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ABSTRACT
With the growing availability of open access WLAN networks,
we assisted to the increase of marketing services that are based
on the data collected from the WLAN access points. The identi-
fication of visitors of a commercial venue using WLAN data is
one of the issues to create successful marketing products. One of
the ways to separate visitors is to analyse the RSSI of the mobile
devices signals coming to various access points at the venue. Nev-
ertheless, the indoor signal distortion makes RSSI based methods
unreliable.

In this work we propose the algorithm for the WLAN based
RSSI normalization in uncontrolled environments. Our approach
is based on the two steps, where at first based on the collected
data we detect the devices whose RSSI can be taken as a basic one.
At the second step the algorithm allows based on the previously
detected basic RSSI to normalize the received signal from mobile
devices.We provide the analysis of a real dataset ofWLAN probes
collected in several real commercial venues in Italy.

1 INTRODUCTION
Localization is becoming a more and more important feature
in the mechanisms used for the location-based services and dif-
ferent location-based business models [13, 14]. One of the most
commonly used and precise mechanism for the localization, the
Global Navigation Satellite Systems (GNSS), has strong limita-
tions in indoor environments. Hence, in order to organise the
localization in indoor environments, researchers and industry
approached the problem by using different signal technologies,
such as Radio Frequency Identification tags, Ultra Wide-Band or
WLAN.

While the technologies based on the Radio Frequency Tags
and Bluetooth Low Energy show promising results in indoor
localization [2, 7], it is WLAN that is of our particular inter-
est. Indoor localization based on WLAN technologies does not
show significant precision benefits in comparison with other
approaches. However, in the last decades the availability and
distribution of free internet zones in the cities and commercial
venues have significantly increased. Therefore, the application
of WLAN based localization does not require additional infras-
tructure deployment and can be based on the already existing
infrastructure. This characteristic makes this method to be one
of the most appealing for small and medium size enterprises, also
considering its flexibility and applicability. The approach can be
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of particular interest when the high localization precision is not
required.

There are a lot of commercial companies that are working
with the data of commercial venues in order to provide market-
ing products to the clients. These companies are buying probes
data from giant wireless infrastructure providers, such as Meraki,
Ruckus and Aerohive, and process this data into the marketing
product. The marketing product motivating the paper originates
from a company mission to help retailers in brick and mortars
stores to build an omni-channel communication with their cus-
tomers. For example, one use case could be to trigger a specific
marketing action on a defined behaviour such as a push up noti-
fication on the proprietary app when the customers enters the
store or to send a discount or promotion email to a customer
who has just left the location for retaining. As many real world
scenarios, the raw data contains much ’noise’ and is in need of
semantic attribution to be able to aim the right communication
to the right target: the visitors.

As a matter of fact, one of the key aspect for this data pro-
cessing is actually to separate the visitors of the venue from the
passers-by, where the visitor is usually considered a person that
enters the venue and spends some time (and hopefully money)
inside. One of the ways to separate visitors from passers-by is by
analysing the Received Signal Strength Indicator (RSSI) of mobile
WiFi devices carried by nearby persons. The RSSI indicates the
power present in the received radio signal from remote mobile
devices and typically decreases with the distance between the
receiver and the transmitter of the signal. The RSSI parameter is
very volatile and highly depends on the environment. The signal
in a propagation channel is affected by path loss and multi-path
effects, which result in RSSI variation and attenuation [3, 11, 12].
This is an important factor especially for commercial venues,
in which the high fluctuation of people makes the problem of
correctly distinguish between visitors and passers-by based on
RSSI even more challenging.

Most of the existing WLAN solutions are based on the knowl-
edge of the access points (APs) position, network devices that
allow other Wi-Fi devices to connect to the wired network [4, 6].
Also, the typical solutions rely on the fixed indoor layout and do
not consider the people fluctuations [3].

In this paper, we focus on the characterization and possible
adjustments of RSSI based indoor localization for WLAN com-
munication. More precisely, our contribution can be summarized
as follows. We propose an algorithm that dynamically adjusts
the RSSI of the received probes from mobile devices. During the
adjustment phase the RSSI of probes of selected anchor devices
are used as a reference to evaluate the path loss in the propaga-
tion channel. In general, an anchor device is (i)active during the
closing hours of the venue, (ii)does not change its location, and



(iii)it is also present during the opening hours of the same day.
We also describe the algorithm for the anchor devices selection.

In our work we provide the analyses of a real dataset of WLAN
probes collected in several real commercial venues in Italy. This
dataset is provided by the company Cloud4Wi for research pur-
poses. We provide the evaluation results for the anchors distri-
bution and presences for different types of commercial venues.
We also evaluate the correlation of RSSI of anchor devices on the
number of incoming probes to an AP.

The benefit of described approach is that the algorithm relies
only on the device probes received by AP and do not require
deployment of additional hardware. Moreover, the adjustment
phase can be executed at runtime or offline. This important char-
acteristics are essential to follow the wireless channel variance
during the day due for instance to the high fluctuation of people.
While the described solution does not aim for a high precision
localization, it can significantly improve the quality of marketing
solutions proposed on the data processing market.

The remainder of this paper is organized as follows. Section
2 offers an overview of the related work. Section 3 provides the
definition of the problem statement, whereas Section 4 presents
the algorithm for anchors selection and dynamic RSSI adjustment.
In Section 5 we evaluate the anchors selection algorithm based
on the real WLAN data. Finally, we conclude the paper in Section
6 by discussing the results and the future work.

2 RELATEDWORK
Indoor localization is a mature research field. Nevertheless, the
growing distribution of wireless infrastructure and open access
internet connections raises old and brings new challenges. Re-
cent overviews on technologies and techniques can be found on
existing surveys [8, 13, 14].

Most of the available literature in the field relies on some
known data about indoor layout. This data can include the shape
of positioning measurement, points coordinates or fingerprints
[4, 5, 8], maps of the area [2, 7, 8], some known scenario [7].

For example the work of Nikoukar et al. [7] describes the study
of low-energy Bluetooth advertisement channels. The authors
conduct extensive experiments in four different environments.
The work describes the study of the effect of the environment
noise and interference on the signal propagation conditions. Our
work is also connected with the studies of signal deformation in
a propagation channel. Nevertheless, the authors consider the
controlled environment in their studies, while in our case the
setup layout and the indoor conditions are fully uncontrolled.

Another work that studies the propagation channel is the work
of R. Faragher and I. Papapanagiotou [2]. The authors provide a
detailed study of Bluetooth Low Energy (BLE) fingerprinting. In
their investigations the authors rely on the deployed network of
19 beacons.While the study provides the quantitative comparison
of BLE technology with the WiFi one, it still relies on a controlled
network of hardware devices that has to be installed.

The work of Shrestha et al. [11] describes an approach for in-
door localization with WLAN signal and unknown access point
locations. The authors formulate the problem of WLAN position-
ing as a deconvolution problem and investigate three deconvolu-
tion methods with different path loss models. The work describes
the comparison of the proposed approach with the fingerprint-
ing one. Nevertheless, the authors relies on two stages approach
where on the first training stage is required the information about

the indoor environment and some controlled off-line measure-
ments using the existing APs. By comparison, in the scenario
described in our work we have no knowledge about the area and
no control over the APs.

One more aspect described in the literature is the possibility of
attacks in case of fingerprinting approach. For example the work
of Richter et al.[10] discusses different attack types and compare
positioning performance of RSS-based fingerprinting under these
attacks via simulations. The authors also present the simulator
for realistic RSS predictions for the simulation environments.
Aboelnaga et al.[1] describe an algorithm to identify attacked APs
and make accurate localization in the presence of attacks. These
works are concentrated on the evaluation of different attacks
types on the performance of RSS. Moreover, in order to detect
and evaluate the attacks the authors rely on previously collected
fingerprints datasets.

Our work differs from most of the state of the art because we
do not improve the precision or reliability of the indoor localiza-
tion methods. Instead, the main scope of our work is to provide
an approach that could, with minimum monetary investments,
improve marketing solutions provided by companies based on
the collected data. As we describe in Section3, we deal with en-
vironment layouts that are not known and not controlled. In
our work we rely only on the sniffed data of probes from APs
in a totally passive fashion. To decrease the impact of path loss
effect in propagation channel on the RSSI based localization we
propose to rely on a set of dynamically detected anchors. Mon-
itoring the changes of RSSI of these anchors and applying the
correction coefficient for the sniffed RSSI on APs allows to adjust
the RSSI-based localization.

3 PROBLEM STATEMENT
The wireless radio signal passing through propagation chan-
nel experiences path loss and multi-pass effects influencing on
the RSSI sniffed by the receiver. These effects are caused by dif-
ferent factors like obstacles in the propagation channel, signal
reflection on the walls and floors, etc. In order to estimate the
distance between transmitter and receiver some applications rely
on the strength value of the received signal RSSI. Hence, the
deformation of the signal passing through propagation channel
can significantly decrease the level of the provided service.

Regarding the importance of the signal deformation problem
for the distance measurement, various models have been pro-
posed to compute the strength of the signal depending on the
distance [9]: (i) the free-space propagation model, (ii) the two-ray
model and (iii) the log-normal shadowing model (LNSM). For
our application, these models usually do unrealistic assumptions
or have too high requirements in terms of knowledge of the
layout. For example the free-space propagation model assumes
the environment to be obstacle-free. A more promising models
based on RSSI for the indoor localization is LNSM. However, it
heavily relies on the knowledge about the indoor environment.
This knowledge includes positions of APs, mapping of the area,
environment parameters like temperature, humidity, etc.

These requirements are important for correct indoor local-
ization and cannot be ignored in case of precise modeling. Nev-
ertheless, in real applications it is not always possible to have
full knowledge about the environment and the company-owned
data usually is very limited. Moreover, the environmental factors
change over time.



In our work we consider, as an use case, a company that pro-
vides marketing products to commercial venues. The product of
the company is based on the processing data of probes sniffed
from APs placed in some venues. As a medium size company it
does not provide the services of hardware deployment and relies
on the APs installation and services provided by big market play-
ers like Meraki, Ruckus and Aerohive. The company does not
have the knowledge about the position of APs. Also, the com-
pany does not have the knowledge about the indoor layout of the
venue. The indoor layout of the venue is periodically changing.
The venues tend to have fluctuation of visitors during the day
and visitors inside the venue can significantly influence on the
deformation of the signal in the propagation channel.

At the same time, in order to provide services linked to its mis-
sion, the company has to distinguish the probes of visitors of the
venue from the probes of passers-by. This selection has to work
under constantly changing conditions inside the propagation
channel. To monitor the signal strength loss in the propagation
channel one could organise a message exchange between the
available APs in the venue. Nevertheless, as we mentioned before,
the mid-size company does not deploy the hardware itself and
hence cannot influence on the protocols of messages exchange
between APs.

In this paper we propose an approach that relies only on the
sniffed data of probes from APs. The proposed approach is based
on the monitoring of the RSSI changes between transmitter and
receiver in time. These changes correspond to the changes of
transmitting conditions in propagation channel between these
two devices.

One of the first questions to answer is how to detect the fixed
transmitters, anchors, based on the sniffed data of probes. The
second question is how to adjust the RSSI of sniffed probes from
visitors mobile devices in order to level out the influence of side
factors, like people fluctuation, on the visitor/passer-by detection.

We acknowledge that the proposed solution cannot be applied
in cases when high precision is required. Nevertheless, we believe
the proposed adjustment can improve the existing marketing
products without additional costs for hardware deployment.

4 ALGORITHM AND MODEL
The algorithm for the dynamic adjustment of RSSI is composed by
two steps, which can be broadly summarized as the following. The
first step is dedicated to detecting the devices that can possibly
play the role of anchors. The second step applies the anchors
RSSI data to adjust the RSSI data from the mobile devices.

In order to be selected as an anchor, a candidate device has to
meet the following requirements:

(1) the probes of the candidate device have to be presented
in the closing hours of the venue. We assume in these
hours there is minimum additional noise in the area of
investigation. In this case we can measure the basic level
of RSSI for the anchor device.

(2) the standard deviation of RSSI probes for the anchor can-
didate in the closing hours of the venue has to be low. We
argue that a low standard deviation relates to those devices
that have a fixed position over time. These devices can
be represented by printers, TVs or some venue security
appliances.

(3) the probes of the candidate must be detected in both the
closing hours of the venues and the next consecutive open-
ing hours. With this requirement we eliminate those de-
vices that are, for some reasons, active only during the
closing hours of the venue. For example it can be spe-
cific security appliance that is activated when no physical
guardians are presented.

At the end of the first step we have a list of anchor devices
that can be used to adjust RSSI of the mobile devices during the
opening hours. Each anchor is assigned to some APs. The corre-
sponding RSSI detected in the closing hours corresponds to the
basic RSSI, i.e., RSSI0, between the anchor A and the correspond-
ing AP. Hence, for the following opening hours of the venue this
RSSI0 can be assigned as the basic RSSI for the adjustments for
the propagation channel between anchor A and the assigned AP.

Based on the detected anchors for the RSSI adjustments of
mobile devices we describe the second step of the proposed al-
gorithm, which we call dynamic RSSI adjustment. In order to
simplify the explanation we consider an example with one AP
and one anchor device (Figure 1):

(1) During the opening hours, every time the anchor’s probe
reaches the AP (RSSIa1), the adjustment coefficient α is
re-computed by considering the RSSI of the new received
probe:

α =
RSSIa1
RSSI0

(2) The adjustment coefficient α is applied to all mobile de-
vices probes (RSSIm1 and RSSIm2 on the Figure 1) coming
to this AP until the next anchor probe arrives:

RSSI = α ∗ RSSIm1

This algorithm permits to cope with the unavoidable channel
variation estimating the α parameter. Indeed, α = 1 means that
there are no channel variation, α < 1 means that the RSSI value
decreases with respect to the adjustment phase, or increases
when α > 1, but in the last two cases the channel has changed.

No anchors detected. An additional situation we would like to
discuss is the case when there are no detected anchor devices
during the opening hours of the venue. For example this can
happen in case of very small venues or in case of possible black
outs, or for some other reasons that are difficult to estimate.

Every time the algorithm does the calculation of α for AP
based on the signals received from the anchor, it can save this
value together with the current number of incoming probes to
this AP. In cases when no anchors are detected, the algorithm
can apply the α estimation based on the current level of incoming
probes and the α versus number of probes collected statistics. We
leave this improvement for our future work investigations.

5 EVALUATION
We have used 2.4 GBs of textual data representing a month (May
2018) of raw data from 6 different locations in Italy. This data has
been collected by Cloud4Wi1 a SaaS company providing behav-
ioral analytic and an omni-channel communication with their
customers to retailers worldwide. Each line, representing a single
request-to-send/clear-to-send (RTS/CTS) handshaking exchange
between a device (which has the Wi-Fi enabled) and an AP in a
location, contains information about the time of interaction, the
access point id, the device id and the RSSI of the signal.

1https://cloud4wi.com/
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Figure 1: An example of dynamic RSSI adjustment

5.1 Evaluation setup
In order to understand the possibility of applying the described
method, we provide an analysis of different types of venues to
see the statistic on the perspective anchor devices. We arbitrarily
separated the locations in groups to see if any difference between
the groupings could have helped in better understanding the
context of the analysis. The locations can be split on the basis of
their size (both in traffic and in meters) and of their positioning.
The two categories that we decided to implement are:

(1) Single standing city venues. The venues that are located in
more inhabited areas such as a city centre. In the following
experiments we address these locations asA, B, C. Venues
A and C are located in seasonal touristic cities. Venue B
is a city shop located close to the factory building.

(2) Commercial centers. The venues are located in dedicated
shopping areas such as malls or shopping villages. In the
following experiments we address these locations as D, E,
F.

5.2 Data preparation and analyses
As we already described in Section 4 in order to select the anchor
devices between the variety of available probes we apply the
following numerical constrains:

• The anchor candidate should have at least 4 probes during
the closing hours. As closing hours of the venue we have
considered deep night hours from 00 : 00AM to 04 : 00AM.
Since all the locations are placed in the same country, Italy,
these conditions are applied to all of them.

• In order to be sure the candidate device is not changing
its position over time we fix its standard deviation of RSSI
to be less then 3. Empirically we found that the maximum
of 3 − 4% standard deviation from the RSSI allows to iden-
tify good anchor candidates. An extensive study of this
parameter is out of the scope of this paper, and we leave
such study for future work.

• We control the presence of anchor candidates during the
opening hours of the same day. As opening hours for the
venue we have considered the time interval between 8AM
and 10PM. We have preferred to be more inclusive for
opening hours interval in order to evaluate the maximum
possible anchor candidates. Nevertheless, the real opening
hours can be different from the one mentioned here. The

selected time interval also includes the preparation time
for the staff and security checking period after a venue
closing for clients.

The parameters described above are derived empirically and
are subject for evaluation and studies in a future work.

Presences of anchor devices
Based on the described constrains we have evaluated the pres-
ences of anchor candidates for different categories of locations
Figure 2.

As we can see in all the venues there are devices that can be
exploit as anchors. At the same time we can see that some venues
have much more anchors then others. We explain this by the
particularity of the location of the venue. For example, the venues
A and C are placed in the city center of summer touristic cities
(Figure 2a). Since we consider the month of May, which is just
before the start of summer season, we can see the lack of available
anchors. At the same time, the venue B is sharing the location
with the factory and so we can see an high presence of available
anchor candidates. Figure 2b shows the evaluation of the number
of available anchor candidates for the venues located in the places
such as malls or shopping villages. As we can see all three venues
shows availability of the anchor candidates. According to the
processed data, the venue F has higher availability of anchors
in comparison with other venues. It can be explained by the
particularity of the specific area organization (security devices,
etc.).

Distribution of anchors per APs
In order to evaluate the distribution of the anchors inside the
area we have computed the number of available anchors per
APs deployed in the venue. The results of the evaluation are
presented in Figure 3. Different dots style and color correspond
to the different APs statistic.

As we can see on the Figure 3 and as we have already men-
tioned on the previous Figure 2 the venues B, D and F have
significantly higher the number of available anchor candidates.
This can be also explained by the number of available APs in-
side the location. The number of APs can be used as indirect
characterization for the venue size. An high number of APs is
also connected with heterogeneity of the anchor candidates pres-
ences. For example on Figure 3b we can see that some of the APs



May 01 May 08 May 15 May 22 May 29
Date

0

50

100

150

200

250

300

350

Nu
m

be
r o

f a
nc

ho
r d

ev
ice

s

A
B
C

(a) Single standing city venue.

May 01 May 08 May 15 May 22 May 29
Date

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f a
nc

ho
r d

ev
ice

s

D
E
F

(b) Commercial centers.

Figure 2: Number of available anchor devices for two types of venue location.
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Figure 3: The distribution of the anchor devices between available APs in the venues.

have a much lower number of available anchors in comparison
with the rest of the APs. By comparison, in Figure 3f there are
some APs that show an higher anchors availability then the rest.
The rest of the venues with low number of APs show a more
uniform distribution of anchors. The heterogeneity of the APs
distribution can correlate with the size of the venues. When the
size of the venue is relatively small the available APs cover the
most important zones. Instead in case of big size venue and high
number of APs its distribution can be less uniform. Some APs
can be placed behind obstacle or in less popular spots of the
commercial venue.

Signal strength versus number of probes
In order to evaluate the impact of clients fluctuation on the
transmitter-receiver propagation channel we have evaluated the
RSSI changes during the day for some venues/APs/anchors(Figure

4). The Figure 4 shows some randomly selected days and APs
for the evaluation. For the sake of presentation we selected the
anchors with the higher number of available probes during the
day.

The results show that the anchor candidates, as expected, have
a relatively stable RSSI for the closing hours of the venue and
show an high deviation during the venue opening hours. The
difference in RSSI measured in closing and opening hours is
higher than 50% and goes more than 60% in some cases (Figure
4h) The RSSI measured on the APs reacts on the changes in the
propagation channel, for example due to the clients presences.
This is important to notice since our approach is based on this
assumption.

Figure 5 shows the statistic for number of incoming probes
to different APs. The APs on the figures are the same as the
ones presented on the Figure 4. This choice is done for easing



(a) Venue A. AP 88:15:44:bc:63:50 (b) Venue A. AP 88:15:44:bc:63:50 (c) Venue A. AP 88:15:44:bc:63:50

(d) Venue B. AP 88:15:44:a9:0a:85 (e) Venue B. AP 88:15:44:a9:0a:85 (f) Venue B. AP 88:15:44:a9:0a:85

(g) Venue D. AP 0c:8d:db:93:18:9b (h) Venue D. AP 0c:8d:db:93:27:82 (i) Venue D. AP 0c:8d:db:93:26:d4

Figure 4: Signal strength RSSI of anchors versus number of probes per AP. 24 hours statistics.

the comparison between the statistics for the same date and AP.
In fact by comparing both sets of figures we can see that the
variation of RSSI measured for anchors on the AP (Figure 3)
correlates with the variation of the number of incoming probes
to this AP.

This is especially noticeable when compared Figures 4a,4b,4c
with the corresponding Figures 5a,5b,5c. The shape of the RSSI
variation is following the shape of the incoming probes to the
same AP. An high number incoming probes to the AP indirectly
indicates an increase of the number of clients in the area. In turn,
an high number of clients in the area increases the probability
that some of them are positioned between the transmitter and
receiver devices, which leads to the variation of the incoming
RSSI.

6 CONCLUSION AND FUTUREWORK
In this work we propose an algorithm for dynamic adjustment of
RSSI measured on APs. The proposed approach is based on two
steps. The first step selects the anchor devices, that are used as a
reference point for RSSI. The second step is an actual dynamic
adjustment of measured RSSI values of mobile devices. We have
evaluated 2.4 GBs of textual data representing a month (May
2018) of raw data from 6 different locations in Italy. This dataset
has been collected by Cloud4Wi company. The analysis of this

dataset shows the availability of anchor devices in all considered
locations. The presence of anchor devices is homogeneous for
most of the available APs. The results of data evaluation confirm
that the anchor devices present a low deviation for RSSI in closed
venue hours and an high deviation in opening hours. This con-
firms the impact the people fluctuation does on the propagation
channel properties.

This work is our first attempt for the dynamic adjustment
of RSSI measures in fully uncontrolled environment in case of
WLAN based localization. The described evaluation is based on
the empirically derived parameters. These parameters are subject
for deeper evaluation and studies in the future work.

As future work, we plan to deploy a controlled test environ-
ment where we can evaluate the described approach and test the
possible variation for the parameters. We also plan to evaluate
the possibility to introduce the additional small devices that could
interact with available APs. We expect such kind of devices could
significantly increase the effectiveness of the proposed approach
and also can be important in case of lack of available anchor
candidates.
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Figure 5: Number of received probes per AP. 24 hours statistics.
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