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ABSTRACT
Industrial product testing is frequently performed in cycles, re-
sulting in cycle-dependent test data. Monitoring the condition of
products under test involves analysis of large and complex test
data sets. Main tasks are to detect anomalies and dependencies
between observation variables, which appears to be challenging
to engineers. In this paper, we present a flexible and extend-
able visual analytics approach for anomaly detection focusing
on cycle-depended data. It is based on a glyph representation to
visualize anomaly scores of cycles with respect to interactively
selected reference data. Our approach is built on a design study
in collaboration with an industrial engineering corporation, and
is demonstrated on real data from engines tested on automotive
testbeds. Based on findings from evaluation results, we provide a
discussion and an outlook for future work.

1 INTRODUCTION
The trend of digitization in industry (often synonym for so-called
Industry 4.0) generates large amounts of data by sensors and data
recordings from almost all machines and devices of the produc-
tion processwith the promise of creating new usage opportunities
[39]. Over all stages of the industrial product life cycle (PLC),
extracting valuable knowledge from generated data can lead to
an improvement regarding costs, quality and increased flexibility
(incl. safety, durability, reliability) [3][31]. However, for human
perception, it can be overwhelming to observe and analyze large
industrial data sets. Another important requirement of analyzing
industrial data is that extensive professional and domain-specific
knowledge of users is required [42]. Addressing those challenges,
visual analytics research proposes tools supporting domain ex-
perts to explore large and complex data sets [26]. Further, to
identify and address the industry’s needs, our case study has
been conducted in close collaboration with an industry partner
from the automotive sector, focusing, among others, on engine
testbeds. The main driver of the focus on the anomaly detection
is the common occurrence of real-world problems in automotive
condition monitoring. Due to the large amount of testbed data,
data analysis is time-consuming and there is a risk that events
which lead to the failure of an engine under test, may not be
anticipated or overlooked by engineers. We hence research the
development of visual analytics approaches to support test en-
gineers in creating hypotheses and early warnings of potential
failure cases.
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As the first contribution of this paper we characterize testbed
data and study how engineers achieve their data analysis goals.
Based on the design study we propose an (1) extendable and
(2) versatile glyph based visual analytics approach for anomaly
detection in multivariate sensor data as our second contribution.
The extendibility and versatility is achieved by making underly-
ing data analysis methods exchangeable and flexible by a variable
number of anomaly detectors. Additionally, we applied a tech-
nique enabling users to visually identify conspicuous sensor data
by a matrix representation for drill-down and further compar-
ative analysis. As a constraint, the concept of this work is only
applicable for cyclic (also periodic or seasonal) data. Nevertheless,
cyclic data is related to the repetitive behavior of many industrial
applications. The approach has been designed for automotive
testbed data with sensor-intensive technology, where anomalous
or erroneous events should be anticipated by visual data analysis.
The third contribution of this paper are results of the pair ana-
lytics evaluation [2], which has been conducted in collaboration
with the target user group on the given use case data set. Results
are encouraging and open promising directions for future work.

2 RELATEDWORK
This section discusses the related work conducted in analyzing
data using either algorithmic data analysis or visual analytics
approaches. Furthermore, we detail the glyph representation as
this technique has been proven to be an effective manner to
represent time series.

2.1 Automated data analysis approaches for
anomaly detection

One property of many typical industrial applications is the rep-
etition of specific tasks. To give an example, Maier et al. [21]
emphasized reoccurring processes (cycles) for automation and
production. In theory, data generated within such cycles should
be highly comparable for anomaly detection. Anomalies are
generally understood to represent patterns in data that do not
conform to a well-defined normal behavior [1]. The literature
provides a comprehensive collection of algorithms for the de-
tection of anomalies in multivariate time series data. Anomaly
detection also often refers to the term novelty detection [23]
or semi-supervised learning [6], whereas for those methods the
definition of normal or rather reference data is needed. Anomaly
detection in time series [16] found attention from industry for sev-
eral applications, such as predictive maintenance [17], condition
monitoring [40] or decision support systems [28]. Two groups
of anomaly detection algorithms are used in this work. The first
group are correlation-based approaches, which have been effec-
tively applied on industrial sensor data [40]. The idea behind
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this approach is, that changes of the bivariate correlation be-
tween two sensors can be interpreted as an anomaly. The second
group are regression-based methods [12] or reconstruction-based
novelty detection methods [23]. The basic idea of this type of
anomaly detection is to build a regression model on reference
(normal) data. Estimation errors of the model in comparison to
measured data are rated as anomalies if they exceed a predefined
threshold.

2.2 Visual analytics for industrial application
Recently, a survey on visualization and visual analytics applica-
tions for smart manufacturing has been published [42]. It reveals
the diversity of several studies performed for industrial appli-
cations and the need of visual analytics. A few examples are
available, on how to solve the problem of finding anomalies in
multivariate time series data by visual analytics. An application
for finding anomalies in the power consumption of buildings
has been proposed by Janetzko et al. [18]. It suggests a model-
based and a similarity-based anomaly score and visualizes them
in several visualization techniques such as, recursive patterns
[19], spiral graphs [34] and line charts. In the work of Wu et
al. [35] anomalies are detected for condition monitoring by a
model-based approach. The deviation of estimated and real val-
ues is visualized in a river plot view [9]. As an ongoing challenge,
the authors outline the problem of analysts to trust and make
use of the algorithms for condition monitoring. Many different
algorithms are available for several applications and finding ap-
propriate models and parameters is a hard task. Considering this
problem, Xia et al. [36] proposed a visual analytics application
to support users in finding the right model for dimensionality
reduction. Another work addressing this challenge is presented
by the EnsembleLens [38]. It is a visual analytics system to help
data mining experts to evaluate, compare and select available
anomaly detection algorithms.

2.3 Glyph representation of cyclic time series
data

Besides the major summaries and surveys [7] [25], recently a
systematic review of experimental studies on data glyphs has
been presented by Fuchs et al. [14]. To visualize multivariate
time series data, glyphs are an appropriate choice and can en-
able quick visual comparison of data values over time [13]. In
Ward and Lipchak [33], the visualization of a circular glyph for
recognition of the evolution of a measurement of interest has
been proposed. Another glyph-based design for outlier detection
in social networks has been proposed by Cao et al. [10]. In their
work, glyphs visualize suspicious behavior of users, based on
the z-score of several attributes, in a star-glyph like design. The
anomaly scores of entities are visualized by the intensity of the
red color in the cyclic glyph center. As examples for glyph-based
time series visualizations, a few techniques for glyph designs for
comparison purposes are evaluated in the work of Fuchs et al.
[13].

3 BACKGROUND ON AUTOMOTIVE
TESTBEDS AND USE CASE

Our work has been conducted for automotive engines in the
context the validation and verification phase of the industrial PLC
[3] [30]. After an engine has been developed, its requirements
are verified and validated in automotive testbed environments.
Those requirements can be of functional nature, such as the
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Figure 1: Temperature incident
Temperature of the critical component over all cycles. For each
cycle over the whole durability test time the mean temperature

has been calculated for trend analysis.

engine power density, speed and durability, or of legal nature,
such as, along with others, fuel economy, noise pollution and
exhaust gas emissions. For this research work, we analyzed data
from a durability test of an internal combustion engine. The
main goal of the test is to ensure the durability, reliability and life
time expectations of the engine. Therefore, durability tests are
conducted to let the engine undergo sufficiently high mechanical
and thermal loads (stresses) and a sufficient number of fatigue
cycles (e.g., hundreds of hours) [37]. During durability tests, a
vast amount of data is collected by sensors which either are
commonly build in modern vehicles and accessed through the
engine control unit (ECU), or sensors which have been mounted
on the engine and the testbed for testing purposes.

Throughout durability tests, engineers are observing the test,
and are responsible for the performance and the condition of the
testee. For that condition monitoring task, engineers generally
monitor a few familiar sensors for threshold violations, manually
selected and defined by their given domain knowledge or by the
customer. However, for novel engine design, which has been
recently developed, there is no knowledge on all sensors and
their thresholds, and it is often not appropriate to apply earlier
experiences. In fact, an important task in testing of novel engine
designs is the comparison for differences with previous designs.
Therefore, our work is motivated by making use of the time series
data of all sensors and the information they might contain.

To give a practical example of the challenges engineers face
during durability tests, in Figure 1 a line plot describing the prob-
lem of a use case is shown. After 1, 200 hours of a 2, 000 hours
durability test a fatal error occurred, which increased the tem-
perature of a critical component part of the engine by up to 8
°C over time. In the end, the durability test failed because of the
temperature increase of the critical component. The failure could
not be anticipated, because of the large amount of sensors. Con-
sequently, it was a hard task to define rule-based thresholds or
measurements of concern, indicating the failure upfront. How-
ever, in comparison to a simple rule-based anomaly detection
approach, more complex data analysis and models which also
take the interplay of sensor data into account may lead to better
analysis results. Domain experts assume that it should be pos-
sible to anticipate such failures by advanced data analysis and
visualization techniques. Therefore, to understand the current
data analysis workflow of engineers, we carried out a design
study as basis for our proposed visual analytics application. More
details on the data and the design study will be given in the next
section.
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4 DESIGN STUDY
As the first contributions of this paper, we characterize testbed
data and studied how engineers fulfill their condition monitoring
task through data analysis. This section relates to Miksch and
Aigners “design triangle” [22] and is generally based on the design
study methodology of Sedlmair et al. [27]. For the tasks aspects
of the design triangle we bridge from goals to tasks with the
design study analysis report as proposed by Lam et al. [20].

4.1 Data
Input data used in our proposed visual analytics approach for
anomaly detection is taken from an automotive engine testbed.
One common taskwithin engine development is to carry out dura-
bility tests. For such a durability test, a test cycle is specified to
verify the durability of an engine. The test cycle, which is defined
by a given engine speed and engine torque profile over time, is
repeated in the period of several month until the target operating
hours are reached. During a durability test, hundreds of sensor
measurement signals are acquired and stored continuously, while
the engine drives the given profile. In the automotive domain,
those sensor measured time series are called channels, which
we adopted throughout our research. Among others, channels
mainly record several engine speed, engine torque, temperatures,
pressures and exhaust gas measures.

One cycle is stored within one file and can be seen as a N × n-
dimensional matrix, where N is the number of channels and n
the length of the time series. All signals originally are recording
numerical values in a frequency of 10Hz. Note that channels are
aligned according to the given engine speed profile and therefore
cycles of the same length can be extracted. The target data con-
tains records of c = 860 cycles of a 2, 000 hours’ durability test,
in which each cycle has a duration of 140 minutes. Overall, the
dataset has 860 cycles x 480 channels x 84, 000 numerical values.

To conclude, the dataset can be characterized as a cyclic, piece-
wise equi-length segmented, multivariate streaming time series
(accordingly to the characterization of Shurkhovetskyy et al. [29]).
For our research work data could be seen as stationary, since
the durability has finished and the entire dataset was available
for our work. Although, we kept a streaming time series sce-
nario in mind where engineers use our proposed visual analytics
approach throughout a durability test.

4.2 Users
Users of our proposed visual analytics application are devel-
opment engineers with mechanical engineering background,
working with powertrains and engines on a regular basis. They
have long-standing experience with engines in testbed environ-
ments and as front-line analyst, also practically analyzing data
to achieve their analysis goals (i.e., condition monitoring). Three
users collaborated in our project systematically by participating
at the design study and the pair analytics evaluation (see section 4
and section 7). In general, the work with testbed data is essential
for development engineers and offers the opportunity to measure
indicators regarding functional or legal requirements and engine
performance. During our research work, we also collaborated
with data scientists who are daily working with testbeds and
powertrains. They constantly provided informal feedback from a
different view throughout our work.

4.3 Tasks
This design study is based on the domain question, if an engine
is in a non-critical condition during a durability test. For that
purpose, we define test cycles as the population unit (or entity,
or unit of analysis) [20]. Furthermore, engineers have a high
level of understanding of using cycles as a granularity level for
their analysis. Due to the repetitive behavior of cycles, they are
highly comparable, and therefore we define the data analysis
goals of engineers as multiple population analysis. Consequently,
we identified that engineers are pursuing all three multiple popu-
lation goals defined in the design study analysis report framework
[20]: (a) compare entities (b) explain differences and (c) evaluate
hypothesis. In the following, we further investigate the char-
acterization of those goals by their input, output and analysis
steps.

4.3.1 Compare Entities. Engineers attempt to detect popu-
lation differences as their top level analysis goal. In order to
achieve that, engineers are observing trends of several familiar
channels by calculating the mean values of channels per cycle
and visually explore changes over cycles in a time-ordered line
plot (see Figure 1). In trend charts, up to ten time series are com-
pared either in juxta- and/or superpositioned lineplots [15]. The
output of the compare entities analysis goal, is the observation
of a conspicuous trend or anomaly, which is investigated in the
explain differences goal.

4.3.2 Explain Differences. Regarding the domain question,
the output of the explain differences goal can be either that the
observation is not relevant for the engines condition, or as a
hypothesis one specific component of the engine is in a bad
condition. In the next analysis goal, the hypothesis needs to be
evaluated.

4.3.3 Evaluate Hypothesis. Evidence that a component or part
of the engine is in a bad condition needs to be evaluated by
engineers. The analysis steps of that goal don’t differ from the
preceding goal. Domain experts are exploring channel time series
by their domain knowledge and attempt to find differences and
interesting patterns by comparing different channel line plots
of multiple populations. The final confirmation or rejection of
hypotheses is made after evidence has been collected through
data analysis and if required investigated directly on the engine.

Through that characterization of higher level analysis goals,
we can derive lower level task definitionsT1 - T5 to address them
in our visual analytics design considerations and automated data
analysis:
T1 Identify population contrasts. Test cycles are the unit of

analysis, or population, for engineers. As the first task, popu-
lation contrasts or differences are explored. This is achieved
by trend analysis of a few familiar channels. The problem of
dealing with big channel amounts engineers face should be
considered in the design by taking all channels into account.

T2 Application and visualization of semi-supervised anom-
aly detection methods. Engineers detect interesting pat-
terns and anomalies mainly by visually exploring line plot
trends of channels. Comparing past cycles to current cycles
is related to a semi-supervised learning scenario and should
be considered for the choice of automated data analysis and
the visualization. First, the automation of data analysis to
highlight interesting or conspicuous channels should be in-
cluded into the visualization. Second, we assume that the
combination of several anomaly detection algorithms leads
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to more significant findings, for which reason an ensemble
method [38] should be considered for the visualization.

T3 Examine conspicuous channels inmultiple populations.
After conspicuous channels have been detected by trend
analysis, engineers drill-down to examine and find differ-
ences between channel line plots of different populations.
The comparison of interesting channels in different popula-
tions should be considered in the design.

T4 Detection of conspicuous channel relations.With excep-
tions on visualizing multiple trend line plots in juxtaposition,
engineers generally detect anomalies by univariate time se-
ries analysis of multiple channels. They, also compare line
plots with the given engine speed and engine torque. Consid-
ering relations between channels at a broader scale should be
considered for the automated data analysis and visualization.

T5 Reduce amount of data. To address the large amount of
channels, data reduction techniques should be take into ac-
count for the visual analytics design. The main consideration
for the visual analytics design is that interesting data should
be highlighted to support engineers in their decision making.

Overall, data can only be analyzed by including extensive domain
knowledge of users to the data analysis. Modern powertrains and
engines are highly complex machines and therefore domain ex-
perts are necessary to interpret results of automated data analysis
through a visual analytics approach. In the next section we in-
troduce the anomaly detection methods we applied to the visual
analytics approach.

5 AUTOMATED DATA ANALYSIS:
ANOMALY DETECTION METHODS

In research, anomaly detection often refers to a two-class classi-
fication problem, in which data either is classified as an anomaly
or not. In general, a model is built on normal data, considering
that the model can calculate an anomaly score on unseen data
sets (apart from unsupervised methods). If the anomaly score
exceeds a predefined threshold, the data record or the entire set
is classified as an anomaly. We consider the application of semi-
supervised anomaly detection methods to our design T2. Most
techniques are specific to different observational features, in con-
sequence of which we assume that an ensemble-based approach
obtains more robust anomaly scores [38]. Therefore, we propose
to map results of different anomaly detection algorithms to a
unified value for comparison purposes and describe two anomaly
detection methods, used in the visual analytics approach.

5.1 Unified anomaly score
Test cycles are engineer’s unit of analysis for which reasons
we choose them as the granularity level for data analysis (T1).
To make different anomaly detection methods comparable in
an ensemble-based approach, we propose the following to map
anomaly scores to unified values between 0 and 1: (1) Interac-
tively select a reference cycle as input data for the training of the
anomaly detection model. (2) A baseline cycle is selected to cal-
culate a baseline anomaly score. (3) Define a threshold anomaly
score, based on prior knowledge, domain knowledge or historical
data. (4) Further, the anomaly score of cycles are calculated as
the linear scaling from 0 (baseline) to 1 (threshold). Therefore,
our approach needs the definition of a reference cycle for model
training, a cycle for baseline definition and the definition of a
threshold. The baseline anomaly score is used to consider a train-
ing error and therefore is taken as the lower limit of the unified

anomaly score calculation. Note, that the baseline anomaly score
is calculated by a baseline cycle, which data should be recorded
temporally close to the reference cycle. Hence, we specify the
cycle subsequent to the reference as the baseline cycle. Defining
the upper limit (threshold) is critical and can be changed inter-
actively in the visualization. In the following, we discuss two
methods, which have been applied on industrial sensor data in
prior research. Another criterion for selecting those two methods
is the capability of identifying conspicuous channels separately
for further drill-down and comparative analysis (T3).

5.2 Correlation-based anomaly score
Inspired by the approach presented by Zhao et al. [40], we as-
sume that the change of linear correlations between two sensors
over time refers to an anomaly. During our research work, we
investigated the application of correlation-based anomaly de-
tection on testbed data. Despite its limitations, the method has
also strengths that are beneficial in solving the tasks defined
in the design study. First, we highlight the main limitation in
detecting anomalies by the change of linear sensor correlations,
if throughout the durability test no linear correlation between
two specific sensors exist. Nevertheless, we examined that in
testbed data many linear correlations between sensors exist. For
example, data from several temperature channels are likely to
correlate. Experiments demonstrated that this method can detect
anomalies in testbed data, and therefore has been applied to our
visual analytics approach.

The basis for the correlation-based anomaly score is the corre-
lation difference matrix, which represents the deviation of linear
channel relations between two testbed cycles. The correlation
matrix for each sensor combination of the reference cycle, the
baseline cycle and the unseen cycle are calculated by using Pear-
son’s correlation coefficient. Then, the correlation matrix of the
unseen cycle is subtracted by the correlation matrix of the ref-
erence cycle, which results in the correlation difference matrix.
As a result, the anomaly score is calculated as the average of
all values in the difference matrix and is mapped to the unified
anomaly score accordingly to the method explained before.

5.3 Regression-based anomaly score
As the second anomaly score, we make use of regression models
for regression-based anomaly detection [12]. For this research
work, we train regression models to estimate a time series. Con-
sequently, the model is applied to an unseen data set, in which
the difference between the estimation and the real values (resid-
uals) can be interpreted as anomalies. Considering this method
for T1 and T2, an anomaly score between populations or cycles
needs to be calculated in a semi-supervised manner. Therefore,
regression models with data of a user-defined reference cycle are
trained for all channels separately. To make those channel regres-
sion models comparable, it is necessary to standardize data first,
i.e. standardization of the entire time series to values between
0 and 1. The regression models can now be used to estimate all
channel time series for unseen cycles and the anomaly score of
one cycle can be calculated by the average mean average error
over all channels of a cycle. In the following it can me mapped
to a unified anomaly score accordingly to the method explained
above.

We chose Random Forest regressor, as suggested by Breiman
[8], considering that this model has been proven to perform well
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Figure 2: Proposed glyph design
The glyph visualizes two anomaly scores and their ensemble

(aggregate). Anomaly Score 1 visualizes a value of 0.8, Anomaly
Score 2 visualizes a value of 0.2, whereas the equally weighted

center visualized the Ensemble Anomaly Score of 0.5.

in many domains [41]. As input data for training channel regres-
sion models, engine speed and engine torque are chosen, since
those two channels are given by the test and strongly relate to
the majority of the channels (T4). Also, sliding window features
for those two channels are extracted, whereas sliding windows
contain differences and mean values of three seconds into the
past. We assume that in this time frame the most relevant infor-
mation can be extracted for our models. The aim of this approach
is not to estimate each channel as accurate as possible, but to
detect change of anomaly scores between populations. As the
correlation-based method, we are aware of the limitation that this
method may not return a decent estimation for all channels, but it
may be effective for some types of anomalies. This consideration
should also emphasize the choice of an ensemble method.

6 VISUAL ENCODING AND
CONSIDERATIONS

This section explains how we use two anomaly scores for a glyph-
based visualization. Also, an example on how to identify conspic-
uous channels within a cycle either in a matrix representation
and a ranked channel list is given. The visual considerations
explained in this section will be brought together in the proto-
type, describing the visual analytics approach by the prototype
implementation.

6.1 Cycle anomaly glyph
The proposed glyph in Figure 2 is flexible and independent of the
underlying analytical methods for anomaly detection, as long as it
implements the framework for calculating unified anomaly scores
between 0 and 1 (subsection 5.1). Anomaly scores are visualized
in the outer circular segments of the glyph representation as
the opacity value of the red background color. Our aim, when
designing the glyph was that no algorithm can detect all kind
of anomalies, relevant for different applications. As a result, we
choose an extensible glyph design, achieved by its circular shape,
which offers the capability of adding and removing anomaly
scores in their according circular segments. The main visual
focus of the glyph stays at the center circle, which represents an
equally weighted average of anomaly scores combined, labeled
as the ensemble anomaly score.

During our work, the main concern of visualization experts
regarding the presented glyph design was the benefit compared
to simpler visualizations, such as line plots. As stated in the de-
sign study, line plots are a well-known visualization type and

comprehensible to the target group. However, our approach has
advantages over line-plot-based visualizations. In general, testbed
cycles as granularity level are highly comprehensible for engi-
neers. Therefore, cycles are visualized as individual and complete
entities, whereas the glyph design offers the following opportu-
nities: (1) As a visual entity it can be clearly selected by users
for further exploration, reasoning and drill-down. Also, glyphs
can be selected interactively to be defined as reference for the
underlying semi-supervised learning algorithms to identify con-
trasts between populations (T1, T2). (2) The glyph design can be
extended with several anomaly detection algorithms by adding
additional outer circular segments. (3) Similar glyphs can be ag-
gregated, clustered and arranged for further interpretation by
domain experts and to save screen space. (4) The glyph can be
visualized on its own as a quick overview of an engine’s con-
dition. This is also related to the idea of involved engineers of
having a simple "traffic light like" system, which also encouraged
us, developing the presented glyph-based approach.

6.2 Identification of anomalous channels
As stated above, we choose two anomaly scores by their capability
to further explore single anomalous channels. After an anomalous
channel has been identified in the glyph representation, users are
interested in the cause of that anomaly. Therefore, we visually
represent anomalies for both anomaly scores, as follows:
Matrix-based identification of anomalous channels. The
correlation deviation matrix calculated for the correlation-based
anomaly score is shown in step (c) of Figure 3. Basically, in this
symmetrical matrix, deviations of correlations of channels within
a given cycle with respect to the selected reference cycle are vi-
sualized. More specifically, we compute the difference of the
correlation matrices of these two cycles, and show the result by
color-coding the cells of the difference matrix. Hence, levels of
red representing the anomaly score of channel correlations. This
matrix representation supports the analysis goal to determine
and quantify visual patterns for pattern-driven visual exploration.
Together with appropriatematrix reorderingmethods, we can use
this display to search for typical patterns in matrix visualizations,
including line patterns and block patterns [4]. Most importantly,
if one sensor shows an anomalous behavior, its correlation dif-
ference values to many or all other sensors will be rather large,
leading to line patterns. Such visual patterns attract the attention
of the analyst and are a starting point for drilling-down into the
respective sensor data (Figure 3 (e2)).
Ranked mean average error list. The regression-based anom-
aly score can be explored by the ranked mean average error
list as proposed in Figure 3 (d). Channels that deviate from the
reference are listed and ranked by their anomaly score. This en-
ables a guided approach for exploring anomalies and simplifies
data analysis. By clicking on channel names users can explore
the reference and the anomalous channel time series by visually
comparison in juxtaposition for hypothesis generation (Figure 3
(e1)).

6.3 Prototype
The workflow of the approach, applied to data of the given use
case, is exhibited and briefly described in Figure 3. It shows screen-
shots of the implemented prototype, whereas further explana-
tions are given in the following: In (a) glyphs are placed in a
grid, with each cell representing a test cycle in chronological
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Figure 3: Proposed visual analytics tool
(a) Differences between the selected reference cycle and and other cycles can be explored, whereas glyphs are positioned in a time
ordered grid. (b) Besides some filter capabilities, the anomaly score threshold can be interactively changed by a ruler. (c) Anomalies
found by the correlation-based anomaly score can be explored in the matrix representation (d) Anomalous channels found by the

regression-based anomaly score can be explored by the ranked mean average error list. (e) Hypothesis can be evaluated by comparing
channel time series in the reference cycle and the cycle of interest.

order (from top left to bottom right, inspired by the calendar-
based view [32]). Note, that the reference cycle is interactively
selectable and represented by a white circle, as visible in the top
left, or first, glyph. In (b) three interaction possibilities are visible:
(i) to add flexibility to the visual comparison of glyphs the user
can interactively change the anomaly score threshold to values
between 50 % - 200% of the original value (ii) the user can change
the amount of displayed glyphs by filtering them by a ’‘from - to’
range slider (iii) glyphs can be filtered by the definition to visu-
alize every xth glyph only. Both anomaly scores of interesting
glyphs can be selected for further exploration by a drill-down
in (c) and (d): In (c) a drill-down example to inspect and identify
one or more conspicuous channels within the selected cycle by a
matrix representation visualizing the correlation-based anomaly
score is shown. An example for a visual perceptive line pattern
is outlined, representing a possibly conspicuous channel. Fur-
ther, the conspicuous channel can be selected in the matrix for
exploration and comparative analysis with the reference line
plot in (e2). In (d) an example of the ranked mean average error
representation of the regression-based anomaly scores is given,
in which its drill-down capabilities are visible in (e1). In general,
drill-down information needs to be investigated and interpreted
by domain experts. However, our approach supports users in the
identification of interesting data by visually highlighting deviat-
ing cycles and sensors. As a side note, interactive line plots and
heatmaps in the prototype have been created with the JavaScript
visualization library Plotly.js [24] and are anonymized in Figure 3
screenshots.

7 EVALUATION
We conducted a pair analytics evaluation [2] with three subject
matter experts (SME), who represent the target user group identi-
fied in subsection 4.2, and the dataset described in subsection 4.1.
The main target was to evaluate either the comprehensibility of
the different views and the underlying automated data analysis,
along with the capabilities and limitations in supporting users
with their daily condition monitoring analysis goals. According
to the pair analytics protocol, the evaluation is done by a human-
to-human interaction of one SME and one visual analytics expert
(VAE), in which the SME acts as the navigator and the VAE as the
driver (operator) of the visual analytics tool. In general, all three
SME participants stated that the visual analytics tool can be of
great benefit to support them in their daily work for two reasons:
The visual analytics tool supports engineers in analyzing testbed
data (1) more efficiently by highlighting interesting data on dif-
ferent granularity levels and (2) more effective by enabling the
analysis of the entire dataset and not only a subset of well-known
channels. To give evidence to that statement, we connect partici-
pants comments and actions during the pair analytics evaluation
to the task definition of subsection 4.3 in the following:

Each evaluation session started by an introduction to the visual
analytics approach and a short demonstration of the prototype. It
is notable, that all three participants (P1, P2, P3) gained a quick
understanding of the concept for two reasons: First, we conducted
the design study with the same engineers and connected findings
of the studywith explanations of our visual analytics tool. Second,
the design study clearly identifies tasks and goals of engineers,
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therefore the visual analytics prototype accurately addresses the
needs of engineers. In general, participants appreciated our effort
in developing a decision support system supporting engineers in
handling the big amount of data for their condition monitoring
tasks.

The actual pair analytics evaluation sessions started by defin-
ing a reference cycle in the glyph-based overview (T2). P1 and P3
appreciate the capability of selecting the reference cycle interac-
tively in the visualization. However, P2 questioned the necessity
of interactively selecting the reference cycle, because the testee is
likely to be in a good condition before the first cycle, considering
that the testee runs through an extensive health check at the
beginning of the entire durability test. We are aware of the fact
that selecting the first cycle may be an appropriate default choice,
but we wanted to keep the analysis more flexible.

After the reference cycle has been selected, other glyphs in the
overview turned red regarding their anomaly scores (see Figure 1
(a)). All participants were immediately curious in exploring those
anomalies by the visualization and easily identified cycles that
appear interesting to them (T1). P2 and P3 pointed at cycles that
had a more intensive color of red then the majority of all cycles,
whereas P1 mentioned that all glyphs that visualize at least a
small anomaly score are interesting. However, in a productive
use scenario the exploring strategy may differ since not all cy-
cles are available from the beginning, and new data would be
explored incrementally on a regular basis as it becomes available.
We emphasize that at this stage of the visual data analysis we
successfully reduced the amount of data (T5) and enabled the
further exploration of anomalies in the succeeding views.

T3 andT4 are both achieved by exploring one of the two anom-
aly scores of a specific cycle: (1) The correlation-based anomaly
score and the correlation difference visualization in Figure 1 (b)
were comprehensible to the participants as they were able to
identify conspicuous channels. However, participants articulated
the need of a more guided approach to engage engineers using
the matrix visualization, because it appears overloaded and thus
overwhelming to engineers. (2) The regression-based anomaly
score was also highly comprehensible to participants, since they
have a general understanding of regression models. On the other
hand, we avoided explaining the actual regression model Random
Forest to participants in detail. In comparison, to the correlation
difference matrix, participants commented that the exploration
of conspicuous channels is easier by the ranked mean average
error list (Figure 2 (c)). Also, they expressed their interest of ad-
ditional guided approaches in the other views, considering that
such rankings represent a clear order on what channels to focus
on, especially if they are short of time during their analysis.

As the last step of the visual analysis, participants evaluated
hypothesis of channels being anomalous by comparing anoma-
lous line plots with their reference cycle equivalents (see Figure 1
(e1 + e2)). From a data perspective, engineers approved that all
explored anomalies are interesting, because they highlight a sig-
nificant difference to the reference. From a domain perspective,
some of the anomalies were interesting, but others were expli-
cable and irrelevant for the condition monitoring task. Another
type of anomaly, that has been detected during evaluation are
defect or unconnected sensors. Line plots of those anomalies
visualize a constant or noisy signal. Therefore, we characterize
three types of anomalies that have been found during evaluation:
(1) Domain irrelevant (2) Domain relevant and (3) Defect sensors.

Overall, we evaluated that the visual analytics prototype re-
ceive acceptance from all participants. They confirm the benefit

of the proposed visual analytics approach and are interested in
using the prototype in a productive scenario. In the next section,
we discuss some of the aspects of the evaluation in greater detail
and also consider generalizability and future work.

8 DISCUSSION AND FUTUREWORK
Our visual analytics approach has been designed and evaluated
on testbed data, but we emphasize that it is not limited to the
automotive domain. At least the glyph-based overview should
be applicable on any other cyclic multivariate data set, as long as
the underlying automated data analysis methods and dependent
visualization techniques are adapted to the specific domain. The
visual analytics prototype has been evaluated to be useful for
collaborators and they clearly identified advantages in terms of
efficiency and effectiveness in comparison to their current work-
flow. Also, the evaluation opened up many directions for future
work: Analyzing up to a thousand of cycles can be critical regard-
ing the screen space. Applied filtering techniques in Figure 3 (b)
can be improved by a more scalable solution and clearly needs
further attention. For example, similar glyphs can be aggregated
to save space on the display. We also address the scalability for
the matrix-representation for future work. As a generic abstrac-
tion of anomalies in the glyph-based overview, the calculations
of anomaly scores are exchangeable and more extensive research
on additional available anomaly detection methods for the use
case needs to be done. The evaluation demonstrated that anom-
alies can be characterized in three manners. Hence, engineers
should be able to provide feedback on their findings, i.e., to clas-
sify the relevance of anomalies consequently for analyzing data
in further iterations more efficiently. Even if the target users are
not data mining experts, we experienced that they gain a quick
understanding of the proposed workflow. However, for future
work we will address guidance for visual analytics [11] to reduce
system complexity from the user perspective and support users
to further achieve their analysis goals. One promising venue we
see to this end is the application of visual interestingness mea-
sures [5] to automatically select cycle pairs from the database
showing significant visual patterns.

9 CONCLUSION
We propose a visual analytics approach to improve the engineer’s
daily work by the glyph-based visual analytics workflow.We have
found promising results on the given use case, but the concept
still needs to be proven with other datasets. We contribute to
the need of visual analytics approaches for condition monitor-
ing or anomaly detection in cyclic time series data. Further, our
approach devises a methodology to reduce large amounts of in-
dustrial data, by drawing attention to anomalous cycles on a
higher granularity level to increase efficiency and effectiveness
of engineers’ data analysis work.
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