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Abstract. Since the 2001 envisioning of the Semantic Web (SW), the
main research focus in SW reasoning has been on the soundness and com-
pleteness of reasoners. While these reasoners assume the veracity of input
data, the reality is that the Web of data is inherently noisy. Although
there has been recent work on noise-tolerant reasoning, it has focused
on type inference rather than full RDFS reasoning. Even though RDFS
closure generation can be seen as a Knowledge Graph (KG) comple-
tion problem, the problem setting is different— making KG embedding
techniques that were designed for link prediction not suitable for RDFS
reasoning. This paper documents a novel approach that extends noise-
tolerance in the SW to full RDFS reasoning. Our embedding technique—
that is tailored for RDFS reasoning— consists of layering RDF graphs
and encoding them in the form of 3D adjacency matrices where each layer
layout forms a graph word. Each input graph and its entailments are then
represented as sequences of graph words, and RDFS inference can be for-
mulated as translation of these graph words sequences, achieved through
neural machine translation. Our evaluation on LUBM1 synthetic dataset
shows 97% validation accuracy and 87.76% on a subset of DBpedia while
demonstrating a noise-tolerance unavailable with rule-based reasoners.

1 Introduction

The Web is inherently noisy and as such its extension is noisy as well. This noise
is as a result of inevitable human error when creating the content, designing
the tools that facilitate the data exchange, conceptualizing the ontologies that
allow machines to understand the data content, mapping concepts from differ-
ent ontologies, etc. This paper documents a novel approach that takes previous
research efforts on noise-tolerance to the next level of full RDF Schema (RDFS)
reasoning. The proposed approach utilizes the recent advances in deep learning-
that showed robustness to noise in other machine learning applications such as
computer vision and natural language understanding- for semantic reasoning.
The first step towards bridging the Neural-Symbolic gap for RDFS reasoning is
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to represent Resource Description Framework (RDF) graphs in a format that
can be fed to neural networks. The most intuitive representation to use is graph
representation. However, RDF graphs differ from simple graphs as defined in the
graph theory in a number of ways. The different graph models for RDF in the
literature were neither designed for RDFS reasoning requirements nor are they
suitable for neural network input. The proposed graph model for RDF consists of
layering RDF graphs and encoding them in the form of 3D adjacency matrices.
Each layer layout in the 3D adjacency matrices forms what we termed as a graph
word. Every input graph and its corresponding inference are then represented
as sequences of graph words. The RDFS inference becomes equivalent to the
translation of graph words that is achieved through neural network translation.
The main contributions in this paper are:

– Noise Intolerance Conditions. A taxonomy for noise types in SW data
according to the impact of the noise on the inference is drawn along with
the necessary conditions for a noise type to be propagable (i.e affect the
inference).

– Layered Graph Model for RDF. We propose a layered graph model for
RDF that is tailored for RDFS reasoning.

– Graph Words. Using the layered graph model, we propose a novel way of
representing RDF graphs as a sequence of graph words.

– Graph-to-Graph Learning. By representing RDF graphs as a sequence
of graph words, we were able to use neural network translation techniques
for translation of graph words.

– Full RDFS reasoning with noise tolerance. Our evaluation shows not
only comparable results with rule-based reasoners on intact data but also
exceptional noise-tolerance compared to them: 99% for the deep reasoner vs
0% (by design) for Jena in the UGS100 dataset.

In Section 2, we use three aspects to position our research with respect to
the related work. Section 3 draws a taxonomy for noise types in SW data and
illustrates the process of ground truthing and noise induction for LUBM and a
subset of DBpedia. We describe the layered graph model for RDF in Section 4.
Then, the overall approach including the creation of the RDF tensors and the
RDF graph words is presented in Section 5. The results of the experiments are
described in the Section 6.

2 Background and Problem Statement

In this section we use three aspects to position our research with respect to
related work:

– Noise handling strategies: active vs adaptive. Active noise handling
consists of detecting noise and cleansing the data before performing any tasks
that might be affected by the presence of noise, while adaptive noise handling
approaches focus rather on building techniques that are noise-tolerant. The
research described in this paper falls into the latter category.
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– Knowledge graph completion categories: schema-guided vs data-
driven RDFS closure can be seen as a Knowledge Graph Completion (KGC)
problem— multi-relational link prediction problem in particular— where
each RDFS rule generates different types of links. We refer to the RDFS
closure computation as schema-guided KGC because the links are generated
according to the ontology (TBox), unlike data-driven KGC where the links
are predicted based on the analysis of the existing links in the KG.

– Graph embedding output: Node/Edge embedding vs whole-graph
embedding Graph embedding approaches can be classified using several cri-
teria. One particular criterion of interest is the “problem setting” [3], where
the type of graph input as well as the embedding output are used to clas-
sify the embedding approach. The graph input can either be homogeneous
or heterogeneous—where there are multiple types of nodes and/or multiple
types of edges— which is the case for RDF graphs.
The majority of graph embedding approaches yield node representation in
a low dimensional space. This is why graph embedding and node embed-
ding are often used interchangeably. However, there are other types of graph
embedding outputs such as edge embedding and whole graph embedding—
where the output is a vector representation of the whole graph not only node
or edge vectors. The embedding vectors of similar graphs should be neigh-
bors in the embedding space. The embedding of RDF graphs— in order to
learn their inference— falls under this category.

2.1 Problem statement

Existing embedding techniques for KGs were not designed for RDFS reasoning
and they raise two main challenges if they were to be used for this task.

1. The first challenge is the need to check the validity of every possible triple
using the scoring function in order to generate the full materialization.

2. The second challenge is the embedding of the relations that are seen only in
the inference such as the super-properties.

3 Ground Truthing and Noise Induction

For this research, the input is from one of two types of datasets: a synthetic
dataset from LUBM and a real-world dataset from DBpedia [1]. The inferential
target for these datasets is set using a rule-based SW reasoner (Jena [4]). Es-
sentially, the goal for the deep reasoner is to learn the mapping between input
RDF graphs and their entailed graphs in the presence of noise. Thus, noise was
induced in the synthetic dataset to test the noise-tolerance of the deep reasoner.

3.1 Taxonomy of Semantic Web noise types

The literature contains a few taxonomies for the types of noise that can impact
RDF graphs; however they are not drawn with respect to the impact of the
noise on the inference. The taxonomy illustrated in Fig. 1 serves this purpose.
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Semantic Web
noise

TBox noise

ABox noise

Propagable noise Non-propagable
noise

Fig. 1: Semantic Web noise taxonomy

TBox Noise is the type of noise
that resides within the ontology, such
as in the class hierarchy or domain
and range properties. This type of
noise impacts inference over the whole
dataset. Reasoning with tolerance to
TBox noise is outside the scope of this
research because using rule-based rea-
soners for ground truthing with noise
in the TBox biases the whole ground
truth. Non-propagable noise consists
of any corrupted triple in the input
graph that does not have any impact
on the inference—for example when
the original triple does not generate
any inference nor does the corrupted triple. Propagable noise, on the other hand,
is a corrupted triple in the input graph that changes the inference. The necessary
conditions for RDFS rules to generate a noisy inference from a corrupted triple
are identified in the extended journal paper.

3.2 Ground-Truthing in LUBM1

LUBM1 was generated according to the LUBM [6] ontology and contains 17, 189
subject-resources within 15 classes. Let R be the set of these subject-resources.
For each resource r in R, a graph g is built by running the SPARQL DESCRIBE
query. Let G be the set of graphs g obtained after this step. For each graph g in
G, the RDFS inferential closure is generated according to the LUBM ontology
using Jena. Let I be the set of inference graphs. Finally, G and I are split into
training (G train,I train), validation and testing sets using a stratified splitting
technique where the resource class is used as the label for the stratification.
The input of the supervised learning algorithm is the set of graphs G train, the
target is their corresponding inference graphs I train and the goal is to learn the
inference generation.

Noise Induction in LUBM1: In [11], a methodology for noise induction
in LUBM was proposed in which three datasets were constructed by corrupting
type assertions according to a given noise level. In RATA dataset, instances of
type TeachingAssistant were corrupted to be of type ResearchAssistant, which is
non-propagable because both concepts are sub-classes of the concept Person. In
UGS, instances of type GraduateStudent were corrupted to be of type University,
which is propagable by the RDFS9 rule because these concepts are not siblings.
In GCC, instances of type Course were corrupted to be of type GraduateCourse.
This type of noise is also non-propagable.

As [11] focuses only on noisy type assertions, two additional datasets were
created with noisy property assertions for the purpose of this research. In TEPA,
the property publicationAuthor is corrupted to be teachingAssistantOf, which is
propagable by RDFS2 and RDFS3 rules as the two properties have different
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domains and ranges. In WOAD, the property advisor is corrupted to be works-
For. This noise is non-propagable as the property worksFor does not have any
domain or range specification in the LUBM ontology.

3.3 Ground Truthing the Scientist Dataset from DBpedia

From DBpedia [2], a dataset of scientists’ descriptions was built; 25, 760 URIs for
scientists’ descriptions were retrieved. In order to diversify the types of classes
in the scientists dataset, a few other classes that are related to the Scientist con-
cept in DBpedia were also collected, namely: EducationalInstitution, Place and
Award. The total number of triples obtained in the scientists dataset is ' 5.5 mil-
lion. No artificial noise was induced in this dataset as it already has pre-existing
noise. An example of noisy type assertion is the resource dbr:United States be-
ing of type dbo:Person. There are 1, 761 resources in DBpedia that are of types
dbo:Person and dbo:Place simultaneously, which obviously indicates that one of
them is a noisy triple.

4 Layered Graph Model for RDF

Even though the RDF conceptual model is designed as a graph, it differs from
the graph theory definition of graphs in a number of ways. RDF graphs are
heterogeneous multigraphs. Moreover, an edge in the ABox can be a node in the
TBox (describing the properties hierarchy for example). Current research efforts
to represent the RDF model as graphs— based on a: bipartite graph model
[7], hypergraph model [9,8,10] or metagraph models [5]— target different goals
ranging from storing and querying RDF graphs to reducing space and time
complexity to solving the reification and provenance problem. Unfortunately,
these goals do not coincide with RDFS reasoning. Moreover they use complex
graph models which are not suitable for neural network input.

The proposed layered graph model for RDF consists of an ordered sequence of
directed graphs, where each directed graph represents the relations between the
resources of the RDF graph according to one property (from the set of properties
in the ontology plus rdf:Type). It is important to note that the transformation
of an RDF graph into its layered directed graph representation is not bijective
as two non-isomorphic RDF graphs can have the same layered directed graph
representation. However this transformation guarantees that if two RDF graphs
have the same layered directed graph representation then their RDFS inference
graphs according to the ontology O are isomorphic.

5 Approach overview

The overview of our approach is depicted in Fig. 2. It can be summarized in the
following steps:
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Fig. 2: Approach overview

1. Layering the RDF graphs: Using the layered graph model for RDF, we
generate the layered graph version for each input and inference graph in the
training set. The order of the properties corresponding to each layer can be
chosen arbitrarily but it is crucial to maintain the same order across the
dataset. In the simple version, each property in the ontology plus rdf:Type
has its corresponding layer. While in the more efficient version, only the
subset of ”active” properties is considered—where an active property is a
property from the ontology that is used in the dataset. This reduces the
number of layers dramatically in the case of the scientists dataset where
only a small subset of the DBpedia properties is used.

2. RDF tensors creation Using the layered version of the RDF graphs, an
ID must be assigned to each resource in the RDF graph to allow it to be
represented as a 3D adjacency matrix. In the simplified version, two dictio-
naries were created: one for the subject and object IDs— which is split into
a global and a local dictionary— and one for the property IDs. The global
resources dictionary contains the subject and object resources that are used
throughout the G set (which are basically the RDFS classes in the ontol-
ogy). While the local resources’ dictionaries contain the IDs for the resources
specific to each graph. In the more advanced version—required for complex
ontologies— instead of using the same local dictionary for all the layers, each
group of properties share their own dictionaries of local resources.

3. Graph words generation At this stage, every RDF graph is represented
as a 3D adjacency matrix of size:
(active properties size, max number of resources, max number of resources).
In theory the maximum number of possible layer layouts in a dataset of size
dataset size is:

min(2max number of resources2 , dataset size ∗ active properties size)

However, in practice, the number of layouts is much smaller than this theo-
retical bound. For instance, in the LUBM1 dataset, we obtained 131 layouts
versus 309, 402 possible layouts. This observation is a good indication that
the encoding algorithm has achieved one of its major goals of having similar
encodings for “similar” graphs.
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By assigning an ID for each layer’s layout, the 3D adjacency matrix can be
represented as a sequence of layouts’ IDs as shown in Fig. 3. The layouts are
termed “graph words”, as the sequence (or phrase) of graph words represents
a 3D adjacency matrix and thus an RDF graph. Representing an RDF graph
as a sequence of graph words has two main advantages:

(a) Reducing the size of the encoded dataset: only the ID of the layer’s layout
along with a catalog of layouts is saved.

(b) Exploitation of the research results in neural machine translation.

0 0 0 0 ....

0 0 0 0 ....

0 0 1 1 ....

0 0 0 1 ....
.... .... .... .... ....

0 0 1 0 ....

0 0 0 0 ....

0 1 0 0 ....

0 0 0 1 ....
.... .... .... .... ....

0 0 0 0 ....

0 0 0 1 ....

0 0 1 0 ....

0 0 0 0 ....
.... .... .... .... ....

0 0 0 1 ....

0 1 0 0 ....

0 0 1 0 ....

1 0 0 0 ....
.... .... .... .... ....

0 0 0 0 ....

0 0 0 0 ....

0 0 0 0 ....

0 0 0 0 ....
.... .... .... .... ....

0 0 0 0 ....

0 0 0 0 ....

0 0 0 0 ....

0 0 0 0 ....
.... .... .... .... ....

RDF:type

ub:takesCourse

ub:publicationAuthor

ub:advisor

ub:subOrganizationOf

ub:softwareVersion

0 1 2 3 4 5 ...

Layers catalog

Graph sentence
of graph words

(4,5,3,1,0,0)

Fig. 3: From a 3D adjacency matrix to a sentence of graph words

The overall architecture of the model as well as its hyperparameters are
detailed in the journal paper.

6 Evaluation
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Fig. 4: Training results on intact LUBM1
data

Fig. 4 shows the training pro-
cess on the LUBM1 dataset. Af-
ter approximately 12 minutes of
training, 98.8% training accu-
racy was achieved. When testing
the trained model on the intact
LUBM1 test set, an overall per-
graph accuracy of 97.7% was ob-
tained.

The trained model was then
tested on the noisy datasets cre-
ated as described in Section 3.
Two metrics were designed:
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– Macroscopic metric: Per-graph accuracy : Inferences in this metric are
scored correct when dr and i are isomorphic— in other words, when the
deep reasoner inference from the corrupted graph is isomorphic to the Jena
inference from the intact graph.

– Microscopic metric: Per-triple precision/recall. The previous metric
overlooks the fact that some triples, generated by the deep reasoner and not
by Jena, were in fact valid.

The macro and micro evaluation on the 5 noisy datasets (Fig. 5) shows ex-
ceptional noise-tolerance compared to rule-based reasoners: 99% for the deep
reasoner vs 0% (by design) for Jena in the UGS100 dataset.
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Fig. 5: Macro and micro evaluation on
noisy LUBM1 datasets

The model used for the scientists
dataset is like the LUBM1 model, ex-
cept for the hyper-parameters. Train-
ing to a validation accuracy of 87.76%
takes over 16 hours. The ‘scientists’
dataset contains 94 graphs with the
person-place noise out of which 38 in-
ference graphs generated by the deep
reasoner were perfect, containing ex-
actly the inference from Jena minus
the noisy triple. For the remaining
person-place inferences, a few contain
”false positive” triples not generated
by Jena. For example, the deep rea-
soner inferred that dbr:Big Ben is of
type dbo:HistoricPlace even though
this information is not explicitly (i.e.
embedded in the DBpedia graph of
the the resource dbr:Big Ben) nor im-
plicitly (i.e. can be inferred). The deep reasoner inferred this information by
capturing the generalization that resources with similar links to dbr:Big Ben are
usually of type dbo:HistoricPlace.

7 Conclusions, Discussions and Future Work

The main contribution of this paper is the empirical evidence that deep learning
(neural networks translation in particular) can in fact be used to learn semantic
reasoning— RDFS rules specifically. The goal was not to reinvent the wheel and
design a Yet another Semantic Reasoner (YaSR) using a new technology; it was
rather to fill a gap that existing rule-based semantic reasoners could not sat-
isfy, which is noise-tolerance. This research can be extended in a few directions.
Currently the trained model on a specific domain with a given ontology cannot
be used to generate inferences from a different domain. One promising research
direction is to investigate transfer learning to bootstrap the adaption for new
domains.
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