
Towards In-Memory Sub-Trajectory Similarity Search
Omid Isfahani Alamdari

University of Pisa

alamdari@di.unipi.it

Mirco Nanni

ISTI-CNR Pisa, Italy

mirco.nanni@isti.cnr.it

Roberto Trasarti

ISTI-CNR Pisa, Italy

roberto.trasarti@isti.cnr.it

Dino Pedreschi

University of Pisa

dino.pedreschi@di.unipi.it

ABSTRACT
Spatial-temporal trajectory data contains rich information about

moving objects and has been widely used for a large number

of real-world applications. However, the complexity of spatial-

temporal trajectory data, on the one hand, and the fast collection

of datasets, on the other hand, has made it challenging to ef-

ficiently store, process, and query such data. In this paper, we

propose a scalable method to analyze the sub-trajectory simi-

larity search in an in-memory cluster computing environment.

Notably, we have extended Apache Spark with efficient trajectory

indexing, partitioning, and querying functionalities to support

the sub-trajectory similarity query. Our experiments on a real

trajectory dataset have shown the efficiency and effectiveness of

the proposed method.

1 INTRODUCTION
Following the ubiquity of location-aware devices, collecting the

location data of moving objects is now much easier thanks to

the developments in positioning systems and mobile communica-

tions. Many applications in the areas of transportation and urban

planning can benefit from this data to improve their quality of

service. Moreover, the location-based services (LBS) market that

primarily depends on the data gathered by location-aware de-

vices is rapidly expanding. Analyzing the historical trajectories

of moving objects plays an essential role in the success of appli-

cations, such as carpooling and route recommendation systems.

However, the extensive use of LBS applications imposes signif-

icant storage and processing challenges to application servers.

Every day several gigabytes or even terabytes of moving objects

tracks are accumulated in servers, making their post-processing

an arduous task.

One of the critical operations in trajectory data analytics is

similarity search where given a query trajectoryQ and a distance

threshold δ , it returns all trajectories with distance at most δ
to Q , according to a distance function. We call this problem the

whole trajectory similarity search problem, in which trajectories

are matched as a whole. In other words, for every comparison

between a query and a candidate trajectory, the first and last

points of both trajectories are matched, and depending on the

type of the distance function, either matching or coupling of the

in-between points is established.

However, as illustrated in Figure 1, there are many situations

where start and end points of trajectories are far from each other

while they have similar parts in-between. In this figure, the start

and end points of trajectory T1 (blue solid line) are A and B, and
for trajectoryT2 (red dashed line) they areC andD. If the distance

Copyright© 2020 for this paper by its author(s). Published in theWorkshop Proceed-

ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, , Copenhagen,

Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-

tribution 4.0 International (CC BY 4.0).

between A and C is more than δ , the two trajectories are not

considered similar, although they have very similar routes. In this

paper, we address the problem of sub-trajectory similarity search,
where we aim to find similar sub-trajectories in the dataset to the

whole or a sub-trajectory of the query trajectory. An interesting

application of this query is carpooling, where a user can share a

ride with other users who have similar routes. For the example

shown in Figure 1, the carpooling system can match trajectories

T1 and T2 and hence, suggest the user who follows T1 to share

the ride with the user who follows T2, with possibly a small

deviation from his/her routine path.

The two state-of-the-art works [6] and [4] find similarities be-

tween whole trajectories and are unable to find similarities in the

sub-trajectory level. Different from those works, our method

targets the more computationally expensive problem of sub-

trajectory similarity search and tries to find not only the sim-

ilarities in whole trajectory curves but also in between every

sub-trajectory of data and query trajectories. Furthermore, our

work is different from [5] in the sense that we focus on in-memory

analytics to enhance the execution of interactive queries and at

the same time being able to use the sub-trajectory similarity

search as a primitive for more advanced trajectory pattern min-

ing algorithms that try to identify objects that move together

closely. In this regard, our goal is to use less memory space and

accelerate the local computations inside partitions.

Figure 1: Two trajectories with similar routes

Parallel processing of trajectory data is inevitable while deal-

ing with massive amounts of trajectory data. The main goal of

this paper is to introduce a novel approach to the sub-trajectory

similarity search problem in an in-memory cluster computing

environment, i.e., Apache Spark.

2 PROBLEM FORMULATION
In this section, we formally define trajectories, sub-trajectories,

and the sub-trajectory similarity search problem.

Definition 2.1. A trajectory T is a sequence of time-stamped

sample points ⟨p1, . . . ,p |T |⟩ where each pi is a triplet (xi ,yi , ti)

Figure 2: A trajectory and its simplifications

that indicates the spatial location (xi ,yi) of the moving object at

timestamp ti .

Even though the movement is a continuous phenomenon, a

trajectory is recorded by a finite set of discrete sample points. Let

T [i] be the ith sample point of T . We consider that the move in-

between two consecutive pointsT [i] andT [i + 1] is on a straight

line with constant speed and hence, the expected location of the

trajectory T between T [i] and T [i + 1] is obtained by a linear

interpolation. We use T (t) to denote the position (x,y) of the
object at timestamp t ∈ [t1, t |T |]. Furthermore, we represent the

number of points in a trajectory T with |T | and its spatial length

as SL(T) =
∑ |T |−1

i=1 d(pi ,pi+1) where d is the Euclidean distance.

Definition 2.2. A sub-trajectoryT [i : j] is a contiguous subse-
quence of T starting at pointT [i] and ending at pointT [j], where
1 ≤ i ≤ j ≤ |T |.

Definition 2.3. An approximation line segment for trajec-
tory (or sub-trajectory) T , denoted by ALST , is the line segment

p1p |T | connecting the first and last point of T .

Definition 2.4. Given a query trajectoryQ , a set of trajectories

D = {T1, . . . ,TN }, a distance function F , a distance threshold

δ > 0 and a minimum length threshold λ > 0, the sub-trajectory

similarity search returns the set of trajectoriesR = {R1, . . . ,RM },

s.t. for every Rj ∈ R, the following holds:

(1) There exists a Ti ∈ D s.t. Rj is a sub-trajectory of Ti ,
(2) There exists a sub-trajectory Q[a : b] of Q such that

F (Rj ,Q[a : b]) ≤ δ ,
(3) SL(Rj) ≥ λ

3 SYSTEM OVERVIEW
In this section, we describe our proposed method for distributed

processing of the sub-trajectory similarity search. After reading

the trajectory dataset, three steps of sampling, partitioning, and

indexing are executed. In the sampling phase, a uniform random

sample of the trajectory points is drawn from the input points.

The idea is to acquire knowledge about the distribution of data

in the geographical extent of the input dataset. This sample of

points is used to build the partitioner object, which provides

information about the computed boundaries of partitions and

methods for locating objects in the partitions. Then, the physical

partitioning of trajectory objects is performed using the parti-

tioner, and trajectory objects are created inside partitions. In the

final step, we build a 2-level distributed index over the trajectory

data. This index will be used by the query processor to discard

the irrelevant data to the query, both at the global and local levels.

Finally, the query processor verifies the similarity between the

candidate sub-trajectories that were not discarded and the query.

The structure of the distributed index is provided in Figure 3.

...
...

...
...

Global
Index

R
D
D

P
artition

s

Raw Trajectories Local Indexes
Real Partition
Boundaries

Worker Nodes Master Node

Figure 3: The distributed indexing structure.

4 DISTRIBUTED TRAJECTORY INDEXING
In this section, we elaborate on a bottom-up approach for building

the distributed trajectory index. Each data partition builds its

local index, and the global index summarizes the information

about local indexes. We dedicate this section for describing how

we partition trajectory data and build local and global indexes.

4.1 Trajectory Partitioning
We use a two-step partitioning approach, in which the data is first

partitioned based on trajectory identifiers resulting in all points

of each trajectory being ended up in the same machine. Then, we

utilize the Sort-Tile-Recursive (STR) [3] method that considers

the distribution of points to compute the partition boundaries

based on the sample of points drawn from the dataset.

After this step, the challenging task is to distribute the trajec-

tory data to different partitions in possibly different computing

nodes. Considering the complexities of trajectory data such as

skewness and inherent sequentiality, and avoiding the recon-

struction costs, we distribute the whole trajectory objects. That

is, all points of the same trajectory end up in the same partition.

We assign a trajectory to the partition that its bounding rectangle

has the largest intersection with the MBR of the trajectory. In

case of ties, one is selected randomly. This technique avoids the

reconstruction of trajectories for similarity comparison that may

require a huge amount of data shuffle among nodes.

4.2 Local Indexing
Once partitioning is done, a local index should be constructed

and cached for each partition to help in executing queries. In this

step, we divide a trajectory at some significant points such that

the directional trend for each sub-trajectory is preserved. For this

reason, we use the popular Douglas-Peucker (DP) algorithm [1]

to identify those points.

The original idea behind this algorithm is to approximate

the trajectory with some points, known as splitting points and

discard other points. Different from the original algorithm, we

segment the trajectory at those splitting points. We index each

sub-trajectoryT withALST using a query-only R-Tree. Thus, the

ALS of sub-trajectories could be used for comparison and pruning.

In Figure 2 the whole trajectory is simplified as 3 approximate line

segments, between points p1, p7, p14 and p22. The line segments

approximate the original curve by a deviation of at most ϵ [1]:

Lemma 4.1. Every point in the sub-trajectoryT , segmented using
a tolerance threshold ϵ , has a distance at most ϵ to the ALST .

Since the exact distance computation between trajectories is

expensive, in the search phase we perform most of the compar-

isons with the ALS of trajectories to reduce the size of candidate

set (on which the exact distance is evaluated) as much as possible.

4.3 Global Indexing
To locate trajectories at the search phase, we need this global

index to keep track of real boundaries of data inside partitions
rather than computed boundaries after the sampling phase. The

real boundaries of all local indexes (i.e. the root node of each

local R-Tree) is fetched to the master node to build the global

R-Tree index. This index is the first access method utilized in the

search phase to prune partitions – and the trajectories inside –

that are far away from the query trajectory.

5 DISTRIBUTED SUB-TRAJECTORY
SIMILARITY SEARCH

The search procedure is composed of three steps. In the first

step, the global index is used to identify partitions that may

contain results and discard those that are sufficiently far away

from the query. In the second step, for each of the partitions

identified, a task is initiated, and the partition’s local index is

used to find the trajectories whoseMinimum Bounding Rectangle

(MBR) overlaps with the query sub-trajectory. Before computing

the exact distance function, in the third step, we safely prune

some sub-trajectories by their ALS , and then for the remaining

we identify the relevant parts of sub-trajectories to the query

sub-trajectory. For those relevant parts, we compute the exact

distance function and collect the results.

5.1 Partition Pruning
Given a query trajectory Q and a distance threshold δ , we com-

pute the MBR of the Q and expand the MBR by δ to cover all

trajectories which may be adjacent to the query trajectory by

its boundaries. Then we query the global index to obtain the

partitions that have data boundary overlap with the expanded

MBR. It is required to initiate tasks only for these partitions and

send the query trajectory to them.

5.2 Search within Partitions
Given a query trajectory Q , a distance threshold δ and an error

tolerance ϵ for simplification, simplifyQ with the same algorithm

described in Section 4.2 and the same ϵ used for segmenting data

trajectories. We denote a (simplified) segment of the segmented

query as query segment.

5.2.1 Pruning by MBR of ALS. For each query segment, we

first retrieve all data sub-trajectories from the local R-Tree whose

MBR overlaps with its expanded MBR. Here, we expand the MBR

of the query segment by a buffer of 2ϵ + δ . The intuition is that,

based on Lemma 4.1, the points of data sub-trajectories could be

in at most ϵ distance from their ALS and the same holds for the

query sub-trajectory. Thus, we add 2ϵ to account for the error

bound of query and data sub-trajectory. The addition of δ to the

expansion is justified in the same way for the partition pruning.

This step prunes a large number of segments that could be safely

discarded.

5.2.2 Pruning by ALS. For the remaining data segments after

pruning by MBR, we do a simple pruning based on the distance

computation between two line segments. Indeed, in some cases

the MBR of data trajectories overlap with query segments, yet

Q

Q2

T

A B

D C

Figure 4: Example of different arrangement of ALS of sub-
trajectories.

the ALS of data and query trajectories have minimum distance of

more than 2ϵ + δ , and therefore the trajectories can be ignored.

5.2.3 Arrangement of Query and Data Sub-trajectories. After
the filtering of the previous step, the remaining sub-trajectories

have ALS within the buffer around at least one of the query

segments. Figure 4 illustrates an arrangement between query and

data ALSs. The intersection area between the ϵ-buffers around
query and data segments is determined by a polygonwith vertices

A, B, C , D. We search for the similar parts of trajectories inside

these polygons.

5.2.4 Relevant Parts of Sub-trajectories. In this step, we find

the relevant parts of sub-trajectories by obtaining the parts of

the original trajectories inside the intersection polygon. Those

parts could be similar and the exact distance should be computed

between them. We find the pairs of trajectory points pi and

pi+1 that overlap with the sides of the intersection polygon. We

interpolate points where the line segment pipi+1 exactly overlaps
the side and add them to the final candidate (sub)trajectory. We

perform the same procedure for every overlapping point pairs.

5.2.5 Exact Distance Computation. The sub-trajectory pairs

obtained from the previous step are the final candidates for the

exact distance computation. We use discrete Fréchet distance [2]

for this purpose, which is a good measure for curve comparison

and capable of maintaining the order of coupling points. If the

distance between a data and query sub-trajectory pair is not

larger then distance threshold δ , and its spatial length is higher

than λ, we add the data sub-trajectory to the results.

6 EXPERIMENTS
In this section, we describe the evaluation of the proposedmethod

on a small cluster of machines. The objective of this experimental

evaluation is to assess the performance of the proposed method

in terms of query latency and index building time.

6.1 Cluster Setup
All experiments were conducted on a cluster of 5 machines di-

vided as 1 master node and 4 worker nodes. Each machine has

a 4-core Intel Core i5-7400 @ 3.00GHz processor and 16 GB

main memory. From each machine, 4 GB of main memory and

1 CPU core is reserved for Operating System and Hadoop dae-

mons. Thus, the 4 worker nodes can provide a total of 48 GB of

RAM and 3 cores each. Each node runs Ubuntu 18.04.2 LTS with

Hadoop 2.7.2 and Spark 2.4.0. All implementations are in Scala

programming language v2.11.6.

Figure 5: Query and index time with respect to data size.

6.2 Dataset
The dataset used in the experiments is a total of 30 GB of GPS

traces of one year of car trajectories in the area of Tuscany, Italy.

Since the whole track of each user could be very long, if the dis-

tance or time interval between two subsequent points is higher

than predefined thresholds, we divide the track into two trajec-

tories, corresponding to meaningful trips. We used the cut-off

spatial and temporal thresholds of 300 meters and 30 minutes,

respectively.

6.3 Index Building Time
The index building is comprised of reading a sample of the dataset,

computing the partition boundaries, physical partitioning, build-

ing local indexes, and finally building the global index. The build-

ing of indexes takes a significant amount of time, but it should

be noted that the generated indexes can be stored in HDFS and

used later without the need for the recomputing. We study the

scalability of our method against the dataset size and cluster size,

in building the index structure and querying. The right axes in

Figure 5 and Figure 6 show the time for building the index for

different sizes of data and different number of worker nodes in

the cluster.

6.4 Query Latency
For the query latency, we executed 50 queries randomly chosen

from the same dataset and the run-times are averaged. Since the

latency of different queries may vary significantly, we also report

the latency for the 5% and for the 95% of the run-times. Depending

on the location of the query, whether it is in a high density area

or sub-urban area, different queries can have different run-times.

The left axes in Figure 5 and Figure 6 report the query latencies

for different sizes of data and computing nodes. As an example,

the query run-time for the 10GB dataset is 6.6 seconds in average

with a 5% − 95% interval of [3.9 − 12.9] seconds.

6.4.1 Visualization of Results. Figure 7 shows three examples

of a query trajectory and one of the results from data. The dashed

(red) and solid (blue) trajectories are query and data, respectively.

The markers show the starting point of the trajectories. The

highlighted part (in gray) of the data trajectory is the similar part.

This figure shows the effectiveness of our method in identifying

the similar sub-trajectories in big trajectory dataset.

7 CONCLUSION
In this paper, we proposed a novel approach for sub-trajectory

similarity search in a big trajectory dataset. In our proposed

method, we rely on approximate line segments of trajectories, as

Figure 6: Query and index timewith respect to cluster size.

(a) (b) (c)

Figure 7: Visualization of results.

working with them is simple and fast. Our aim is to postpone

the expensive exact distance computation until the end of a suite

of pruning techniques on ALSs. The pruning starts from simple

line segment comparisons and continues with ALS matching

and extracting relevant parts of sub-trajectories. At the end, we

compare the relevant parts and check whether they are similar

according to the distance threshold. We performed experiments

to analyze the performance of our method, which shows good

results in answering queries, and visual representation of some

of the results suggests that it can produce significant output.

Our future works on this topic include experimenting the tool

on larger datasets and larger parallel platforms, as well as explor-

ing its applicability in applications such as traffic jam detection,

carpooling and other clustering-based ones.

ACKNOWLEDGMENTS
This work is partially supported by the European Community

H2020 programme under the funding scheme Track &Know (Big

Data for Mobility Tracking Knowledge Extraction in Urban Ar-

eas), G.A. 780754, trackandknowproject.eu.

REFERENCES
[1] David Douglas and Thomas Peucker. 1973. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. The
Canadian Cartographer 10, 2 (1973), 112–122.

[2] Thomas Eiter and Heikki Mannila. 1994. Computing discrete Fréchet distance.
Technical Report. Citeseer.

[3] Scott T Leutenegger, Mario A Lopez, and Jeffrey Edgington. 1997. STR: A simple

and efficient algorithm for R-tree packing. In Proceedings 13th International
Conference on Data Engineering. IEEE, 497–506.

[4] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed in-

memory trajectory analytics. In Proceedings of the 2018 International Conference
on Management of Data. ACM, 725–740.

[5] Panagiotis Tampakis, Christos Doulkeridis, Nikos Pelekis, and Yannis Theodor-

idis. 2019. Distributed Subtrajectory Join on Massive Datasets. arXiv preprint
arXiv:1903.07748 (2019).

[6] Dong Xie, Feifei Li, and Jeff M. Phillips. 2017. Distributed Trajectory Similarity

Search. Proc. VLDB Endow. 10, 11 (Aug. 2017), 1478–1489. https://doi.org/10.

14778/3137628.3137655

trackandknowproject.eu
https://doi.org/10.14778/3137628.3137655
https://doi.org/10.14778/3137628.3137655

	Abstract
	1 Introduction
	2 Problem Formulation
	3 System Overview
	4 Distributed Trajectory Indexing
	4.1 Trajectory Partitioning
	4.2 Local Indexing
	4.3 Global Indexing

	5 Distributed Sub-trajectory Similarity Search
	5.1 Partition Pruning
	5.2 Search within Partitions

	6 Experiments
	6.1 Cluster Setup
	6.2 Dataset
	6.3 Index Building Time
	6.4 Query Latency

	7 Conclusion
	Acknowledgments
	References

