction is treated as a binary clas-
sification problem, using email representations as input features.
Entity representation methods that yield more accurate predictions
are considered superior.

These tasks readily suggest real life applications. Recipient rec-
ommendation is already a standard feature in many email clients.
Similarly, an email client may predict whether an email from an
unfamiliar address comes from a known sender and prompt the
user to add the new address to that sender’s contact information.
Predicting latent associations between emails and key phrases en-
ables automatic topic tagging and foldering. Finally, an email client
may use reply prediction to identify important emails to which an
inbox owner has not yet responded and remind the user to reply.

4.1.1 Task-Specific Model Architectures. We aim to construct
task-agnostic user-conditioned representations: they should be use-
ful across a variety of tasks without having to be tuned to each
one separately. While this makes the representations reusable and
reduces computational expense, separate models trained on each
specific task often perform better. To evaluate this tradeoff, we com-
pare the unsupervised similarity-based method described above
to supervised task-specific baseline models trained on each of the
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association tasks. We also evaluate how well the user-conditioned
representations perform as feature inputs to task-specific models,
since their utility as feature representations is a key consideration.

To train a task-specific model for sender, recipient, or key phrase
prediction, we reformulate these association tasks as classification
problems. In each case, we train the classifier to predict the target
entity using its email representation. As above, we remove a target
entity from an email and select nineteen distractors. Instead of
cosine similarity, we use the trained classifier to score the twenty
candidate entities and predict the one with the highest score.

We experimented with a variety of modeling techniques for both
task-specific baseline models and task-specific models trained on
entity representations. The best results consistently came from
simple two-layer feed forward neural classifiers using ReLU activa-
tions, a sigmoid output layer, batch normalization, drop out [34],
and trained using cross-entropy loss and Adam [14]. However, each
scenario achieved best results using slightly different task formula-
tions and architectures.

The baseline models were formulated as multiclass classifiers,
as depicted in Figure 3a. Emails are represented as binary vec-
tors with each element representing the presence or absence of a
unigram or contact. These vectors index into a 300 dimensional
embedding layer initialized with pre-trained GloVe vectors [31]; out-
of-vocabulary items received random initializers. The embedding
layer was also trained, allowing the model to learn representations
for out-of-vocabulary terms. We experimented with two variants:
one in which contacts were included as features (“Pre-trained +
Contacts”) and one in which they were not (“Pre-trained”).

For models trained on entity representations, shown in Figure 3b,
we found the best results by treating the candidate target entity
representations and the email representations as separate inputs.
These 500 dimensional representations are passed through two
dense layers of width 500 and 300 respectively and a sigmoid out-
put layer, which returns a score representing the likelihood that
the input entity is indeed present in the input email. In Tables 4
and 5, “TF-IDF + NMF Centroid” and “TF-IDF + NMF Centroid +
Pseudoinverse” model variants both share this architecture.

We also considered a multitask model jointly trained on all four
evaluation tasks. This model, shown in Figure 3c, is identical in
its architecture and training to the task-specific baseline model in
Figure 3a except that instead of one output layer it has [N| output
layers corresponding to the |N| tasks. Relative loss weights were
used to balance the training impact from each task since the tasks
had varying numbers of training examples.

4.2 Evaluation Metrics

We measure our performance on the association tasks through
accuracy (percentage of successful predictions) and average recall.
A successful prediction is one where the target entity is scored
highest among all candidates. Since there is one target and nineteen
distractors, random guessing achieves an accuracy of 0.05.
Accuracy can allow a small number of frequently occurring
entities to have a disproportionate effect. For instance, in sender
prediction the majority of emails may be from a small set of senders:
performance on these senders will skew the results. Thus, we also

PrivateNLP 2020, Feb 7, 2020, Houston, Texas

Avocado (55 users) Enterprise (53 users)

Max  Min Average Max  Min Average

Emails/User 19,000 3,561 7,887 17,490 2,872 8,451
Phrases/User 9,632 3,324 5,308 8,137 3,433 6,772
Contacts/User 376 95 210 2,375 357 1,431
Reply Rate 0.34  0.01 0.14 0.60  0.01 0.19

Table 1: Email statistics for Avocado and enterprise users.

report the average recall, an efficient measure for skewed distri-
butions. To obtain the average recall, we calculate the recall for
each possible target: the percentage of times it was successfully
predicted. We then report the average recall over all targets with-
out weighing the frequency of the target. Together, accuracy and
average recall provide a reliable measure of the association. If one
method boosts accuracy by only learning about frequent targets,
the average recall will be impacted negatively. Similarly a reduced
recall of the frequent targets will impact the accuracy.

For reply prediction, we report the area under the precision-recall
curve (PR-AUC), which is useful even when classes are imbalanced.

4.3 Evaluation Corpora

We evaluate our techniques on two separate repositories of emails,
Avocado emails and live user emails from a large enterprise. The
properties for each corpus are listed in Table 1. For the first reposi-
tory, we use mailboxes from the Avocado Research Email Collec-
tion!. For the second dataset, we use live user email data from a
real-world enterprise with thousands of users (called enterprise
users from here on for brevity). These emails are encrypted and off-
limits to human inspection. We randomly select a set of users who
are related to each other by sampling from the same department.
This increases the possibility of overlap between users and allows
some shared context. This property will be helpful when we want
to compare a global model versus user-conditioned representations.
For both datasets, we filter out users with fewer than 3,500 or
greater than 20,000 emails. Users with more than 20,000 emails were
outliers and, in the enterprise dataset, were likely to have many
machine generated emails, which can make the evaluation tasks
easier. We set the minimum number of emails to 3,500 somewhat
arbitrarily because in our enterprise scenario it is almost always
possible to obtain this many for a given user by extending the date
range. We plan to investigate the performance of user-conditioned
representations produced from smaller inboxes in future work.

5 EXPERIMENTS

We show that user-conditioned entity representations outperform
strong global model baselines. NMF applied to our version of TF-
IDF matrices proves most effective among the methods surveyed for
representing key phrases and contacts. The combination of centroid
and pseudoinverse methods detailed in Section 3.2.4 works best for
composing email representations. While on some tasks supervised
task-specific baseline models achieved higher accuracy than entity
representation similarity-based methods, the latter were competi-
tive and had significantly better recall. Task-specific models trained

!https://catalog.ldc.upenn.edu/LDC2015T03



PrivateNLP 2020, Feb 7, 2020, Houston, Texas

Method Sender Recipient  Rel. Phrase

Acc Rec Acc Rec Acc Rec
TF-IDF 0.59 028 0.59 031 0.60 0.41
LDA 0.53 037 051 041 049 042
LSA 0.59 029 059 032 0.60 0.42

NMF unreg.(A = 0) 0.61 037 059 040 0.60 0.46
NMF (4 = 0.0001) 0.62 040 0.62 0.44 0.66 0.53
Table 2: Evaluation task performance of key phrase and contact

representation methods. In every case, the tasks use the Centroid
method for composing email representations. Avocado data set.

Method Sender Recipient  Rel. Phrase

Acc Rec Acc Rec Acc Rec
Centroid 0.62 040 0.62 044 0.66 0.53
Pointwise max 0.59 030 059 034 0.61 0.42
Pseudoinverse 049 0.56 047 0.56 0.55 0.58

Centroid+Pseudoinv  0.64 053 0.62 054 0.66 053

Table 3: Evaluation task performance of email representation meth-
ods. In every case, the tasks use regularized NMF to produce key
phrase and contact representations. Avocado data set.

on entity representations also outperformed task-specific models
trained on baseline features, demonstrating the entity representa-
tions’ value as feature inputs. Our results here also show that entity
representations are competitive with multitask learning despite the
fact that they are trained without knowledge of the downstream
tasks. We discuss these results in the following subsections.

5.1 User-Conditioned Representations

Slow Changing Entities: Key Phrases and Contacts. We compare
unsupervised methods for producing key phrase and contact repre-
sentations in Table 2. For LDA, LSA, and NMF, we perform hyper-
parameter tuning on a single enterprise user and report results for
all techniques with their best settings. Since the evaluation tasks re-
quire representations for email as well as key phrases and contacts,
we use the Centroid email representation in each case to ensure a
fair comparison. Predictions are based on cosine similarity.? NMF
with regularization outperformed all other methods. Regularization
leads to more effective representations for NMF; comparing unreg-
ularized NMF to LSA suggests that non-negativity is also a helpful
bias. Some of the most substantial gains are in recall, especially
when compared to sparse TF-IDF baselines.

Composition for Fast Changing Entities: Email. Different compo-
sitional operations for representing email are explored in Table 3.
Because NMF performed best across all tasks, we restrict our at-
tention to these representations. The centroid method outperforms
others on accuracy, though the pseudoinverse approach is the best
for recall, presumably because it can incorporate information from
unigrams in the represented email and not just the key phrases
and contacts. A linear combination of centroid and pseudoinverse

ZReply prediction is difficult to evaluate in an unsupervised setting; hence, it is not
reported here.
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representations provides the best results for accuracy and almost
matches pseudoinverse for recall.

5.2 Task-Specific Models

Task-Agnostic vs. Task-Specific. Unsupervised, task-agnostic ap-
proaches are versatile and reusable, but they may underperform
relative to supervised models tuned to specific tasks. As described
in Section 4.1.1, we explore this tradeoff by comparing the perfor-
mance of entity representation similarity-based methods against
task-specific baseline models trained on the evaluation tasks. For
Avocado, we see that while the accuracy is indeed better on task-
specific Pre-trained and Pre-trained + Contacts compared to the best
representation methods (TF-IDF + NMF Centroid and TF-IDF NMF
Centroid + Pseudoinverse), 3 as shown in Table 4. However, the
TF-IDF + NMF Centroid + Pseudoinverse representations achieved
significantly better recall for all three content prediction tasks and
better accuracy in key phrase prediction, again indicating their
ability to avoid over-optimizing for frequently occurring entities.
This model produces even better results on the enterprise data
set, where its accuracy is competitive with both of the Pre-trained
models and its improvement in recall is even more dramatic. The
higher number of contacts in the enterprise set enables better joint
modeling with the content, allowing the entity representations to
perform better in this setting. We can see that unsupervised entity
representations are competitive with supervised baselines.

Entity Representations as Input Features. As our results suggest,
user-conditioned entity representations are useful as input features
to supervised models. To assess their value as feature representa-
tions, we compare task-specific models trained on entity represen-
tations with task-specific baselines, as described in Section 4.1.1.
On Avocado, the entity representation-based task-specific models,
TF-IDF + NMF Centroid and TF-IDF NMF Centroid + Pseudoin-
verse, outperform (or in a few cases match) the baselines on every
task and metric. We see similar results on enterprise data, except a
marginally lower reply prediction PR-AUC with entity-based task-
specific models. Comparing the Avocado and enterprise results,
we can see that the performance on all tasks is much better on
enterprise users. Our hypothesis is that the larger contact vocabu-
lary in enterprise (1,431 contacts per user on average) compared
to Avocado (average 210 contacts per user) makes sender and re-
cipient tasks easier: the distractors are sampled from a larger pool
of contacts, and therefore less likely to be related and easier to
screen out. In the case of reply prediction, we believe the higher
PR-AUC stems from enterprise users that receive a higher volume
of machine-generated emails, which have more predictable reply
behavior.

5.3 User-Conditioned vs. Global Models

Each set of user-conditioned representations is trained on much
fewer data than most representation learning techniques, but per-
sonalization is a powerful source of context. While our primary
reason for focusing on user-conditioned entity representations is
to avoid privacy leaks, we want to know how they compare against

30ur results for sender and recipient prediction through an unsupervised task-agnostic
representation are in the same range as those reported by Graus et al., [17] (0.66).
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Data  Method Sender Recipient Related Phrase Reply
Accuracy Recall Accuracy Recall Accuracy Recall PR-AUC
Unsupervised Similarity-Based Methods
TF-IDF + NMF Centroid 0.62 0.40 0.62 0.44 0.66 0.53 N/A
TF-IDF + NMF Centroid + Pseudoinverse 0.64 0.53 0.62 0.54 0.67 0.60 N/A
w  Supervised Task-Specific Models
et
2 Pre-trained 0.72 0.38 0.67 0.31 0.59 0.36 0.21
2 Pre-trained + Contacts 0.74 0.42 0.71 0.35 0.60 0.37 0.24
-g TF-IDF + NMF Centroid 0.74 0.48 0.72 0.47 0.64 0.49 0.28
<% TF-IDF + NMF Centroid + Pseudoinverse 0.74 0.49 0.73 0.47 0.67 0.52 0.28
Supervised Multi-Task Models
Pre-trained 0.73 0.47 0.69 0.42 0.59 0.35 0.28
Pre-trained + Contacts 0.78 0.51 0.75 0.46 0.59 0.35 0.30
Unsupervised Similarity-Based Methods
- TF-IDF + NMF Centroid 0.81 0.73 0.86 0.79 0.69 0.60 N/A
g TF-IDF + NMF Centroid + Pseudoinverse 0.81 0.77 0.86 0.81 0.70 0.65 N/A
=
2 Supervised Task-Specific Models
“é Pre-trained + Contacts 0.83 0.54 0.87 0.50 0.70 0.44 0.71
ﬂé TF-IDF + NMF Centroid 0.87 0.68 0.91 0.71 0.72 0.56 0.69
<3| TF-IDF + NMF Centroid + Pseudoinverse 0.87 0.70 0.91 0.72 0.74 0.59 0.65
Supervised Multi-Task Models
Pre-trained + Contacts 0.85 0.58 0.88 0.54 0.70 0.43 0.72

Table 4: Task-specific models trained using representations as features, for both enterprise and Avocado users.

non-privacy-aware “global” representations trained on data from ev-
ery user in an organization. In Table 5 we see that user-conditioned
representations are significantly better on all tasks across all met-
rics compared to the global versions of those representations. This
indicates that, for these models, the local context of a user is more
important than training on a larger data set. We see a similar trend
with the Pre-trained + Contacts and Global Pre-trained + Contacts
models, though the global variant outperforms the user-conditioned
one in sender prediction on Avocado. On reply prediction, global
models trained using representations perform similarly to Yang et
al. [40] without any task-specific feature engineering.

5.4 Unsupervised vs. Multi-Task Approaches

Our primary focus has been unsupervised entity representation
computation. An alternative approach is to induce representations
in a multitask learning setting [9]. Multitask models often achieve
better performance than separate models trained on the same tasks
and, indeed, as seen in Table 4, the multitask model described in
Section 4.1.1 outperforms task specific models trained on the same
Pre-trained + Contacts feature representation.

On Avocado, the best multitask model achieves significantly bet-
ter accuracy in sender and recipient prediction than Pre-trained and
Pre-trained + Contacts methods; entity-based task-specific methods
are still competitive on recall. We observe the same trend with enter-
prise, where multi-task models outperform task-specific Pre-trained
+ Contacts, though entity-based task-specific models outperform
multi-task on all tasks and metrics except reply prediction PR-AUC.

Accuracy vs. Number of Emails
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Figure 4: Sender prediction accuracy vs. number of training emails
for TF-IDF + NMF Centroid on Avocado.

Thus the unsupervised methods presented here are competitive
with multitask learning on recall despite the fact that they are
trained without knowledge of the downstream tasks, and the task-
specific entity-based models are competitive with the multi-task
method on accuracy and better on recall.

5.5 The Effect of Data Size and Dimension

To explore the impact of data density, Figure 4 plots sender pre-
diction accuracy using TF-IDF + NMF Centroid representations
against the number of emails in a user’s mailbox. Accuracy does
not vary substantially, though average recall improves: additional
data benefits representing entities on average. Similar trends for
other tasks and other models were observed.

We plot the effect of varying dimension sizes for all tasks using
the TF-IDF + NMF Centroid approach in Figure 5 for Avocado users.
Representations of dimension 400 and 500 consistently achieve best
results for both accuracy and recall.
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Data  Method Sender Recipient Related Phrase Reply
Accuracy Recall Accuracy Recall Accuracy Recall PR-AUC
Unsupervised Similarity-Based Methods
TF-IDF + NMF Centroid 0.62 0.40 0.62 0.44 0.66 0.53 N/A
TF-IDF + NMF Centroid + Pseudoinverse 0.64 0.53 0.62 0.54 0.67 0.60 N/A
% Global TF-IDF + NMF 0.50 0.29 0.41 0.27 0.45 0.30 N/A
g Global TF-IDF + NMF Centroid + Pseudoinverse 0.55 0.40 0.40 0.34 0.43 0.37 N/A
—§ Supervised Task-Specific Models
S Pre-trained + Contacts 0.74 0.42 0.71 0.35 0.60 0.37 0.24
% TF-IDF + NMF Centroid 0.74 0.48 0.72 0.47 0.64 0.49 0.28
TF-IDF + NMF Centroid + Pseudoinverse 0.74 0.49 0.73 0.47 0.67 0.52 0.28
Global Pre-trained + Contacts 0.77 0.63 0.65 0.48 0.58 0.34 0.21
Global TF-IDF + NMF Centroid 0.70 0.50 0.58 0.36 0.52 0.29 0.25
Global TF-IDF + NMF Centroid + Pseudoinverse 0.71 0.52 0.57 0.37 0.53 0.30 0.19
Unsupervised Similarity-Based Methods
TF-IDF + NMF Centroid 0.81 0.73 0.86 0.79 0.69 0.60 N/A
TF-IDF + NMF Centroid + Pseudoinverse 0.81 0.77 0.86 0.81 0.70 0.65 N/A
% Global TF-IDF + NMF 0.50 0.49 0.45 0.30 0.45 0.41 N/A
2 Global TF-IDF + NMF Centroid + Pseudoinverse 0.48 0.51 0.43 0.34 0.45 0.43 N/A
é Supervised Task-Specific Models
g‘ Pre-trained + Contacts 0.83 0.54 0.87 0.50 0.70 0.44 0.71
E TF-IDF + NMF Centroid 0.87 0.68 0.91 0.71 0.72 0.56 0.69
TF-IDF + NMF Centroid + Pseudoinverse 0.87 0.70 0.91 0.72 0.74 0.59 0.65
Global Pretrained + Contacts 0.80 0.61 0.77 0.44 0.63 0.46 0.65
Global TF-IDF + NMF Centroid 0.61 0.49 0.47 0.25 0.49 0.34 0.67
Global TF-IDF + NMF Centroid + Pseudoinverse 0.60 0.51 0.48 0.30 0.50 0.36 0.56
Table 5: Individual vs. global models on Avocado and enterprise users.
Aceuracy for TF-IDF + NMF Centroid approaches are privacy preserving and show substantial benefits
07 over global models, despite their lower data density. These promis-
065 ing results suggest a range of future directions to explore. One
g 06 /A clear next step is to extend our approach to include documents,
< —e—Sender Recipient —@— Related Phrase meetings, and other enterprise entities. Beyond that, embedding
0.55
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Figure 5: Effect of dimensionality on entity representations.

5.6 Practical Implications

Our current implementation has several optimizations intended for
a production environment. We maintain updates to the TF-IDF ma-
trix in a streaming manner upon receipt of each email. A periodic
task, run every few days to every week, computes a fresh NMF rep-
resentation, using approximately one minute of computation time
per user with an optimized implementation based on Sparse BLAS
operations in Intel MKL. [20] The process is running constantly for
thousands of users, scaling up to hundreds of thousands of users.

6 CONCLUSIONS

We have demonstrated approaches for learning task-agnostic user-
conditioned embeddings that outperform strong baselines and
demonstrate value in a range of downstream tasks. User-conditioned

relationships between entities could help in predicting more com-
plex connections between them. Next, our explorations in multitask
modeling suggest that generalization across tasks also has value.
Evaluating the impact of multitask representations on new tasks
through leave-one-out experiments may help quantify this.
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