CEUR-WS.org/Vol-2578/BMDAS .pdf

MOBI-AID: A Big Data Platform for Real-Time Analysis of On
Board Unit Data

Arnau Dillen

Giovanni Buroni

Yann-Aél Le Borgne

Machine Learning Group, Université ~Machine Learning Group, Université =~ Machine Learning Group, Université

Libre de Bruxelles
Brussels, Belgium
arnau.dillen@ulb.ac.be

Karl Determe
Brussels Mobility
Brussels, Belgium

ABSTRACT

Every day large amounts of goods are transported by heavy-
goods vehicles over the road network. Being able to monitor and
analyse heavy-goods vehicle traffic is essential to define poli-
cies able to minimize the impact of negative effects. However,
this requires dealing with large amounts of data and often a
dense road network, especially in an urban setting. This paper
introduces a platform that makes use of state-of-the-art big data
technologies to process data pertaining to the positions and prop-
erties of heavy-goods vehicles. This platform aims to provide
policy-makers and other stakeholders with the tools that allow
large-scale analysis of heavy-goods vehicle data in a near real-
time fashion. Additionally, the platform allows for forecasting of
future traffic conditions based on historical data.

1 INTRODUCTION

Road freight transport is an essential aspect of any country’s
infrastructure policy due to its economic, environmental and
social impact. Among other issues, freight vehicles are respon-
sible for a large part of the congestion on urban road networks
(economic impact), pollutant emissions such as carbon dioxide
(environmental impact) and physical consequences of pollutant
emissions on public health (social impact) [1].

Urban planners and policy-makers therefore demand Intel-
ligent Transportation Systems (ITS) which are able to foresee
the mobility behavior and support the definition of appropriate
policies [26, 29]. Tools such as accurate traffic forecasting models
[30], advanced mobility indicators of freight transport [15] and
more general mobility models [3] can assist policy makers in
making appropriate decisions.

Traffic on a road network exhibits features which are com-
mon to most complex systems: self-organization, emergence of
transient space-time patterns based on local and global feedback
loops, which makes analysis of these types of data difficult. Due
to this, few studies [3, 18, 29, 31] address a complete transporta-
tion network including both freeways and urban contexts or
limit themselves to offline analysis [15, 25]. One of the main
reasons is the scarce availability of data gathered from point de-
tectors or interval detectors and the lack of methods able to tackle
the traffic prediction problem at a larger scale [2, 29]. However,
thanks to the more ubiquitous availability of new information

Copyright © 2020 for this paper by its author(s). Published in the Workshop Proceed-
ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, Copenhagen,
Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-
tribution 4.0 International (CC BY 4.0).

Libre de Bruxelles
Brussels, Belgium
giovanni.buroni@ulb.ac.be

Libre de Bruxelles
Brussels, Belgium

Gianluca Bontempi

Machine Learning Group, Université

Libre de Bruxelles
Brussels, Belgium
gbonte@ulb.ac.be

and communication technologies, more traffic data, especially
moving sensors data, are collected and made openly available by
both public and private companies, allowing the development of
data-intensive approaches for traffic analysis.

In Belgium, traffic data is gathered for heavy-goods vehicles
(HGV) by Bruxelles Mobilité!, the public administration responsi-
ble for equipment and infrastructure related to mobility issues
in the Brussels Capital Region (BCR). They continuously receive
data on HGV positions, which is normally used to charge HGVs
for kilometers driven on toll roads in Belgium. Every day, an
average of 19 Gigabytes of data are therefore accumulated and
need to be processed in a timely manner, in order to monitor
HGYV traffic in Brussels.

Bruxelles Mobilité currently stores this data in a centralized
PostgreSQL [12] database which is set up to handle geographical
data through the PostGIS [14] extension (see figure 1). However,
this solution is unable to cope with the massive amounts of data
that are ingested on a daily basis. While it would be possible
to optimize queries and create database indices to minimize the
time it takes to retrieve a solution to a query, the main issue with
a classical relational database system lies in the constant updates
and additions of rows. Even the most performant database on the
fastest hardware will result in a bottleneck. Additionally, reading
and writing these amounts of data from and to a regular file
system is too slow for the amounts of data that are being dealt
with.

| Viapass server

!

Periodic data collection (Python script called every 2 minutes)‘

Storage

ﬁ Centralised PostgreSQL database

!

User queries (SQL)

Figure 1: Current Brussels mobility architecture for in-
gesting and storing HGV data.

!https://mobilite- mobiliteit brussels/en

https://mobilite-mobiliteit.brussels/en

The Machine Learning Group (MLG) of the Université Libre
de Bruxelles (ULB) collaborates with Bruxelles Mobilité to design
a big data architecture able to provide near real-time processing
and querying of the incoming data. For example, a query that
retrieves the number of trucks on each street is required to make
forecasts on future traffic conditions.

An initial version of the architecture was implemented in
[5] and has been collecting data on the MLG cluster for some
time now. We were able to successfully collect and process large
amounts of data thanks to the joint use of an Apache Hadoop
cluster [21] and Apache Spark [32]. However, big data technolo-
gies are evolving fast and an appropriate interface to visualize
and analyze traffic related data is necessary. Data aggregation is
necessary to get a high level view and loading large amounts of
data into the interface client is slow and impedes responsiveness
of the interface. These are important aspects to take into account
when deciding what visualizations the interface should provide
and which data should be loaded to the client.

The aim of this research is to be able to perform network-
scale analysis and forecasting in near real-time. The presented
architecture allows to make real-time forecasts based on incom-
ing data using both well-established [29, 30] and state-of-the-art
[2, 18] methods on a network-wide scale. It also enables perform-
ing analyses, such as identifying important points of congestion
caused by HGV traffic in changing conditions for example, which
were previously computed offline, in real-time. Next to the previ-
ously mentioned models, there is a fair amount of related work
that proposes possible forecasting models which could be can-
didates for a real-time forecasting model on road networks and
their different sections [13, 23, 28]. A large corpus of literature
discusses this issue.

The main contributions of this paper are twofold. In a first
place it introduces an extension to the big data architecture that
was implemented in [5] which enables near real-time process-
ing of the incoming data. Secondly, it proposes a design for a
dashboard that enables analyses and visualization of data, which
is implemented as a web interface. Together, these make up a
platform that provides the tools that are necessary to Bruxelles
Mobilité to monitor the traffic of HGVs in Brussels and provide
insights that should be useful in establishing future policies re-
lated to transportation of goods within the BCR. The platform
was named the MOBIlity Advanced Indicators Dashboard (MOBI
AID), after the project that supports this research. Additionally,
the work done in this research could also serve as an example for
other cities and potentially whole countries to deploy their own
platforms to assist in decision making on policies with regards
to road freight transport.

2 METHODS AND IMPLEMENTATION

The data that are gathered concern all HGVs that are currently
present in the Belgian territory. At this time we are only inter-
ested in HGVs that are present in the Brussels Capital Region,
which still concerns thousands of HGVs on a daily basis. To get
useful insights from this data, a platform is necessary that can
handle such large amounts of data and present forecasts or the
results of analyses in a meaningful way. For this purpose, next to
the data, two essential components were identified to implement
the envisioned platform.

The remainder of this section is structured as follows. Firstly,
we will describe the gathered data. Secondly, we discuss the
architecture that allows processing and storage of such large

amounts of data. Finally, we present a prototype web interface
that would be used by policy makers and data scientists to get
insights on traffic conditions, from the processed data. This would
assist policy makers in making informed decisions regarding
urban planning with relation to road infrastructure and freight
transport.

2.1 Viapass and On Board Unit (OBU) Data

As of April first of the year 2016, heavy-goods vehicles having a
Maximum Authorized Mass (MAM) exceeding 3.5 tonnes must
pay a kilometer charge for driving on certain paying toll roads
in Belgium. Any vehicle that is not exempt from the toll must
have an On Board Unit (OBU) installed. The public organization
in charge of supervising the kilometer charge is called Viapass®.
With the aid of GPS/GNSS satellite technology and mobile data,
the OBU records the distance that a HGV travels on Belgian public
roads. Mobile wireless technology is used to send the number
of kilometers charged to the Viapass data center, after which an
invoice is issued to the owner of the vehicle.

Because of their evident value as a mobility indicator, the OBU
data are also made available to several mobility agencies, includ-
ing Bruxelles Mobilité which uses this data to analyze freight
traffic in the Brussels Capital Region (BCR). The BCR is a sepa-
rate region from the Flanders region, where it is geographically
located, and consists of 19 administrative districts named com-
munes. These districts will be referred as such for the remainder
of this article. The models and analyses used in this paper will
use OBU data from HGVs within the BCR and its communes.

On average more than nine thousand HGVs are recorded every
working day in the larger Brussels Metropolitan Area [4]. Each
OBU device sends an update to the server approximately every
30 seconds. An OBU record contains an anonymous identifier,
which is reset every day at 4 a.m., the timestamp at which the
position was recorded, the GPS coordinates (latitude, longitude),
the speed (km/h) and the direction (degrees). Additionally, the
data includes vehicle characteristics such as the weight category
(MAM), country code and European emission standards classifi-
cation of the engine (EURO value). This results in an average of
19GB of data incoming on a daily basis and several terabytes of
data being generated every year.

2.2 Design of The Big Data Architecture

Handling such large amounts of data requires an architecture that
can process the incoming data fast enough and store processed
data in an efficient manner. A well-known architecture that meets
these requirements is the Lambda architecture [19, 20, 27] which
has proven itself in several settings [10, 16] and is used in prac-
tice by Twitter among others [17]. An overview of our current
implementation of the architecture can be found in figure 2.
With this architecture, three separate layers can be distin-
guished, which each handle different aspects of the platform. The
speed layer takes care of processing incoming data in a timely
manner and send the processed data to the serving layer for vi-
sualization and analysis. This layer handles the real-time aspect
of the platform. The batch layer stores immutable data (i.e. ob-
servations) and processes it for later user queries on historical
data. The serving layer consists of multiple views that are each
used to fulfill a specific type of user queries. For example, data
that are stored in a specific format which is used for a specific
visualization, or predetermined queries that retrieve data that

https://www.viapass.be/

https://www.viapass.be/

Speed layer

Data Processed
stream data

Immutable
data

Batch layer

Real-time View
Historical View

Serving layer

Incoming data .

Figure 2: Overview of the Lambda architecture.

are required for a specific analysis. This layer can also merge the
information that comes from both speed and batch layers, such
as discrepancies between the real-time traffic conditions and the
typical case for example. In our current implementation there
are two views available. The real-time view provides data that
comes from the speed layer directly. The historical view uses the
data from the batch layer to query for events and states that have
been observed in the past.

The initial implementation of this architecture was deployed
on an Apache Hadoop [21] cluster, which is an open-source frame-
work for distributed computing that is widely used for big data
processing [7, 24, 27, 32]. The data are collected with a Python
script that queries the Viapass servers for new data at a fixed time
interval, which is currently set to two minutes. The script loads
the data in a GeoPandas [11] DataFrame (a data structure with
named columns and index-based rows), which is an extension
of the well-known Pandas library for the Python programming
language, to support geometric data types and functions. The
DataFrame contains all observations that were collected by Via-
pass since the last data request.

Observations consist of a HGV’s current position as a geome-
try point, which is represented by a given latitude and longitude,
together with the unique ID that was assigned to the HGV for
that day. Additionally, an observation contains a timestamp of
when it was recorded by the OBU and the HGV’s characteristics,
which were described in section 2.1. Observations are augmented
with the current date and time to indicate when the observation
was received by our servers. This is done because there is no
guarantee that the observations within the retrieved batch will
all be for the current day, as it is not uncommon to have observa-
tions from previous days come in. As it can not be known when
all observations for a day have been received, the system needs
to take this into account.

The observations that were retrieved by the script are conse-
quently split by the day on which the observation was recorded
and then saved to CSV files on the local file system. The files
are stored in a folder that corresponds to the day on which the
observations were recorded. These CSV files are used to run sim-
ulations of the Lambda architecture by reading batches of data
that represent incoming data from Viapass and sending them to
the appropriate layers. In real-world scenarios, the incoming data
would be sent directly to the appropriate layers of the Lambda
architecture.

For the currently deployed implementation of the batch layer,
we aggregate the CSV files per day and store them on Hadoop
Distributed File System (HDFS) in Parquet format. HDFS al-
lows distributed storage with replication and improved read and
write speeds compared to regular file systems. The Parquet file
format is a column-oriented format that provides efficient data

compression and fast query access. To process the raw CSV files,
Apache Spark [9] is used to deduplicate the observations and
store them in HDFS as Parquet files. HDFS takes care of distribut-
ing file data over the different nodes of the cluster. With this
approach, these operations can be processed in parallel and dis-
tributed over multiple compute nodes thanks to the integration
of Hadoop and Spark. Using Spark we can efficiently run SQL
queries and advanced analytics on the data by parallelizing a
large part of the computations. An overview of this process is
shown in figure 3.

Viapass server ‘

Periodic data collection (Python script called every 2 minutes)‘

Storage
v
HDFS storage
* Distributed v‘ \.' @ S
« replicated (x3) v = \-4 \.4-' CSV text format

T -

‘ Parallel processing

‘Deduplication, reformatting, (every day)

Spark

arquet storage

Parquet format
¢ Columnar
+ Compressed

HDFS storage
(Parquet)

(35
(©-
(©-

(o

User queries (SQL) or
advanced analytics (Spark)

Figure 3: Data retrieval and the batch layer pipeline.

In experiments with an alternative implementation of the
batch layer the CSV data is read into a PostGIS database that
stores the daily route of a HGV with a given ID. The route is
stored as a LineString object (i.e. a sequence of points) con-
structed from all available observations for a given HGV ID on
a given day. In the same database information on Brussels com-
munes is stored, both geographical (e.g. commune boundaries)
and non-geographical (e.g. name, population, etc.). Using the ge-
ographical operations that are provided by PostGIS, information
such as the number of HGVs in a given commune at a given time
can efficiently be queried. This alternative batch layer implemen-
tation was created, because the current approach lacks data types
and functions that are optimized for operations with regards to
space and time. Ideally we would like to use both approaches in
conjunction, for example by storing raw observations in Parquet
format and aggregate these observations over a day to form the
route of a truck over that day, to take advantage of the strengths
of both approaches.

However, while PostGIS introduces the concept of space with
geographic data types and functions, it lacks a concept of both
space and time taken together without having to introduce ad-
ditional complexity. PostGIS is not optimized for queries that
involve both space and time dimensions taken together. This
means that while the sequence of HGV positions can be stored
for a certain day, the associated time at which the HGV was at
that position can not be stored without introducing additional
fields or dimensions and having to make certain assumptions
about the data. This results in a loss of speed and data efficiency,
which is one of the essential aspects of this platform. For this
reason, we are currently investigating a further extension of
PostGIS that introduces data types that introduce the concept
of a position at a certain time, which is called MobilityDB [33].
This would allow us to perform the necessary queries without
being concerned with the underlying representation of the data

Application

I State I

(a) State updates according to incoming data stream.

Batch N

Batch K

3am.-4am.

hour-of-day

Average
Velocity

Average

Flow

00:00:
01:00:
02:00:

0.

0

03:00:
04:00:

4am.

hour-of-day

-5am.

Average

Velocity

Average
Flow

00:00:
01:00:
02:00:
03:00:
04:00:

oo
0o
oo
00
[

0.

-

0

0.

7
48
37
30

LERLEYY
06:00:00
07:00:00
08:00:00
09:00:00
10:00:00
11:00:00

Measurement Time: 04:00:0> 12:00:00

13:00:00

Ly

14:00:00
15:00:00
16:00: 00
17:00:00
18:00:00
19:00: 00
20:00:00
21:00:00
22:00:00
23:00:00

coocoocoooocoococoocoocoooooaoo
coocooooocoococoocoocooogoooso
cococooccocoocococoooguuumo

coocoocoococoocococooo00 000

(b) Transition from the 3 a.m. hour-of-the-day window to the
4 a.m. window when data comes in that was sampled at 4 a.m..

Figure 4: Stateful streaming as implemented in the pipeline.

and optimization of the geographic functions. We are currently
in the process of experimenting with the mentioned alternatives
to identify the most appropriate approach for the batch layer.

The speed layer of our Lambda architecture implementation
uses the Apache Kafka [8] streaming platform to store incom-
ing data from queries to Viapass as a continuous stream of data.
For the purpose of initial simulations, a Python script reads a
batch of observations from the stored CSV files into a GeoPandas
DataFrame. As a preprocessing step, a different DataFrame, which
was loaded in memory beforehand, contains the geographic in-
formation of a set of Brussels street segments. We used a subset
of Brussels streets for testing, however, in practice this would
contain all streets in Brussels. By performing a join of the two
DataFrames with the within geographic function provided by
GeoPandas, we obtain a new DataFrame where every observa-
tion also contains the internal ID of the street segment the HGV
was on at that time. These data are sent to Kafka for processing
in the next step of the streaming pipeline.

At the receiving end of the data stream, the streaming facilities
that are provided by Spark are used to process the data, which
can directly be integrated with a Kafka stream. Incoming data is
processed accordingly and used to update the current state of all
street segments that are being kept track of. This approach, which
is referred to as stateful streaming, is illustrated in figure 4a. The
state of a street segment is represented by the average number of
HGVs and the average velocity of passing HGVs for every hour-
of-the-day of the current day. For every new day at midnight,
the state for each street segment is re-initialized to zero values
for all properties. Values are subsequently updated continuously
with a running mean for the current hour-of-the-day. Values for
past hours-of-the-day will contain the mean observed statistics
for that day and future values will be zero until the current time
falls within the window for that hour-of-the-day. This process is
illustrated by figure 4b.

In addition to keeping track of the observed values, forecasts
are also made for future hours-of-the-day. Currently, predictions
are made using a type of model that is referred to as a persistence
model, more specifically, a sliding window persistence model.
With this type of model a forecast is based directly on previously
observed values for the same day-of-the-week and hour-of-day.
In this implementation, the data is divided in one week seasons,
meaning that predictions look at the data for the whole week

rather than at the currently observed values, to make forecasts.
As an example, if the data is hourly and the forecasting target is
9 a.m. on Monday, then given a window size of 1, the observation
of last Monday at 9 a.m. will be returned as the predicted forecast.
A window of size 2 means returning the average of the obser-
vations of the last two Mondays at the same hour and so on for
larger window sizes. However, while simple and explainable, this
approach is rather naive, as it does not take the current traffic
conditions or information that is known in advance, such as a
special event that is planned for example, into account. More
advanced Machine Learning methods could incorporate this type
of additional information for improved forecasting.

The final results are written to a JSON file, which is formatted
according to the GeoJSON [6] specification. In this format, every
street segment is described by a LineString instance that cor-
responds to the path of the street segments. In addition to this,
each street segment is annotated with HGV counts and average
velocities for each hour-of-the-day as properties. The outputted
file serves as the real-time view for the considered street seg-
ments and can be read by the dashboard for display on a map, or
to perform further analysis using the data, such as identifying
the busiest streets at the current time for example.

2.3 Implementation of The MOBI-AID
Dashboard

To provide an interface that would allow stakeholders to monitor
the current traffic situation for HGVs in Brussels or perform his-
torical analyses for future planning, a dashboard interface was
implemented. A web interface provides this dashboard and was
implemented with the Django [22] web framework, additionally
making use of the first-party GeoDjango extension. Using this
extension provides a direct integration with databases such as
PostGIS and other useful geographical tools. These technologies
where chosen for their flexibility, maturity and due to the fact
that they required minimal additional learning, given our com-
puter science backgrounds. The fact that these components are
also very low level allows us to easily experiment with different
alternative approaches.

The web interface is comprised of three pages: Home, Dashboard
and About. The Home page provides an overview of the available
features and displays a map that shows real-time HGV counts

for the different communes that compose the Brussels Capital
Region. Hovering over a specific commune will show the total
number of HGVs that have last been observed in this commune.
The HGV counts per commune are also shown in a table beside
the map, where they are also divided by weight category. Figure
5 shows a prototype implementation for the home page with the
user hovering over the Brussels City commune. The About page
provides more detailed information on the web interface and
contains the documentation on the dashboard. It also mentions
the sources of our funding and the project supporters.

MOBI-AID Trucks Dashboard

Truck Information

et B35
Per commune

<

Figure 5: Prototype home page of the web interface.

The Dashboard page provides the core functionality of the
web application. This page consists of several tabs which provide
a certain type of visualizations or allows for specific analyses to be
performed. In it’s current implementation, the dashboard consists
of the following tabs: Real-time, Maps, Charts, Analytics and
Predictions.

The Real-time tab is composed of several panels that display
different types of real-time information, which are retrieved from
the Lambda architecture’s real-time view. In this tab, users can
select the type of information they want to see, which will then
be displayed on the map. A table next to the map displays a user
selected overview of the information that is displayed on the map.
For example, the top ten most busy streets can be displayed in this
table. Figure 6 shows the current prototype for the Real-time
tab.

Note that in this figure the time-window for collecting statis-
tics is 15 minutes as opposed to the one hour window that is used
for the state of a street. This window corresponds to the interval
between consequent updates of the state rather than the hour-
of-day window that is being updated in the state. Additionally
note that streets in the table are identified by ID’s. In practice we
would use street names in the final implementation.

The Maps tab contains a large map that shows historical data
about the observed HGV traffic as selected by the user. We distin-
guish two distinct ways to look at historical data in this situation.
The user can select to either look at the data at a specific time on
a specific date, or they can choose to look at data that is typical

) Real Time
Live map Top 10 most busy streets

StrootD Truck count

R

Figure 6: Work-in-progress Real-time tab of the MOBI-
AID dashboard.

for a certain hour-of-the-day on a certain day-of-the-week. The
user can also select at which level of aggregation they want to see
information displayed on the map. The currently provided levels
of aggregation are commune level, street level and at the level
of individual HGVs. Individual HGVs can not be shown when
looking at the typical traffic situation, as concrete HGV positions
evidently vary with time. However, in this case clusters would be
shown at locations where HGVs are often present at the chosen
hour-of-day and day-of-the-week. Figure 7 shows the work-in-
progress Maps tab, without the website header, footer and the
tab-selection menu. Note that the selection controls should be
separated based on the previously selected type of visualization.
These controls would also be shown on the map rather than
above, as is currently the case.

Maps

Figure 7: Work-in-progress Maps tab of the dashboard.
Without site headers and dashboard tab-selection side
menu.

3 EVALUATION OF THE INITIAL
PLATFORM

For the MOBI-AID dashboard to provide an optimal user-experience
and be a useful contribution to the field of big mobility data, two
main aspects are of particular importance. These essential fea-
tures are adequate performance of the real-time data processing
pipeline and the usability of the web interface. To evaluate perfor-
mance, scalability tests were performed with a simulated stream
that is read from the data which is currently being collected from
Bruxelles Mobilité. The user interface was evaluated through user
testing and feedback.

3.1 Experimental setting

Scalability testing was already performed with a previous version
of the architecture in [5]. These experiments were performed
on the Hadoop big data cluster of the MLG. This cluster is made
up of 10 slave nodes, each with 24 CPU cores, managed by a
master node which is the point of access for users and handles
user interaction (interactive node). The resource manager Yarn,
which is an integral part of the Hadoop ecosystem, allocated 150
cores and 805GB RAM for the purpose of these tests.

Preliminary experiments with the new real-time architecture
were run on a local machine with a 2.3 GHz Intel Core i5 CPU
with 4 cores and 16 GB of RAM. This hardware setup is far from
the processing power that is available on the cluster and will
have much slower IO due to the absence of Hadoop. However, it
should give an initial insight of potential real-time capabilities
of the implemented pipeline. Note that the code that is used in
these simulations has not yet been optimized, as implementing
the architecture was the priority in this phase. There are also
some overheads introduced by the simulation environment, such
as running docker containers and local applications from the
testing machine sharing CPU cycles.

The implemented simulation uses previously collected data
that was stored in CSV files. These files contain collected obser-
vations for three days, being the 23d, 24th and 25th of September
of the year 2018. As the simulation was performed on limited
hardware and accelerates the ingestion of data compared to the
real situation, these files were filtered beforehand to only contain
observations concerning three predetermined streets. New data
is sampled from these files to simulate incoming data over one
hour windows. This is a much larger sampling rate than in the
real case, as we want to accelerate the simulations and are mostly
interested in the correct functioning of the pipeline. The batch
interval within which the processing should be completed was
set to 10 seconds. This means that the simulation has to process
the incoming batches 360 times faster than in the real case. This
is one of the main reasons why the number of observed streets
were so severely limited for the simulation. To evaluate the sim-
ulation, the output provided by the SparkUI interface, which is
used to inspect the state of Spark execution, was analyzed. A
snapshot of SparkUI after running the simulation is shown in
figures 8 and 9.

Regarding user evaluation of the web interface, informal user
evaluations were performed. Stakeholders from Bruxelles Mobilité
were shown the work-in-progress interface and asked to provide
informal feedback on the application. Additionally, colleagues
with expertise in the area of data visualization, especially regard-
ing mobility data, also gave their initial feedback on the currently
provided functionalities.

3.2 Results

Streaming Statistics

Running batches of § seconds for 5 minutes 30 seconds 14:0245

batches, 5691 records)

Timelines (Last 66 batches, 1 active, 65 completed) Histograms
records/sec 0 10 20 30 40 50 60 #batcnes

» Input Rate 80:00 I\
Receivers: 1/1 active 60.00
Avg: 17.25 records/sec

A
A

14:02:50 14:08:1¢

sec) 10 20 30 40 50 60 #batcnes

Scheduling Delay 150
Avg: 0ms 1.00

14:02:50 14:08:1¢

sec 0 10 20 30 40 50 60 = #batches

2.004\ A N
By

Processing Time 1 1.50
Avg: 1 second 614 ms

—

14:02:50 14:08:1¢

sec 0 10 20 30 40 50 60 = #batches

2,004\ AN
Total Delay 1501\ M M \ | \A/\\
Avg: 1 second 615 ms 1.00 V _

14:02:50 14:08:1¢

Figure 8: Overview of the SparkUI stream statistics for the
simulation.

Figure 8 shows an overview of some relevant statistics col-
lected by SparkUI. Here, the most informative charts are the
top (input rate) and third from the top (processing time) ones.
The variation in input rate shows that data ingestion peeks at
certain points in a day, this illustrates the variation in HGV traffic
depending on hour-of-the-day. The most important aspect of this
figure is that the processing time for a batch is below the batch
interval. As can be seen in the figure, the average batch process-
ing time is 1.6 seconds, which is well below the batch interval
of 5 seconds. The second chart from the top shows scheduling
delay, i.e. delay between scheduling of the job and the start of
processing, which always remained 0 as batches were always
processed within the batch interval. For this reason the bottom
chart (total delay) is the same as the processing time chart, since
processing time is the only source of delay.

(a) Table showing the different tasks of the job, distributed over 4
cores.

(b) Event timeline of the parallel execution of the job.

Figure 9: Some important information provided by
SparkUI on the Spark job that processes a single batch of
data.

Figure 9 shows essential information which SparkUI provides
on a specific Spark job. Figure 9a shows that the job which pro-
cesses a batch was parallelized over four tasks that are each
handled by a different CPU core. Figure 9b shows the timeline of
events that are part of handling a Spark job. The blue parts of
the timeline correspond to scheduling of the job, the red parts
to deserialization of the data and the green parts to actually pro-
cessing the incoming records. The timeline shows that most of

processing time is actually spent on scheduling an deserialization
of the tasks. This is because the number of records in a batch

in this experiment are much smaller than in the real-world data
stream. Figure 10 shows the same timeline as figure 9b when
running the same task on the full dataset, i.e. with significantly
more records in the processed batch. In this experiment 8 cores
were allocated.

Figure 10: The event timeline of a Spark job when perform-
ing the simulation with all observations of a day. Ran with
8 cores allocated.

Regarding user evaluation of the web interface, the general
consensus was that the current interface can already provide
some basic insights, but requires more advanced tools and vi-
sualizations to provide an added value to our potential users,
compared to equivalent tools that are currently available.

3.3 Discussion

The results from the performed experiments indicate that the
current architecture is promising for use in a real-life scenario.
Taking the results from the previous experiments in [5] and the
well-known reliability of the used technologies into account, it
is expected that given appropriate hardware and optimization,
there should be no issue in dealing with the amounts of data we
are working with.

Initial tests with the full data set where also performed on
the same hardware as the preliminary experiments. Results are
promising given the single node setting, but further experiments
are needed to assess the architecture on a cluster setting. How-
ever, these preliminary results let us anticipate that no perfor-
mance issues should be expected when using the full processing
power of a big data cluster.

SparkUI was an important tool in debugging and analyzing
performance of the implemented pipeline. The insights it pro-
vides into the execution of jobs enables detailed monitoring of
how well the implemented code for a big data project performs
in the Hadoop + Spark environment. These insights are espe-
cially useful for assessing whether the implemented pipeline will
perform well, even without the use of big-data capable hardware.
For example, it is with the help of SparkUI that we can clearly
see that the scheduling and serialization overheads that can be
seen in figure 9b become insignificant when working with larger
data batches, as shown by the results seen in figure 10.

4 FUTURE WORK

Future work consists of finalizing the pipeline architecture and
connecting the different components of the MOBI-AID big data
platform together. One possible extension that is currently envi-
sioned is to add a merged view that uses data from both the speed
and batch layers to, for example, show discrepancies between
the real-time traffic conditions and typical conditions. Figure 11
visualizes this extension of our current implementation.

Given this finalized implementation, we will perform exten-
sive experiments on the MLG big data cluster which is pow-
ered by Apache Hadoop, as opposed to a regular office machine.

Speed layer

Data
stream
Immutable Long term
data storage

Batch layer

Real-time View

' Merged View

Historical View

Incoming data .

Serving layer

Figure 11: Overview of the future lambda architecture
with a merged data view.

MLG is currently in the process of migrating to a new cluster
which should provide the necessary facilities for large-scale ex-
periments. The goal of these experiments would be to move be-
yond simulation. Concretely, we would hook up the implemented
pipeline to the actual stream of incoming data.

Implementing and experimenting with more advanced Ma-
chine Learning approaches for forecasting will also be an impor-
tant task in providing more nuanced predictions. Additionally,
integrating existing mobility indicators and advanced ITS models
from related research will provide appropriate metrics to policy
makers. The platform should be able to perform such processing
in real time and use the forecasts to simulate the impact of a
policy.

Next to this, a finalized web interface will provide stakeholders
with the necessary tools to make informed decisions on how to
optimize traffic of goods in the Brussels Capital Region. Further
extending the current interface with feedback from the users
should allow us to provide this ideal interface. Concretely, further
versions of the real-time tab will also include other visualizations
besides the map, such as relevant charts and differences with the
typical traffic situation at this hour-of-the-day. The final version
of this tab should allow users to easily spot anomalies in the
current traffic situation compared to historical observations.

Prototypes for the Charts, Analytics and Predictions tabs
have not been implemented yet. It is currently under review
whether these should be separate tabs, or if they should be com-
bined into a single general Analysis tab. Conceptually, the Charts
tab would contain several types of charts that show useful infor-
mation, such as the typical distribution of HGVs over communes
for example. The analytics tab would contain tools that allow the
user to perform a specific analysis, such as constructing a model
of traffic flow based on the available data. The predictions tab
would put more emphasis on training and using the previously
mentioned forecasting methods to predict future states of the
HGV traffic in Brussels. These models could then be used by
policy makers to simulate effects of certain decisions, such as
modifying existing roads for example. Determining where the
functionality that is envisioned should live will be one of the
next steps in the design of the interface.

After the full prototype of the web interface has been im-
plemented, extensive user studies and formal retrieval of user
requirements will be done to get a better insight as to what the
final web interface should provide. Iterating further and using
agile software development methods should allow us to provide
the end-users with the tools they need in a user friendly manner.

Finally, packaging the platform for deployment will give the
different stakeholders the envisioned platform that fits their re-
quirements and allow them to easily deploy it on their own hard-
ware. This platform should also scale to be used for the whole
country and given appropriate data, it could also be used for
other countries.

ACKNOWLEDGMENTS

Arnau Dilen, Giovanni Buroni, Yann-aél Le Borgne and Gian-
luca Bontempi acknowledge the support of Programme Opéra-
tionnel FEDER 2014-2020 de la Région de Bruxelles Capitale
(ICITY MOBI-AID project). The authors are also grateful to Brux-
elles Mobilité for having provided the OBU data necessary for
the work.

REFERENCES

[1] Stephen Anderson, Julian Allen, and Michael Browne. 2005. Urban logis-
tics——how can it meet policy makers’ sustainability objectives? Journal of
Transport Geography 13, 1 (2005), 71 — 81. https://doi.org/10.1016/j.jtrangeo.
2004.11.002 Sustainability and the Interaction Between External Effects of
Transport (Part Special Issue, pp. 23-99).

[2] J.S. Angarita-Zapata, A. D. Masegosa, and L. Triguero. 2019. A Taxonomy
of Traffic Forecasting Regression Problems From a Supervised Learning Per-
spective. IEEE Access 7 (2019), 68185-68205. https://doi.org/10.1109/ACCESS.
2019.2917228

[3] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R. James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini,
and Marcello Tomasini. 2018. Human mobility: Models and applications.
Physics Reports 734 (2018), 1 — 74. https://doi.org/10.1016/j.physrep.2018.01.
001 Human mobility: Models and applications.

[4] Giovanni Buroni, Yann-Aél Le Borgne, Gianluca Bontempi, and Karl Determe.
2018. Cluster Analysis of On-Board-Unit Truck Big Data from the Brussels
Capital Region. 21st IEEE International Conference on Intelligent Transportation
Systems (2018).

[5] Giovanni Buroni, Yann-Aél Le Borgne, Gianluca Bontempi, and Karl Determe.
2018. On-Board-Unit Data: A Big Data Platform for Scalable storage and
Processing. 1-5. https://doi.org/10.1109/CloudTech.2018.8713342

[6] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Hagen Stefan, and Tim
Schaub. 2016. GeoJSON. Internet Engineering Task Force. https://tools.ietf.
org/html/rfc7946

[7] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aél Le Borgne, Olivier Caelen,
Yannis Mazzer, and Gianluca Bontempi. 2018. SCARFF: A scalable framework
for streaming credit card fraud detection with spark. Information fusion 41
(2018), 182-194.

[8] Apache Kafka Comitters. 2019. Apache Kafka. Apache Software Foundation.
https://kafka.apache.org/

[9] Apache Spark Committers. 2019. Apache Spark. Apache Software Foundation.
https://spark.apache.org/

[10] Konstantinos Demertzis, Lazaros Iliadis, and Vardis-Dimitris Anezakis. 2019.
A Machine Hearing Framework for Real-Time Streaming Analytics Using
Lambda Architecture. In Engineering Applications of Neural Networks, John
Macintyre, Lazaros Iliadis, Ilias Maglogiannis, and Chrisina Jayne (Eds.).
Springer International Publishing, Cham, 246-261.

[11] GeoPandas developers. 2019. GeoPandas. GeoPandas developers. http:

//geopandas.org/index.html#

PostgreSQL Developers. 2019. PostgreSQL. The PostgreSQL Global Develop-

ment Group. https://www.postgresql.org

[13] Anzhelika Dombalyan, Viktor Kocherga, Elena Semchugova, and Nikolai

Negrov. 2017. Traffic Forecasting Model for a Road Section. Transportation Re-

search Procedia 20 (2017), 159 - 165. https://doi.org/10.1016/j.trpro.2017.01.040

12th International Conference on Organization and Traffic Safety Manage-
ment in large cities, SPbOTSIC-2016, 28-30 September 2016, St. Petersburg,

Russia.

PostGIS Development Group. 2019. PostGIS. The Open Source Geospatial

Foundation. https://postgis.net/

S. Hadavi, S. Verlinde, W. Verbeke, C. Macharis, and T. Guns. 2019. Monitoring

Urban-Freight Transport Based on GPS Trajectories of Heavy-Goods Vehicles.

IEEE Transactions on Intelligent Transportation Systems 20, 10 (Oct 2019), 3747-

3758. https://doi.org/10.1109/TITS.2018.2880949

[16] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja. 2015. Lambda

architecture for cost-effective batch and speed big data processing. In 2015

IEEE International Conference on Big Data (Big Data). 2785-2792. https:

//doi.org/10.1109/BigData.2015.7364082

Narayan Kumar. 2017. Twitter’s tweets analysis using Lambda Architec-

ture. https://blog.knoldus.com/twitters-tweets-analysis-using-lambda-

architecture/.

[18] I Lana, J. Del Ser, M. Velez, and E. I. Vlahogianni. 2018. Road Traffic Forecast-
ing: Recent Advances and New Challenges. IEEE Intelligent Transportation

[12

=
it

(15

[17

Systems Magazine 10, 2 (Summer 2018), 93-109. https://doi.org/10.1109/MITS.
2018.2806634

[19] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge university press.

[20] Nathan Marz and James Warren. 2015. Big Data: Principles and best practices
of scalable real-time data systems. New York; Manning Publications Co.

[21] Apache Hadoop Project Members. 2019. Apache Hadoop. Apache Software
Foundation. https://hadoop.apache.org/

[22] Django Team Members. 2019. Django. Django Software Foundation. https:
//www.djangoproject.com/

[23] David Myr. 2003. Real time vehicle guidance and traffic forecasting system.
US Patent 6,615,130.

[24] Daiga Plase, Laila Niedrite, and Romans Taranovs. 2016. Accelerating data
queries on Hadoop framework by using compact data formats. In Advances
in Information, Electronic and Electrical Engineering (AIEEE), 2016 IEEE 4th
Workshop on. IEEE, 1-7.

[25] Mohammed A. Quddus, Chao Wang, and Stephen G. Ison. 2010. Road
Traffic Congestion and Crash Severity: Econometric Analysis Using
Ordered Response Models. Journal of Transportation Engineering
136, 5 (2010), 424-435. https://doi.org/10.1061/(ASCE)TE.1943-5436.
0000044 arXiv:https://ascelibrary.org/doi/pdf/10.1061/%28 ASCE%29TE.1943-
5436.0000044

[26] John Ratcliffe and Ela Krawczyk. 2011. Imagineering city futures: The use of
prospective through scenarios in urban planning. Futures 43, 7 (2011), 642 —
653. https://doi.org/10.1016/j.futures.2011.05.005 Alternative City Futures.

[27] Dilpreet Singh and Chandan K Reddy. 2015. A survey on platforms for big
data analytics. Journal of Big Data 2, 1 (2015), 8.

[28] Hongyu Sun, Henry X. Liu, Heng Xiao, Rachel R. He, and Bin Ran. 2003.
Use of Local Linear Regression Model for Short-Term Traffic Forecasting.
Transportation Research Record 1836, 1 (2003), 143-150. https://doi.org/10.
3141/1836-18

[29] CP Van Hinsbergen, JW Van Lint, and FM Sanders. 2007. Short term traffic
prediction models. In PROCEEDINGS OF THE 14TH WORLD CONGRESS ON
INTELLIGENT TRANSPORT SYSTEMS (ITS), HELD BEIJING, OCTOBER 2007.

[30] JWC Van Lint and CPIJ Van Hinsbergen. 2012. Short-term traffic and travel
time prediction models. Artificial Intelligence Applications to Critical Trans-
portation Issues 22, 1 (2012), 22-41.

[31] Eleni I Vlahogianni, Matthew G. Karlaftis, and John C. Golias. 2014. Short-
term traffic forecasting: Where we are and where we’re going. Transportation
Research Part C: Emerging Technologies 43 (2014), 3 — 19. https://doi.org/10.
1016/j.trc.2014.01.005 Special Issue on Short-term Traffic Flow Forecasting.

[32] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. 2016. Apache spark: a unified engine for big data
processing. Commun. ACM 59, 11 (2016), 56—65.

[33] Esteban Ziméanyi, Mahmoud Sakr, Arthur Lesuisse, and Mohamed Bakli. 2019.
MobilityDB: A Mainstream Moving Object Database System. In Proceedings of
the 16th International Symposium on Spatial and Temporal Databases (SSTD ’19).
ACM, New York, NY, USA, 206-209. https://doi.org/10.1145/3340964.3340991

https://doi.org/10.1016/j.jtrangeo.2004.11.002
https://doi.org/10.1016/j.jtrangeo.2004.11.002
https://doi.org/10.1109/ACCESS.2019.2917228
https://doi.org/10.1109/ACCESS.2019.2917228
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1109/CloudTech.2018.8713342
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://kafka.apache.org/
https://spark.apache.org/
http://geopandas.org/index.html#
http://geopandas.org/index.html#
https://www.postgresql.org
https://doi.org/10.1016/j.trpro.2017.01.040
https://postgis.net/
https://doi.org/10.1109/TITS.2018.2880949
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/MITS.2018.2806634
https://doi.org/10.1109/MITS.2018.2806634
https://hadoop.apache.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000044
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000044
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29TE.1943-5436.0000044
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29TE.1943-5436.0000044
https://doi.org/10.1016/j.futures.2011.05.005
https://doi.org/10.3141/1836-18
https://doi.org/10.3141/1836-18
https://doi.org/10.1016/j.trc.2014.01.005
https://doi.org/10.1016/j.trc.2014.01.005
https://doi.org/10.1145/3340964.3340991

	Abstract
	1 Introduction
	2 Methods and Implementation
	2.1 Viapass and On Board Unit (OBU) Data
	2.2 Design of The Big Data Architecture
	2.3 Implementation of The MOBI-AID Dashboard

	3 Evaluation of the Initial Platform
	3.1 Experimental setting
	3.2 Results
	3.3 Discussion

	4 Future Work
	Acknowledgments
	References

