Privacy-Preserving Textual Analysis via Calibrated Perturbations

Oluwaseyi Feyisetan Amazon sey@amazon.com

Thomas Drake Amazon draket@amazon.com Borja Balle Amazon pigem@amazon.co.uk

Tom Diethe Amazon tdiethe@amazon.co.uk

ABSTRACT

Accurately learning from user data while providing quantifiable privacy guarantees provides an opportunity to build better ML models while maintaining user trust. This paper presents a formal approach to carrying out privacy preserving text perturbation using the notion of d_{γ} -privacy designed to achieve geo-indistinguishability in location data. Our approach applies carefully calibrated noise to vector representation of words in a high dimension space as defined by word embedding models. We present a privacy proof that satisfies d_{γ} -privacy where the privacy parameter ε provides guarantees with respect to a distance metric defined by the word embedding space. We demonstrate how ε can be selected by analyzing plausible deniability statistics backed up by large scale analysis on GLOVE and fastText embeddings. We conduct privacy audit experiments against 2 baseline models and utility experiments on 3 datasets to demonstrate the tradeoff between privacy and utility for varying values of ε on different task types. Our results demonstrate practical utility (< 2% utility loss for training binary classifiers) while providing better privacy guarantees than baseline models.

ACM Reference Format:

Privacy- and Utility-Preserving Textual Analysis via Calibrated Multivariate Perturbations

Oluwaseyi Feyisetan

Borja Balle

Thomas Drake

Tom Diethe

sey@amazon.com

borja.balle@gmail.com

draket@amazon.com

tdiethe@amazon.com

Summary

- •User's goal: meet some specific need with respect to an issued query *x*
- Agent's goal: satisfy the user's request
- •Question: what occurs when *x* is used to make other inferences about the user
- Mechanism: modify the query to protect privacy whilst preserving semantics
- •Our approach: Generalized Metric Differential Privacy.

Introduction

What makes privacy difficult?

High dimensional data

Big and richer datasets lead to users generating uniquely identifiable information.

Side knowledge

Innocuous data reveals customer information when joined with sideknowledge.

Privacy in textual data

A Face Is Exposed for AOL Searcher No. 4417749

y MICHAEL BARBARO and TOM ZELLER Jr. AUG. 9, 2006

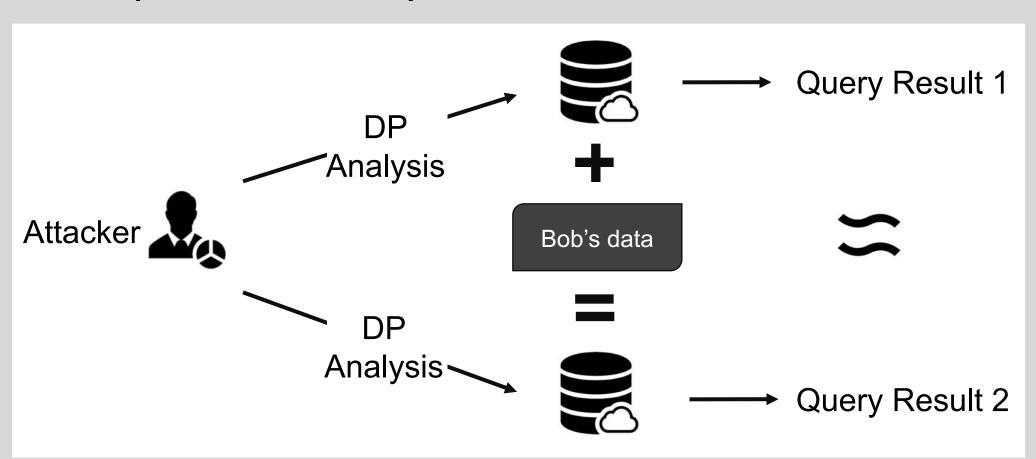
NEW YORK TIMES

User	Text					
441779	dog that urinates on everything					
441779	safest place to live					
• • •						
441779	the best season to visit Italy					
441779	landscapers in Lilburn, GA					

Most of the queries do not contain PII

A viable solution: Differential Privacy

ε-Differential Privacy (DP) bounds the influence of any single input on the output of a computation.



Result 1 is approximately equal to Result 2

Differential Privacy

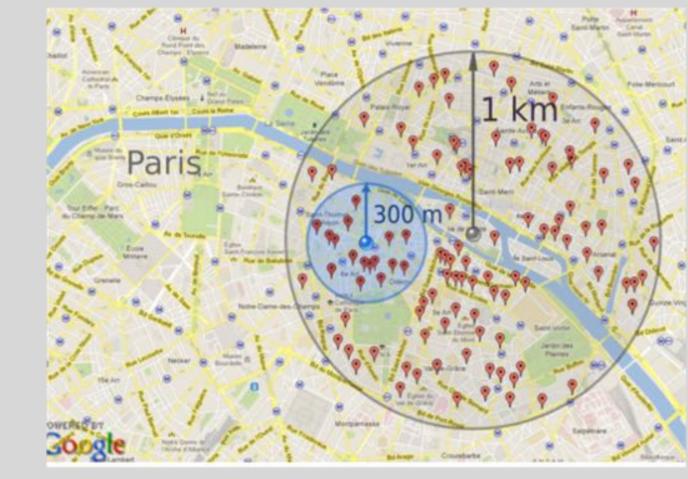
A randomized mechanism $\mathcal{M}: X \mapsto Y$ is ε -differentially private if for all neighboring inputs $x \simeq x'$ (i.e., $d_h(x, x') = 1$ where d_h is the Hamming distance) and for all set of outputs $E \subseteq Y$,

$$\mathbb{P}[\mathcal{M}(x) \in E] \le e^{\varepsilon d_h(x,x')} \mathbb{P}\left[\mathcal{M}(x') \in E\right]$$

Metric DP generalizes this to use any valid metric $d_h(x, x')$, (i.e., one that satisfies non negativity, indiscernibles, symmetry, and triangle inequality)

Generalized Metric Differential Privacy

Metric DP is a parameterized by a distance measure *d* and, conceptually, increases the area where a person's location probably



Represent using word embeddings which map words into a vector space ϕ : $w \mapsto \mathbb{R}^n$

Mechanism Overview

We sample noise from the multivariate Laplacian distribution to achieve ε –mDP

- Robust to post-processing If $\mathcal M$ is ε -DP, then $f(\mathcal M)$ is at least ε -DP
- Composition

If $\mathcal{M}_1, \dots, \mathcal{M}_n$ are ε -DP, $g(\mathcal{M}_1, \dots, \mathcal{M}_n)$ is $\sum_{i=1}^n \varepsilon_i$ -DP by additive composition

• Protects against side knowledge If attacker has prior p_1 and computes posterior p_2 after observing output of ε DP, then $dist(p_1, p_2) = \mathcal{O}(\varepsilon)$

Mechanism Details

Inputs:

- $w \in W$: word to be 'privatized'
- $\phi: W \mapsto Z$: embedding function
- $d: Z \times Z \mapsto \mathbb{R}$: distance function
- $\Omega(\varepsilon)$: DP noise distribution
- 1. Project word $v = \phi(w)$
- 2. Perturb $v' = v + \xi$ where $\xi \sim \Omega(\varepsilon)$
- 3. Vector v' will not be a word (a.s.)
- 4. Project back to dictionary space $W: w' = \arg\min_{w \in W} d(v', \phi(w))$
- 5. Return w'

Sampling and Calibration

To sample from the multivariate Laplace distribution: $\Omega(\varepsilon)$

- 1. Sample a random variable v from the multivariate normal distribution
- 2. Sample a magnitude l from the Gamma distribution with $^1\!/_{\varepsilon}$
- 3. Return v.l

Define statistics to measure the ε privacy:

- 1. Probability $N_w = P[\mathcal{M}(w) = w]$ of not modifying input word w and,
- 2. The (effective) support of the output distribution S_w on $\mathcal{M}(w)$

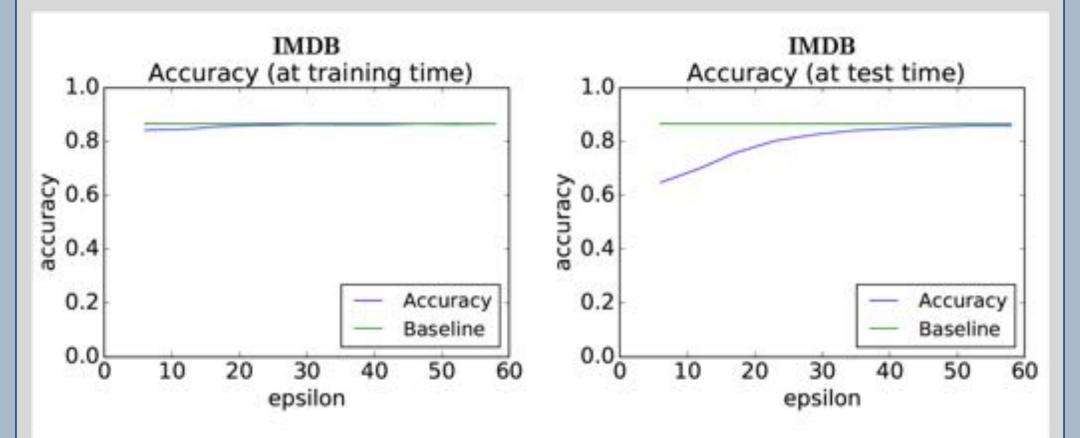
Sample results

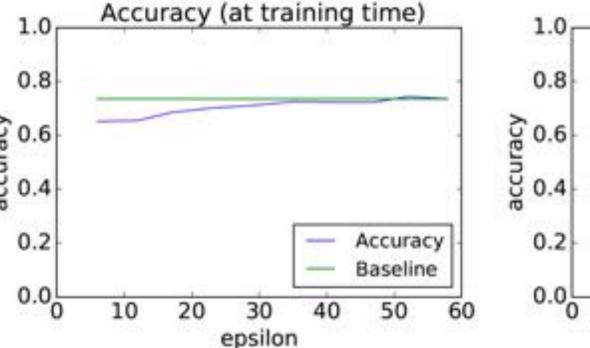
		w = encryption				
ε	Avg. N_w	GLOVE	FASTTEXT			
	50	freebsd	ncurses			
		multibody	vpns			
S		56-bit	tcp			
ntic		public-key	isdn			
semantics	100	ciphertexts	plaintext			
		truecrypt	diffie-hellman			
er		demodulator	multiplexers			
ε , better		rootkit	cryptography			
3, 1	200	harbormaster	cryptographic			
		unencrypted	ssl/tls			
Sir		cryptographically	authentication			
reasing		authentication	cryptography			
incı	300	decryption	encrypt			
1		encrypt	unencrypted			
1		encrypted	encryptions			
		encryption	encrypted			

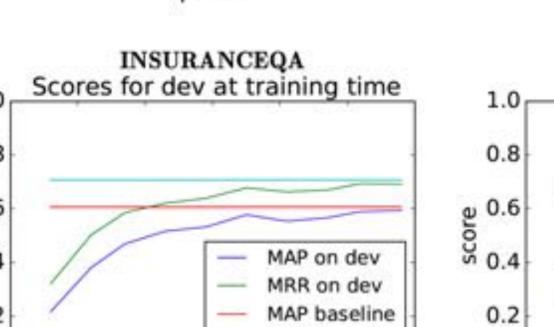
Experiment Results

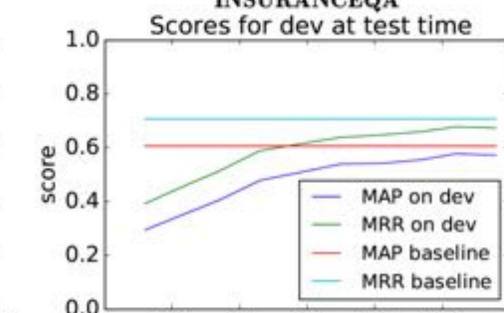
Metric	6	12	17	23	29	35	41	47
Precision	0.00	0.00	0.00	0.00	0.67	0.90	0.93	1.00
Recall	0.00	0.00	0.00	0.00	0.02	0.09	0.14	0.30
Accuracy	0.50	0.50	0.50	0.50	0.51	0.55	0.57	0.65
AUC	0.06	0.04	0.11	0.36	0.61	0.85	0.88	0.93

Scores measure privacy loss (lower is better)









ENRON

Accuracy (at test time)

Utility of downstream machine learning model on data (higher is better)