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Abstract. This research focuses on the problem of helping clients find
relevant SPARQL endpoints. To the best of author’s knowledge, there
are two online services that clients could use to try to find SPARQL end-
points based on their content: DATAHUB and/or VoID STORE. How-
ever, both services rely on static content descriptions provided by pub-
lishers themselves. Many of the endpoints listed in the DATAHUB have
been offline for years; also, of the endpoints surveyed, VoID descriptions
are only available in the DATAHUB for 33.3% and in the VoID STORE
for 22.4%. Authors instead propose to compute extended VoID descrip-
tions for public endpoints directly through their SPARQL interface. The
SPORTAL service is available online at http://www.sportalproject.org/
originally introduced in journal publication[3]

1 Introduction

Rather than relying on publishers to compute and keep content descriptions
up to date, we propose to compute content descriptions directly from the end-
points themselves. In particular, it is proposed to design a set of queries that
can be issued to endpoints, where the results of these queries can then be used
to build a catalogue that enables clients to find endpoints with relevant con-
tent with general descriptions. Such descriptions are normally not provided by
the publishers of SPARQL endpoints independently of the endpoint itself. This
work explores the feasibility of computing content descriptions directly from
SPARQL endpoints. More concretely, SPORTAL (SPARQL PORTAL) is pro-
posed which is a centralised catalogue indexing content descriptions computed
from individual SPARQL endpoints [4,3]. The goal of SPORTAL is to help both
human and software agents to find public SPARQL endpoints relevant for their
needs. SPORTAL relies only on SPARQL queries to gather information about
the content of each endpoint and hence only assumes a working SPARQL inter-
face rather than requiring the publishers hosting endpoints to provide additional
descriptions of the datasets. Queries were issued to each endpoint to gather meta-
data about its content, which are later used to find relevant endpoints. Taking a
simple example, instead of querying each endpoint every time an agent is look-
ing for a given class, can occasionally query each endpoint for an up-to-date
list of their classes and use that list to find relevant endpoints for the agent at
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runtime. One of the main design questions for SPORTAL then is: what con-
tent descriptions should such a system try to compute from endpoints? Ideally
the content descriptions should be as general as possible, supporting a variety
of different types of clients and searches.With the advent of novel features in
SPARQL 1.1 like aggregates, it is possible to formulate queries that ask, e.g.,
how many triples the knowledge base contains, which classes or properties are
used, how many unique instances of each class appears, which properties are used
most frequently with instances of which classes etc. SPARQL endpoints can be
considered self-descriptive if they can describe their own content[5]. SPORTAL
is limited due to practical thresholds on the amount of data that a SPARQL
endpoint will return. Given that many endpoints contain millions of resources
and text literals, this rules out, for example, building a complete inverted in-
dex over the content of an individual endpoint, or indexing all resources that
an endpoint mentions. SPORTAL compute concise content descriptions rather
than mirroring remote endpoint content. Thus, the research focuses on comput-
ing concise, schema-level descriptions of endpoints. Using such descriptions, one
can directly find relevant endpoints and can indirectly help with other forms
of queries (e.g., to find endpoints that contain instances of GENE, though they
may not necessary be from a rat). Extended Vocabulary of Interlinked Datasets
(VoID) descriptions [7] was computed as VoID is also used in federated scenarios
to find relevant endpoints [1,2,6] . Results shows while 93.8% of operational end-
points respond successfully when asked for list of classes, only 40.2% respond
successfully when additionally asked how many instances those classes have.
Thus, the SPORTAL catalogue would include metadata about the classes that
appear in 93.8% of the catalogued endpoints, but only in 40.2% cases would the
catalogue have information about how many instances appear in those classes.

2 Self- Descriptive Queries

This section lists the set of SPARQL 1.1 queries that are used to compute a
VoID-like description from the content indexed by an endpoint.

2.1 Functionality

We test the availability and SPARQL 1.1 compliance of an endpoint using two
queries with features: sub-queries and the count aggregate function.

2.2 Dataset-level statistics

A set of “dataset-level” queries is listed in Table 1 that form a core part of VoID
to ascertain the number of triples (QB1), and the number of distinct classes
(QB2), properties (QB3), subjects (QB4), and objects (QB5). These queries re-
quire support for SPARQL 1.1 COUNT and sub-query features. Using these
agents can use them to find endpoints indexing datasets that fall within a given
range of triples in terms of overall size, or, for example, to find the endpoints
with the largest datasets. Counts may be particularly useful - in combination
with later categories - to order the endpoints; for example, to find the endpoints
with a given class and order them by the total number of triples they index.



Table 1: Queries for dataset-level VoID statistics
No Query

QB1 CONSTRUCT <D> v:triples ?x WHERE SELECT (COUNT(*) AS ?x) WHERE ?s ?p ?o

QB2 CONSTRUCT <D> v:classes ?x

WHERE SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE ?s a ?o

QB3 CONSTRUCT <D> v:properties ?x

WHERE SELECT (COUNT(DISTINCT ?p) AS ?x) WHERE ?s ?p ?o

QB4 CONSTRUCT <D> v:distinctSubjects ?x

WHERE SELECT (COUNT(DISTINCT ?s) AS ?x) WHERE ?s ?p ?o

QB5 CONSTRUCT <D> v:distinctObjects ?x

WHERE SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE ?s ?p ?o

3 Class-based statistics

Third similar statistics about the instances of each class following the notion
of class partitions in VoID were ascertained: a subset of the data considering
only triples where instances of that class are in the subject position. Table 2
lists the six queries used. The first query QC1 merely lists all class partitions.
The other five queries (QC2 6) count the triples and distinct classes, predicates,
subjects and objects for each class partition; e.g., QC2 retrieves the number of
triples where instances of that class are in the subject position. Queries QC2 6

introduce COUNT, sub-queries and also GROUPBY features from SPARQL 1.1.

Table 2: Queries for statistics about classes
No Query

QC1 CONSTRUCT <D> v:classPartition [ v:class ?c ] WHERE ?s a ?c

QC2 CONSTRUCT v:classPartition [ v:class ?c ; v:triples ?x ]

WHERE SELECT (COUNT(?p) AS ?x) ?c WHERE ?s a ?c ; ?p ?o GROUP BY ?c

QC3 CONSTRUCT v:classPartition [ v:class ?c ; v:classes ?x ] WHERE

SELECT (COUNT(DISTINCT ?d) AS ?x) ?c WHERE ?s a ?c , ?d GROUP BY ?c

QC4 CONSTRUCT v:classPartition [ v:class ?c ; v:properties ?x ] WHERE

SELECT (COUNT(DISTINCT ?p) AS ?x) ?c WHERE ?s a ?c ; ?p ?o GROUP BY ?c

QC5 CONSTRUCT v:classPartition [ v:class ?c ; v:distinctSubjects ?x ] WHERE

SELECT (COUNT(DISTINCT ?s) AS ?x) ?c WHERE ?s a ?c GROUP BY ?c

QC6 CONSTRUCT v:classPartition [ v:class ?c ; v:distinctObjects ?x ] WHERE

SELECT (COUNT(DISTINCT ?o) AS ?x) ?c WHERE ?s a ?c ; ?p ?o GROUP BY ?c

Once catalogued, agents can use statistics describing class partitions of the
datasets to find endpoints mentioning a given class, where they can additionally
(for example) sort results in descending order according to the number of unique
instances of that class, or triples used to define such instances, and so forth.
Hence the counts computed by (QC2 6) help agents to distinguish endpoints
that may only have one or two instances of a class to those with thousands or
millions. Likewise, criteria can be combined arbitrarily for multiple classes, or
with the overall statistics computed previously.



3.1 Property-based statistics

This section looks at property partitions in the dataset, where a property parti-
tion refers to the set of triples with that property term in the predicate position.
Queries are listed in Table 3. As before, QD1 lists the property partitions. QD2 4,
count the number of triples, distinct subjects and distinct objects. Using these
statistics about property partitions in the catalogue, agents can, for example, re-
trieve a list of public endpoints using a given property ordered by the number of
triples using that specific property. Likewise criteria can be combined arbitrarily
for multiple properties, or with the dataset- or class-level metadata previously
collected; for example, an agent may wish to order endpoints by the ratio of
triples using a given property (where the count from QD2 for the property in
question can be divided by the total triple count from QB1), or to find endpoints
where all subjects have an rdfs:label value (where the count computed from QD3

for that property should match the count for QB4).

Table 3: Queries for statistics about properties
No Query

QD1 CONSTRUCT v:propertyPartition [ v:property ?p ] WHERE ?s ?p ?o

QD2 CONSTRUCT v:propertyPartition [ v:property ?p ; v:triples ?x ]

WHERE SELECT (COUNT(?o) AS ?x) ?p WHERE ?s ?p ?o GROUP BY ?p

QD3 CONSTRUCT v:propertyPartition [ v:property ?p ; v:distinctSubjects ?x ]

WHERE SELECT (COUNT(DISTINCT ?s) AS ?x) ?p WHERE ?s ?p ?o GROUP BY ?p

QD4 CONSTRUCT v:propertyPartition [ v:property ?p ; v:distinctObjects ?x ]

WHERE SELECT (COUNT(DISTINCT ?o) AS ?x) ?p WHERE ?s ?p ?o GROUP BY ?p

3.2 Nested class–property statistics

Fifth, the focus is to look at how classes and properties are used together in a
dataset, gathering statistics on property partitions nested within class partitions:
these statistics detail how properties are used for instances of specific classes.
Table 4 lists the four queries used. QE1 lists the property partitions nested
inside the class partitions, and QE2–4 count the number of triples using a given
predicate for instances of that class, as well as the number of distinct subjects
and objects those triples have.An agent could use the resulting metadata to find
endpoints describing instances of specific classes with specific properties, with
filtering or sorting criteria based on, e.g., the number of triples. For example,
an agent might be specifically interested in images of people, where they would
be looking for the class-partition foaf:Person with the nested property-partition
foaf:depicts. It would have been possible to find endpoints that have data for
the class foaf:Person and triples with the property foaf:depicts, but not that the
images were defined for people.

3.3 Miscellaneous statistics

In the final set of experiments, the focus is to look at queries that yield statistics
not supported by VoID as listed in Table 5. In particular, experiments were
designed to see if endpoints can return a subset of statistics from the VoID
Extension Vocabulary , which include counts of different types of unique RDF



Table 4: Queries for nested property/class statistics
No Query

QE1 CONSTRUCT { v:classPartition [ v:class ?c ;

v:propertyPartition [ v:property ?p } ] ] WHERE { ?s a ?c ; ?p ?o }
QE2 CONSTRUCT { v:classPartition [ v:class ?c v:propertyPartition

[ v:property ?p ;} v:triples ?x ] ] WHERE { SELECT (COUNT(?o) AS ?x) ?p WHERE

{ ?s a ?c ; ?p ?o } GROUP BY ?c ?p }
QE3 CONSTRUCT { v:classPartition [ v:class ?c ; v:propertyPartition

[ v:distinctSubjects ?x ] ] WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) ?c ?p}
WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c ?p }

QE4 CONSTRUCT { v:classPartition [ v:class ?c ; v:propertyPartition

[ v:distinctObjects ?x ;} v:property ?p ] ] WHERE { SELECT (COUNT(DISTINCT ?o)

AS ?x) ?c ?p WHERE { ?s a ?c ; ?p ?o }} GROUP BY ?c ?p

terms in different positions: subjects IRIs (QF1), subject blank nodes (QF2),
objects IRIs (QF3), literals (QF4), object blank nodes (QF5), all blank nodes
(QF6), all IRIs (QF7), and all terms (QF8). Inspired by the notion of “schema
maps” as proposed by Kinsella et al. [8], queries also count the classes that the
subjects and objects of specific properties are instances of (QF9–10); these are
“inverses” of queries (QE3–4). Using the resulting data the agent in question
could look for datasets without any blank nodes or for datasets where a given
number of the objects of a given property are of a certain type. Likewise, the
user can find endpoints with more than ten million triples where at least 30% of
the unique object terms are literals.

4 Experiments and Results
This section looks at how public SPARQL endpoints themselves perform for
the list of previously enumerated self-descriptive queries. A list of 540 SPARQL
endpoints registered in the DATAHUB along with a list of 137 endpoints from
Bio2RDF releases 1-3 was collected resulting in total of 618 unique endpoints
(59 endpoints were present in both lists) were considered.

4.1 Implementation Used
Although there is no generic exact method of determining the engine powering a
SPARQL endpoint, the HTTP header may contain some clues in the Server field.
Hence the first step was to perform a lookup on the endpoint URLs. The response
codes of this step, where quite a large number of endpoints return error codes
4xx, 5xx, or some other exception. This indicates that a non-trivial fraction of the
endpoints from the list are offline. With respect to the server names returned by
those URLs that returned a HTTP response, although some of the server names
denote generic HTTP servers - more specifically Apache, nginx, Jetty, GlassFish,
Restlet and lighttpd - some names that indicate SPARQL implementations -
namely Virtuoso, Fuseki and 4s-httpd (4store).

4.2 Availability and version

Hence, the next step was to look at how many endpoints respond to the basic
availability query QA1. Given that the queries were run in an uncontrolled en-



Table 5: Queries for miscellaneous statistics
No Query

QF1 CONSTRUCT e:distinctIRIReferenceSubjects ?x WHERE SELECT

(COUNT(DISTINCT ?s ) AS ?x) WHERE ?s ?p ?o FILTER(isIri(?s))

QF2 CONSTRUCT e:distinctBlankNodeSubjects ?x WHERE SELECT (COUNT(DISTINCT ?s)

AS ?x) WHERE ?s ?p ?o FILTER(isBlank(?s))

QF3 CONSTRUCT e:distinctIRIReferenceObjects ?x WHERE SELECT (COUNT(DISTINCT ?o )

AS ?x) WHERE ?s ?p ?o FILTER(isIri(?o))

QF4 CONSTRUCT e:distinctLiterals ?x WHERE SELECT (COUNT(DISTINCT ?o )

AS ?x) WHERE ?s ?p ?o FILTER(isLiteral(?o))

QF5 CONSTRUCT e:distinctBlankNodeObjects ?x WHERE SELECT (COUNT(DISTINCT ?o )

AS ?x) WHERE ?s ?p ?o FILTER(isBlank(?o))

QF6 CONSTRUCT e:distinctBlankNodes ?x WHERE SELECT (COUNT(DISTINCT ?b )

AS ?x) WHERE ?s ?p ?b UNION ?b ?p ?o FILTER(isBlank(?b))

QF7 CONSTRUCT e:distinctIRIReferences ?x WHERE SELECT (COUNT(DISTINCT ?u )

AS ?x) WHERE ?u ?p ?o UNION ?s ?u ?o UNION ?s ?p ?u FILTER(isIri(?u)

QF8 CONSTRUCT e:distinctRDFNodes ?x WHERE SELECT (COUNT(DISTINCT ?n )

AS ?x) WHERE ?n ?p ?o UNION ?s ?n ?o UNION ?s ?p ?n

QF9 CONSTRUCT v:propertyPartition [ v:property ?p ; s:subjectTypes

[ s:subjectClass ?sType ; s:distinctMembers ?x ] ] WHERE SELECT (COUNT(?s)

AS ?x) ?p ?sType WHERE ?s ?p ?o ; a ?sType . GROUP BY ?p ?sType

QF10 CONSTRUCT v:propertyPartition [ v:property ?p ; s:objectTypes [ s:objectClass

?oType ; s:distinctMembers ?x ] ] WHERE SELECT (COUNT(?o) AS ?x) ?p ?oType

WHERE ?s ?p ?o . ?o a ?oType . GROUP BY ?p ?oType

vironment, multiple runs were performed to help mitigate temporary errors and
remote server loads: the core idea is that if an endpoint fails at a given moment
of time, a catalogue could simply reuse the most recent successful result. Along
these lines, three weekly experiments were run. In total, 306 endpoints (49.5%)
responded to QA1 at least once in the three weeks; these endpoints were con-
sidered to be operational and others to be offline. Of the operational endpoints,
7 (1.1%) responded successfully exactly once to QA1, 28 (4.5%) responded suc-
cessfully exactly twice, and 272 (44.1%) responded successfully thrice. In the
most recent run, 298 endpoints responded to QA1. Of these, 168 (56.4%) also
responded with a single result for QA2, indicating some support for SPARQL
1.1 in about half of the operational endpoints.

4.3 Success rates

The focus is on the overall success rates for each query, looking at the ratio of
the 307 endpoints that return non-empty results. Figure 1, shows the success
rates varying from 25% for QE3 on the lower end, to 94% for QC1 on the higher
end. The three queries with the highest success rates require only SPARQL 1.0
features to run: list all class partitions (QC1), all property partitions (QD1), and
all nested partitions (QE1). Hence, only 49% could respond to the SPARQL 1.1
test query QA1 - more endpoints can answer queries not requiring novel SPARQL
1.1 features such as counts or sub-queries. The query with the highest success rate



that involved SPARQL 1.1 features was QB1, where 51% of endpoints responded
with a count of triples. In general, queries deriving counts within partitions had
the lowest success rates
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Fig. 1: Ratio of endpoints returning non-empty results per query

4.4 Result Size

Figure 2 shows result sizes in log scale for individual queries at various percentiles
considering all endpoints that returned a non-empty result. As expected, queries
that return a single count triple return one result across all percentiles. For other
queries, the result sizes extended into the tens of thousands. One may note that
the higher percentiles are quite compressed for certain queries, indicating the
presence of result thresholds. For example, for QC1, a common result-size was
precisely 40,000, which would appear to be the effect of a result-size threshold.
Hence, unlike the local experiments where result thresholds could be switched
off, for public endpoints, partial results are sometimes returned.
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Fig. 2: Sizes of results for different queries taking 25th, 50th (median), 75th and
100th (max) percentiles, inclusive, across endpoints for non-empty results

4.5 Runtimes
Finally, the focus was on runtimes for successfully executed queries, incorporat-
ing the total response time for issuing the query and streaming all results. Figure



3, presents the runtimes for each query considering different percentiles across all
endpoints returning non-empty results in log scale. A large variance in runtimes
is noticed, which is to be expected given that endpoints host datasets of a vari-
ety of sizes and schemata on servers with a variety of computational capacity. In
general, the 25th percentile roughly corresponds with the one second line, but
that slower endpoints may take tens or hundreds of seconds. The at max trend
seems to be the effect of remote timeout policies, where query runtimes often
maxed out at between 100 - 120 seconds, likely returning partial results.

5 SPARQL Portal
Our primary motivation is to investigate a method for cataloguing the content
of public SPARQL endpoints without requiring them to publish separate, static
descriptions of their content-or indeed, for publishers to offer any additional
infrastructure other than the query interface itself. This section, describes the
SPORTAL catalogue itself, including its interfaces, capabilities and limitations.
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Fig. 3: Runtimes for different queries taking 25th, 50th (median), 75th and 100th
(max) percentiles inclusive, across all endpoints returning non-empty results

5.1 SPARQL interface
SPORTAL, itself provides a public SPARQL endpoint, where the RDF triples
produced by the CONSTRUCT clauses of the self-descriptive queries issued
against public endpoints can themselves be queried. This allows users with spe-
cific requirements in mind to interrogate the catalogue in a flexible manner.
Let us consider an agent looking for SPARQL endpoints with at least 50 unique
images of people, where this agent may ask the following query with results:

Query for 50 images Results with 50 images
Query
SELECT DISTINCT ?endpoint ?imgs

WHERE { ?dataset v:classPartition

[ v:class f:Person ; v:propertyPartition [

v:property f:depiction; v:distinctObjects ?imgs ] ] ;

v:sparqlEndpoint ?endpoint . FILTER(?imgs ¿ 50) }

ORDER BY DESC (?imgs)

?endpoint ?imgs

http://eu.dbpedia.org/sparql 4,517

http://eudbpedia.deusto.es/sparql 4,517

http://data.open.ac.uk/query 311



5.2 User Interface

To help non-expect users, SPORTAL also provides an online user interface with
a number of functionalities. First, users can search for specific endpoints by
their URL, by the classes in their datasets, and/or by the properties in their
datasets. These features are offered by means of auto-completion on keywords,
meaning that the agent need not know the specific IRIs they are searching for. If
a user clicks on or searches for an endpoint, they can retrieve all the information
available about that endpoint as extracted by the queries previously described,
providing an overview of how many triples it contains, how many subjects, how
many classes, etc. (as available). The SPORTAL user interface also includes some
graphical visualisations of some of the high-level features of the catalogue, such
as the most popular classes and properties based on the number of endpoints
in which they are found, the most common server headers, and so forth. While
this may not be of use to a user with a specific search in mind, it offers a
useful overview of the content available across all endpoints on the Web, and the
schema-level terms that are most often instantiated.
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