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ABSTRACT
In this article we propose a data model for the visualisation
and exploration of topic evolution networks representing the
research progress in scientific document archives. Our model
is independent of a particular topic extraction and alignment
method and proposes a set of semantic and structural metrics for
characterizing and filtering meaningful topic evolution patterns.
These metrics are particularly useful for the visualization and
the exploration of large topic evolution graphs. We also present
a first implementation of our model on top of Apache Spark and
experimental results obtained for three well-known document
archives.
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1 INTRODUCTION
There is an increasing demand for practical tools to explore
the evolution of scientific research published in bibliographic
archives such as the Web of Science (WoS), ISTEX, arXiv or
PubMed. Revealing meaningful evolution patterns from docu-
ment archives has many applications and can be used to synthe-
size narratives from datasets across multiple domains, including
news stories, research papers, legal cases and works of litera-
ture [16].

The cognitive view of scientific evolution emphasizes the shared
knowledge and the change of ideas present in the document con-
tents [13], whereas the social view takes account of authorship
information and social interactions represented, for example, in
co-authorship and citation graphs [8, 17]. Bibliographic archives
often include both kinds of information and there also exist meth-
ods which combine both views to study science evolution [9].
In the interdisciplinary EPIQUE project1, we adopt the cogni-
tive view for modeling science evolution and assume that the
evolution only depends on the textual document contents (ti-
tle, abstract, main contents). This choice reduces the expressive
power of our evolution model, but it also decreases the "social"
bias and detects more easily possible interactions between sci-
entific ideas and contributions, independently of any particular
scientific community.

Graph-based topic evolution analysis builds on topic evolu-
tion networks which track complex temporal evolution dynamics
by periodical topic discovery and similarity-based topic align-
ment. Figure 1 shows two snippets of a single topic evolution
graph extracted from the arXiv2 corpus. The graph covers the

1This work was funded by French ANR-16-CE38-0002-01 project EPIQUE
2https://arxiv.org/

© 2020 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, Copenhagen,
Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-
tribution 4.0 International (CC BY 4.0)

period between 2000 and 2006 decomposed into three overlap-
ping time periods (3 year periods with one year overlap). Each
topic is represented by a rectangle containing the top-10 topic
terms obtained by a simple NLP document pre-processing step.
Emerging terms are shown in green, decaying term boxes are
colored in red, stable terms which exist both, in ancestor topics
and in descendant topics, are grouped in a blue boxe and specific
terms which appear only in the current topic are in white. The
thickness of the alignment edges reflects the similarity of the
connected topics. Several topics in both subgraphs contain the
term "database" and we can observe different evolution patterns.
The left subgraph shows that in period 2002 − 2004, topic 77
("databases, queries, optimization, integration") splits in two re-
search directions "databases, queries and constraints" (topics 100,
188) and "prediction, probability, random" (topics 104, 191, 152).
The right subgraph covers the same period with topics related to
"data mining" (83), "data access interfaces" (90), "information re-
trieval" (92), "logics, semantics" (80) and "knowledge, reasoning"
(54). The first three topics converge in 2002 − 2004 into a single
topic on "object, xml, store, data mining" (146) which splits in the
period of 2004 − 2006 into "storage servers" (170), "data mining
and management" (158) and "knowledge and ontologies" (150).

Building such meaningful topic evolution networks is still dif-
ficult and needs an important expertise in statistical text mining.
A first challenge for domain experts is to correctly tune method
specific hyper parameters with respect to a given dataset and
an expected output. A second challenge concerns the visual ex-
ploration of large topic evolution networks. Whereas existing
graph visualisation standards and tools like Gephi 3 or Graphviz 4
can be used to generate high-quality visualisations, their use for
exploring large graphs and identifying meaningful evolution
patterns is still limited. In this article we propose a generic evo-
lution network computation and visualization framework which
combines a high-level data model with big data technology for
extracting and exploring topic evolution networks. The graph
model relies on the notion of pivot topic graphs, which describe
the contents and the evolution dynamics of topics at different
levels of detail. The model also includes a number of high-level
semantic metrics which enable domain experts to specify mean-
ingful topic evolution patterns (queries) for exploring large topic
evolution networks.

The remainder of this paper is organized as follows. The next
section introduces the relatedwork on topic evolutionmodels and
is followed by Section 3which defines the EPIQUE topic evolution
model including the evolution pattern metrics and a simple query
language. Section 4 describes our workflow and gives an outline
of the algorithms for building topic evolution networks. Section 5
illustrates some experimental results obtained by applying our
evolution pattern metrics on three different document archives.
The final section presents our conclusions and outlines future
work.

3https://gephi.org/
4https://www.graphviz.org/

https://iscpif.fr/epique/


Figure 1: Pivot topics containing term "database" extracted from arXiv, green = emerging terms, blue = stable terms, red = decaying terms

2 RELATEDWORK
Topic modeling is a text mining task which consists in extract-
ing a compact representation of the content of a collection of
documents. Statistical topic models like LDA [4] define a proba-
bilistic procedure to generate documents as mixtures of a low-
dimensional set of topics. The goal of dynamic topic model [3, 19,
20] is to capture the evolution of topics in a sequential document
corpus. They generally achieve better predictive accuracy than
static topic models which ignore the temporal dimension. In our
work we use a simple topic evolution model where documents
are organized into possibly overlapping time periods and LDA is
applied on each document sub-collection independently from the
other time slices. As our experiments show, the results we obtain
with this strategy are already of good quality and the integration
of dynamic topic models is an open future work.

Topic detection and trend analysis systems [12] aim to iden-
tify and follow event-based topics across incoming streams of
documents. Usually, a tracking system is given seed documents
to monitor the document stream for further documents on the
same topic, whereas a detection system performs unsupervised
clustering of the incoming document stream. For example, Hu
et. al. [10] applied LDA and regression analysis to identify differ-
ent topic evolution patterns for preprints and papers from arXiv
and the Web of Science (WoS) in astrophysics for the last 20 years
(1992 − 2011). The paper redefines the notion of topic trend and
popularity, and demonstrates that open access preprints have
stronger growth tendency as compared to traditional printed
publications.

Trend analysis describes the temporal evolution of the popu-
larity, the utility or interest of topics, but does not take account
of their structural evolution where one topic can evolve into
several sub-topics or several topics can merge into a single topic.
Topic evolution networks represent this kind of structural topic
evolution and track complex temporal changes by periodic topic
discovery and directed acyclic networks aligning topics of dif-
ferent periods. Existing evolution network based frameworks
mainly can be distinguished by the chosen topic extraction and

alignment methods. [5] comes up with a method to enable a
bottom-up reconstruction of the dynamics of scientific fields.
They generate topics by word co-occurrence graphs and align
inter-temporal topics by Jaccard similarity [11]. [1] generates
topics by a Hierarchical Dirichlet Process (HDP) [18] and uses
Bhattacharyya similarity [2], representing the gradual speciation
and convergence similar to biologic evolution, for identifying
topic alignments. The alignment process also applies (asymmet-
ric) Kullback-Leibler divergence (KLD) for detecting topic split
and merge. [15] introduces a novel approach to the early detec-
tion of research topics by using the Computer Science Ontology5
to model research topics in the Rexplore system. They apply a
Clique Percolation Method (ACPM) for analyzing the dynamics
between existent topics. Other examples of science evolution
studies explore how "cognitive science" as a field has changed
over the last three decades [7] or analyze topic evolution patterns
(split, merge and knowledge transfer) in the field of Information
retrieval (IR) [6].

3 TOPIC EVOLUTION MODEL
This section presents the topic evolution model implemented in
the EPIQUE workflow. The model is based on a multi-stage graph
representation of topic evolution networks and introduces the
notion of pivot evolution graphs with appropriate evolution pat-
tern metrics. The sections also presents a simple query language
for searching meaningful evolution patterns.

Topic Evolution Graphs. We consider a corpusC of time-stamped
documents and a list P of periods. Cp denotes the corpus of doc-
uments having their timestamp in period p ∈ P . We consider
set of topics T and denote Tp ⊆ T the topics extracted from the
documents in Cp . A topic t = (v,p) ∈ Tp is defined by a (sparse)
weighted term vector v ∈ R |V | whereV is a vocabulary of terms.
We will denote by t .v the terms and by t .p the period of t . We
also define a function sim : T ×T → [0, 1] estimating the simi-
larity between topics in T . The similarity measure depends on

5http://cso.kmi.open.ac.uk/



the term vectors of topics and estimates their semantic proxim-
ity. For example in Figure 1, P has 3 periods: p1="2000 − 2002",
p2="2002 − 2004" p3="2004 − 2006", Tp1 contains topics 54 to 92,
and topic 92 = (v,p1), where v is a weighted vector containing
terms "queri", "optim", "databas", ... with a positive weight. The
similarity between topic 77 and topic 100 is sim(77, 100) = 0.74.

Based on the previous definitions, we define a topic evolution
graph as a directed labeled multistage graph Gβ = (T , E, sim, β)
overT where the edges E connect topics from consecutive periods
and their similarity is higher or equal to some threshold β . That
is, E = {(ti , tj ) ∈ T |sim(ti , tj ) ≥ β ∧ tj .p = ti .p + 1}.

Pivot Evolution Graphs. Threshold β strongly influences the
complexity of the obtained evolution graphs. It is easy to see that
Gβ ′

is a subgraph of Gβ for all β ′ ≥ β and G0 is the complete
graph connecting all topics of two consecutive periods. More
exactly, higher β values generate more "linear" graphs with many
isolated topics, whereas lower values generate more complex
and heterogeneous graphs containing a variety of potentially
interesting structures. Analyzing science evolution by using topic
evolution graphs then becomes a complex task which consists in
computing and visually exploring multiple graphs for different β
values.

To solve this problem, we propose a different approach which
allows users to formulate queries for characterising and extracting
interesting subgraphs from a set of evolution graphs defined by
a set of β thresholds. For this, we decompose topic evolution
graphs into the set of all connected subgraphs defined by all
paths containing a given topic t (one graph per topic). More
formally, a pivot evolution graph Gβ (t) = (T ′, E ′, sim, β) of topic
t in Gβ is the subgraph of Gβ which contains t and all ancestors
and descendants of t . The subgraph of Gβ (t) containing all nodes
which are reachable from t is called the future of t , denoted by
F β (t), and the subgraph of nodes which reach t is called the
past of t , denoted by Pβ (t). The couple (t, β) is called a pivot
topic with pivot graph Gβ (t), future F β (t) and past Pβ (t). It is
easy to see that if t1 appears in the future (past) of t2, then the
future (past) of t1 is a subgraph of the future (past) of t2 and t2
appears in the past (future) of t1. This property can be exploited
to filter topics wrt. future and past topics (see the definition of
Path Filters below).

The evolution of topics within their evolution graphs can be
characterized by the following metrics:
- The liveliness live(Gβ (t)) of a pivot topic (t, β) is defined by
the diameter of its pivot graph Gβ (t).

live(Gβ (t)) =max{lenдth(p)|p = path in Gβ (t)}

A high liveliness value describes a long living topic, whereas
a value equal to 0 corresponds to an isolated topic without
ancestors and descendants.

- The relative evolution degree revol(Gβ (t)) of a pivot topic (t, β)
is defined by the average topic dissimilarity (edge) weight in
Gβ (t).

revol(Gβ (t)) = 1 − avд(ti ,tj )∈E′(sim(ti , tj ))

A low relative evolution degree states that most topics evolve
slowly. On the other hand, a high value signifies that most
topics have an important "semantic gap". By definition, we
have revol(Gβ (t)) ≤ 1 − β .

- The pivot evolution degree pevol(Gβ (t)) of a pivot topic (t, β)
is defined by the average dissimilarity of all topics in Gβ (t)

with respect to the pivot topic t .

pevol(Gβ (t)) = 1 − avдti ∈T ′(sim(t, ti ))

A low pivot evolution degree signifies that the pivot topic does
not evolve much (all other topics are similar), whereas a high
value indicates that the pivot topic evolves rapidly .

- The split degree split(Gβ (t)) of a pivot topic (t, β) is defined
by the average outdegree of Gβ (t).

split(Gβ (t)) =
|E ′ |

|{ti |ti ∈ T ∧ outdeд(ti ) > 0}|
A low value signifies that the topics evolve along linear paths
and a high value signifies that the topics split into several
future sub-topics.

- The convergence degree conv(Gβ (t)) of a pivot topic (t, β) is
defined by the average indegree of Gβ (t).

conv(Gβ (t)) =
|E ′ |

|{ti |ti ∈ T ∧ indeд(ti ) > 0}|
A low value signifies that many topics depend on a single
parent topic and a high value signifies that many topics are
the result of the fusion of past topics.

Topic labeling. All topics t of some evolution graph Gβ are
labeled by the top-k highest weighted terms t .l in the topic term
vector t .v . Let t .lp ⊆ t .l and t .lf ⊆ t .l be the sets of past and
future terms which appear, respectively, in the ancestor topics
and in the descendant topics of t . Then, the terms in some topic
vector t .l are partitioned into the following four subsets of :
• emerging future terms t .le = t .lf − t .lp which do not exist in
past topics,

• decaying past terms t .ld = t .lp − t .lf which do not exist in
future topics,

• stable terms t .lд = t .lp ∩ t .lf which exist in the past and the
future topics of t , and

• specific terms t .ls = t .l − (t .lp ∪ t .lf ) which neither exist in the
past nor in the future topics of t .
The quadruple [t .le , t .ld , t .lд, t .ls ] is called the term label of t .

Pivot Topic Query Language. Liveliness, relative evolution de-
gree, pivot evolution degree, split degree and convergence degree
allow to characterize the amount and complexity of the evolution
of a topic in some evolution graph Gβ . Combined with other
filters on the topic labels and the graph structure, it is possible
to filter pivot topics satisfying rich evolution patterns within a
set of evolution graphs Gβi , 1 ≤ i ≤ n.

Let DB be the union of all future and past pivot topic graphs
F β (t) and Pβ (t). Operators can be composed by concatenation
(similar to Scala methods). For each attribute A we define a filter
A(X ) where X is a valid value, and for each ordinal attribute the
filter A(X ,Y ) contains a second attribute Y restricting X to be
the minimal (Y = 0) and maximal (Y = 1) value respectively.
• Term Filters select pivot graphs with respect to the pivot topic
labels. In particular, they can be applied to filter pivot graphs
wrt. to their emerging, decaying, stable, and specific terms.
Find all pivot topics where the term "deep learning" is emerging
and the term "big data" is decaying:
DB . Emerge ( "deep␣learning" ) . Decay ( "big␣data" )

• Temporal Filters allow the expert to filter all topics situated
within a certain time period. Find all topics between 2012 and
2017 :
DB . Period ( 2 0 1 2 , 0 ) . Period ( 2 0 1 7 , 1 )



• Pattern Filters can filter topics by their pivot graph structure
along their liveliness, split degree and convergence degree.
Find all pivot graphs which cover at least 6 periods where all
topics split into at least three subtopics in average:
DB . Live ( 6 , 0 ) . Sp l i t ( 3 , 0 )

• Evolution Filters are applied to filter topics by their relative
and pivot evolution degrees. Find all topics which are evolving
"slowly":
DB . Revol ( 0 . 3 , 1 )

The previous filters are applied to sets of pivot topics and can
be combined with other operators:
• Temporal Projection allows to project the pivot graph to its
past and future. Find all pivot topics with a linear future of a
minimal length of 3 periods:
DB . Future . Live ( 3 , 0 ) . Sp l i t ( 1 , 1 )

• Set Operations (union, intersection, minus) combine sets of
topics. Find all topics with decaying term "big data" and without
emerging term "deep learning":
DB . Decay ( "big␣data" )

.Minus (DB . Emerge ( "deep␣learning" ) )

• Path Filters select pivot topics by the existence of a path to/from
other topics. Find all topics with an emerging term "deep learn-
ing" where the future contains a path to a topic with the decaying
term "big data":
DB . Emerge ( "deep␣learning" )

. Future . Path (DB . Decay ( "big␣data" ) )

• Ordering: Find all topics about "big data" ordered by period:
DB .Term ( "big␣data" ) . Sort ( "Period" , "asc" )

4 IMPLEMENTATION
This section presents the implementation of the topic evolution
model in the context of the EPIQUE project. Our implemented
workflow is able to handle any scientific document corpus where
each document has a publication date and some text content (title,
abstract, keywords, ...).

EPIQUEWorkflow. Figure 2 details themain steps of the EPIQUE
workflow. The workflow starts with a standard document pre-
processing step composed of some lexical analysis, stop-word
removal, stemming, index term generation and term selection.
The main goal of this step is to extract for each document a term
index which precisely describes the scientific document contents.
The document preprocessing step is followed by corpus periodiza-
tion step which decomposes the document collection according
to several continuous, possibly overlapping, time windows, i.e.,
the same document may appear in two periods. Each time win-
dow defines a corpus period, which is the subset of documents
published during the corresponding time period. The choice of
the window size and sliding step depends on the granularity of
the document time-stamps (year, month, day) and on the number
of available documents in each period.

In the following step, each corpus period is analyzed by a topic
model. In our implementation, we use LDA [4] to extract the
topics of each corpus period. The main output of LDA is a topic-
termmatrix describing each topic as a weighted term vector. LDA
requires to set the number of topics to be generated in advance.
Tuning this parameter is important and subtle because it strongly
influences the diversity of the topics generated for each time

Figure 2: Topic evolution model of EPIQUE

period. We will illustrate in our experiments how experts can be
assisted in choosing the right number of topics.

The topic-term vectors generated by the topic extraction step
are combined with an appropriate similarity measure for aligning
topics from different periods. In our experiments, we use cosine
similarity which performs well in measuring the correlations be-
tween sparse vectors. Observe that the choice of LDA and cosine
similarity does not exclude the use of other topic models and
similarity measures like Jaccard similarity [11] or Battacharya
similarity [2].

The next step produces instances of topic evolution graphs fol-
lowing the model introduced in Section 3. The topics are aligned
to generate a single topic evolution graph Gβ0 for some small
alignment threshold β0 (see the central part of Figure 2). This
global evolution graph is then transformed into n families of
pivot evolution graphs defined by a set of alignment thresholds
βi > β0, 1 ≤ i ≤ n. Each family contains the pivot graphs Gβi (t)
of all pivot topics (t, βi ). We only consider pivot graphs with
at least one edge and ignore isolated pivot topics (single node
graphs). The final database then contains at most n × |T | pivot
graphs where |T | is the number of topics in Gβ0 . These graphs
can then be queried using the filters defined in Section 3 and we
will illustrate the result of some queries in Section 5.

Pivot Graph Computation. We first present an algorithm that
computes Gβi for a sequence of relative evolution bounds β0,
β1, ..., βn where βi < βi+1. The basic idea of this algorithm is
to exploit the monotonicity property that Gβi+1 is a subgraph
of Gβi for all 0 ≤ i < n. The input of the algorithm is a set of
time-stamped topics T , a similarity function sim and a sequence
of βi values. Topics are represented as a binary table Topics(t,a)
storing the topics t and their periods a, the sequence of βi values
is defined as a binary table Beta(b, i) where b = βi and the
similarity function is defined as a table Sim(x,y, s) where s =
sim(x,y). The following recursive Datalog program computes all
Gβi as a relational table Graph(x,y, s,a, i) connecting all topics
x of period a to all topics y of period a + 1 where there exists an
evolution edge of similarity s = sim(x,y) ≥ βi .

Graph ( x , y , s , a , 0 ) : − Topics ( x , a ) , Topics ( y , a +1 ) ,
Sim ( x , y , s ) , Beta ( b , 0 ) , s >=b

Graph ( x , y , s , a , i ) : −Graph ( x , y , s , i −1 ) ,
Beta ( b , i ) , s >=b

Starting from Graph we can compute all pivot topic evolution
graphs for all topics in T and beta value βi . This is done by
generating first a table TC(x,y, s, l,a, i) containing the transitive



closure of graph Gβi where l is the distance between x and y6, a
is the period of x and s is the similarity between x and y.

TC ( x , y , s , 1 , a , i ) :−Graph ( x , y , s , a , i )
TC ( x , y , s , l +1 , a , i ) : −TC ( x , z , _ , l , a , i ) ,

Graph ( z , y , _ , _ , i ) , Sim ( x , y , s )

This table can then be used to compute the future and the past
graph for each pivot topic p.

Future ( p , x , y , r s , ps , l , a , i ) : −TC ( p , x , _ , _ , a , i ) ,
TC ( p , y , ps , l , _ , i ) ,Graph ( x , y , r s , _ , i )

Past ( p , x , y , r s , ps , l , a , i ) : −TC ( x , p , ps , l , a , i ) ,
TC ( y , p , _ , _ , _ , i ) ,Graph ( x , y , r s , _ , i )

Graphs Past and Future contain the pivot topic evolution graphs
of all topics where a tuple (p, x,y, rs,ps, l,a, i) represents an edge
(x,y) in Gβi (p) for pivot p in period a with relative evolution sim-
ilarity rs , pivot evolution similarity ps of x (Past ) and y (Future)
and distance l of x (Past ) and y (Future) from p.

Table size estimation. We can estimate the size of each table
as follows. Let p be the number of periods, t be the number of
topics per period and k be the maximal outdegree and indegree
in Gβi . Then the size of Graph is bound by |Graph | ≤ k ∗ t ∗
(p − 1) (remind thatGraph is a multistage graph). The size of the
transitive closureTC is bound by |TC | ≤ k∗t ∗p∗(p−1)/2. Finally,
both graphs Future and Past , contain for each tuple (x,y, s, l,a, i)
in the transitive closure TC (x and y are connected by a path of
length l in Gβi ), at most k tuples Future(x,y, _, _, _, _) and at
most k tuples Past(y, x, _, _, _, _). Therefore, the size of Future
and Past is bound by k times the size of the transitive closure:
|Future | ≤ k2 ∗ t ∗ p ∗ (p − 1)/2. As our experiments show, even
for small β-thresholds (β = 0.2) the maximum indegree and
outdegree of a topics is smaller than k = 10 and we generally
assume about t = 100 topics over p = 20 periods. Then, the size
of the transitive closure is |TC | ≤ 10 ∗ 100 ∗ 10 ∗ 19 = 1.9 ∗ 105
edges and the size of |Future | ≤ 1.9 ∗ 106 edges. These numbers
are much smaller in practice (see Section 5) and current big data
frameworks can easily manage graphs of this size. We plan to
study possible optimizations in the future.

Metrics computation. The liveliness, relative evolution degree,
pivot evolution degree, split degree and convergence degrees of
all pivot evolution graphs can directly be computed by a stan-
dard SQL aggregation query. For example, the following query
computes these metrics for all future pivot evolution graphs:

create view P i v o t F u t u r e as
s e l e c t p , i max ( l ) as l i v e l i n e s s ,

1−avg ( r s ) as r evo l ,
1−avg ( ps ) as pevol ,
count ( ∗ ) / count ( d i s t i n c t x ) as s p l i t ,
count ( ∗ ) / count ( d i s t i n c t y ) as conv

from Fu tu r e
group by p , i

Observe that for evaluating the pivot query filters presented in
Section 3 without the Path-operator, it is sufficient to storeGraph
(for visualization) and PivotFuture , PivotPast and PivotAll (for
filtering). An efficient implementation of Path queries, for exam-
ple by using graph-labeling schemes for checking node reacha-
bility in acyclic graphs, is part of our future work.

6Since Gβi is a multistage graph, all paths between two nodes are of the same
length.

Figure 3: EPIQUE web application architecture

Architecture. Figure 3 gives an overview of the architecture of
our web application implemented on top of Apache Spark and
Jupyter Notebook. The entire process to study science evolution
over a corpus is splitted into two steps for building the pivot
evolution graphs and for interactively exploring these graphs.
Each step corresponds to a separate user interface. The evolution
graph generation is implemented in Scala and exectued through
the Spylon7 kernel. Evolution graph exploration uses a standard
Python kernel to take advantage of advanced Python 3 graphical
user interface libraries for facilitating user interaction.

5 EVALUATION
Experiment Setting. We conducted our experimentations on

three real-world data sets of different scales by using the titles
and the abstracts of each document. The smallest dataset, called
ISTEX, contains 14 851 papers in the domain of ecological eco-
nomics and environmental economics. The second one is arXiv, a
repository of electronic preprints approved for publication after
moderation, which consists of scientific papers in the fields of
mathematics, physics, astronomy, electrical engineering, com-
puter science, quantitative biology, statistics, and quantitative
finance, etc. This data set contains about 1.1 million documents.
The third dataset is from the Wiley online library which contains
1 million documents including additional domains such as agri-
culture, art, humanities, etc. The statistics over these three data
sets are summarized in Table 1, where #D is the total number of
documents, #T is the number of topics per period, #G is the total
number of pivot graphs, #E is the number of edges (total and per
pivot graph).

We run our EPIQUE workflow on an Apache Spark cluster in
standalone mode with Spark version 2.4, Scala version 2.11 and
Java version 8. The cluster consists of 11 machines: one driver
has 20GB memory, and 10 worker nodes, each one having 24
CPU cores with hyperthreading and 50 GB memory. For all of
our experiments, we used the documents extracted from a 20-
year period and split each corpus into 10 slices by using the time
window spanning 3 years with 1-year overlap. Thus, we have 10
LDA models for each corpus.

Column LDA in Table 1 shows the average execution time
for computing the LDA model per period. This computation is
only done once and mainly depends on the number of extracted
topics per period. In Table 1, we can see that the Wiley corpus is
about 70 times larger than ISTEX but has a similar LDA execution
time for the same number of topics. On the other hand, the LDA
execution time is more important for arXiv, where we extract a
higher number of topics.

7https://github.com/Valassis-Digital-Media/spylon-kernel



Table 1: Dataset statistics

Datasets #D Period #Periods #T #G #E #E LDA G G

total total total / period total total per pivot sec / period sec (total) sec / pivot

ISTEX 14 851 1991 − 2010 10 20 1806 211 850 117 28 490 0.27
arXiv 1 156 300 1998 − 2017 10 50 3364 272 944 81 40 641 0.19
Wiley 1 023 515 1996 − 2015 10 20 1360 198 179 145 30 505 0.37

The last two columns G give the total and average execution
time for the pivot graph computation step.We computed the pivot
graphs for 9 β-threshold values spanning from 0.1 to 0.9. The
total execution time obviously depends on the β-thresholds. The
number of the thresholds increases the number of pivot graphs
to be computed and the values of the thresholds defines the size
of the computed pivot graphs. The average execution time to
construct a pivot graph (last column) can be obtained by dividing
the total time to build all pivot graphs by the number of pivot
graphs. For example, for ISTEX corpus, we obtained 1806 pivot
graphs in 490 seconds which gives the average value of 0.27 sec-
onds. The average pivot graph computation time mainly depends
on the pivot graph size. This can be seen for the arXiv dataset,
which has the smallest average number of pivot graph edges
(#E/pivot = 81) and the lowest average pivot graph computation
time (0.19 seconds/graph).

Pivot Topic Analysis. The metrics defined in Section 3 can be
used for the structural and quantitative analysis of the evolution
of topics. The objective of this section is to explore the impact of
the main parameters,i.e., the β threshold and the topic number
#T , on the structure and the semantics of the generated pivot
evolution graphs.

Figure 4 shows the distribution of future pivot evolution graphs
in arXiv wrt. three groups of metrics, the relative evolution degree
vs. the pivot evolution degree , the split degree vs. convergence de-
gree and the liveliness vs. the split degree. The figure is organized
into 3 lines of 3 sub-graphs where each line corresponds to identi-
cal fixed parameters β and #T and each sub-graph corresponds to
a group of metrics. On the first line, we set β = 0.2 and #T = 50.
On the second line #T remains the same (#T = 50) whereas β is
increased to β = 0.5. On the third line, β remains the same as in
the 2nd line (β = 0.5) whereas #T is increased to #T = 150. Each
Figure only shows pivot topic graphs with at least two nodes and
the number of isolated topics is reported in the figure captions.

When comparing Figure 4a with Figure 4d, we can see that for
the lower threshold β = 0.2, pivot topics evolve more than for
the higher value β = 0.5. Lower β values also allow pivot topics
to connect with more topics than higher β values which only
connect similar topics. This is shown in Figure 4b which repre-
sents a large number of complex pivot topic graphs with higher
split and convergence degrees than the pivot topic graphs in Fig-
ure 4e. The previous observation is also confirmed in Figure 4c
and Figure 4f which compare topic liveliness vs. split degree: the
lower threshold β = 0.2 generates pivot graphs which are more
complex than pivot graphs with the same liveliness scores gen-
erated by β = 0.5. Therefore, for a fixed #T , varying β allows
for revealing interesting evolution patterns at different levels of
detail where the evolution of some topic might be too complex
for low β values and become more intelligible for higher β values.

When the topic number per period increases (#T = 150 in Fig-
ures (g), (h) and (i)), the workflow generates more pivot graphs,

among which some become very complex. For example, in Fig-
ure 4g, pivot topics tend to evolve a lot even for a low relative
evolution degree. The pivot graphs in Figure 4h are much more
complex than the graphs generated by the same β-threshold with
#T = 50 topics (Figure 4e and Figure 4f). As we can see, the split
degree attains a value of 19 compared with maximal split degree
1.5 in Figure 4e. The increase of #T reduces the proportion of
isolated topics, 30% for #T = 150 compared with 60% for #T = 50.
As we see in the next section, this is also due to the existence
of many similar topics in each period, which also increases the
probability that two topics can be aligned.

Diversity-based Topic Number Selection. Figure 5 shows a fu-
ture arXiv pivot graph generated for #T = 150 and β = 0.5, which
corresponds to a data point in Figure 4h where split(Gβ (t)) = 8.3
and conv(Gβ (t)) = 6.4. The graph connects topics with similarity
higher than β = 0.5 and has nevertheless a high split and conver-
gence degree. When looking in more detail, we can observe that
the topics in each period are also very similar which explains
why the single root pivot topic is connected to more than 20
topics in the second period.

In order to build pivot graphs over more representative topic
sets, we use topic diversity for estimating the quality of a topic set.
The topic diversity inside a period can be estimated by observing
the dissimilarity distribution over all topic pairs inside the period.
For example, Figure 6a and Figure 6b shows the topic diversity
obtained for different LDA models applied to 1164 documents
published in arXiv during 1998 to 2000 and 16 072 documents
published in arXiv during 2008 to 2010 respectively. Each LDA
model corresponds to a different number of topics #T ranging
from 10 to 150. For example, we can see in Figure 6a that for #T
ranging between 40 and 60, less than 5 percent (blue line) of all
topic pairs have a similarity value higher than 0.1 (dissimilarity
value lower than 0.9), but this diversity value rapidly drops for
#T > 60. For example, for #T = 100, the same similarity bound
of 0.1 only holds for the half of the topic pairs (green median
line). Figure 6b shows that for the larger corpus we can achieve
the same diversity for much more topics (the topic diversity for
#T = 140 topics in period 2008 − 2010 is similar to the topic
diversity for #T = 60 topics in period 1998 − 2000. This kind
of grid analysis allows experts to choose an optimal number of
topics for their analysis.

Pivot Topic Exploration. Our query language allows users to
select topics in specific regions of the sub-figures in Figure 4. For
example, the following queryQ1 chooses all topics which appear
in the upper right window of Figures 4a and on the right part of
Figure 4b on the line corresponding to the liveliness value 5 in
Figure 4c.

Q1 :=DB . Future . Revol ( 0 . 5 , 0 ) . Pevol ( 0 . 6 , 0 )
. Sp l i t ( 2 , 0 ) . Live ( 5 )



(a) β = 0.2, #T = 50, #Pivot = 477, #Isolated = 23 (b) β = 0.2, #T = 50, #Pivot = 477, #Isolated = 23 (c) β = 0.2, #T = 50, #Pivot = 477, #Isolated = 23

(d) β = 0.5, #T = 50, #Pivot = 198, #Isolated = 302 (e) β = 0.5, #T = 50, #Pivot = 198, #Isolated = 302 (f) β = 0.5, #T = 50, #Pivot = 198, #Isolated = 302

(g) β = 0.5, #T = 150, #Pivot = 1014, #Isolated = 486 (h) β = 0.5, #T = 150, #Pivot = 1014, #Isolated = 486 (i) β = 0.5, #T = 150, #Pivot = 1014, #Isolated = 486

Figure 4: Distribution of future pivot evolution graphs in arXiv wrt. their metrics.

Figure 5: G0.5(495) with #T = 150

(a) 1998-2000 (b) 2008-2010

Figure 6: Dissimilarity distribution by topic number



(a) Q1: r evol ≥ 0.5 ∧ pevol ≥ 0.6 ∧ split ≥ 2 ∧ l ive = 5
(b) Q2: r evol ≥ 0.5 ∧
pevol ≥ 0.6∧split ≤

1.2 ∧ l ive = 5

(c) Q3: r evol ≤ 0.4 ∧

pevol ≤ 0.5 ∧ split ≥

1.5 ∧ l ive = 3

(d) Q4: r evol ≤ 0.4 ∧
pevol ≤ 0.5∧split ≤

1.2 ∧ l ive = 5

Figure 7: Examples of query results which filter pivot topics by using aforementioned metrics

Observe that the user does not specify the β-threshold. A result
example of query Q1 and three other queries is shown in Fig-
ure 7. Although Figure 7b and Figure 7d have the same structure,
they have different evolution pace (corresponding to different β
values). The pivot graph in Figure 7b has more emerging terms
(green part) whereas the pivot graph in Figure 7d has more sta-
ble terms (blue part) which correspond to our queries to select
high-evolution and low-evolution pivot topics respectively.

Apart from these metric-based filters, our query language also
allows users to define other multi-dimensional filtering criteria
including topic labels and temporal conditions for the selection
of pivot topics.

6 CONCLUSION AND FUTUREWORK
We have presented a new framework for the visualisation and ex-
ploration of topic evolution networks representing the progress
and evolution of research in scientific document archives. This
framework has been implemented on top of Apache Spark using
LDA and cosine similarity for topic extraction and topic align-
ment. The user can express complex evolution pattern queries to
obtain the relevant pivot topic graphs. A first prototype [14] is
currently used to extract complex evolution patterns for different
scientific domains as part of the EPIQUE project and in collabo-
ration with philosophers of science. As future work we intend to
optimize the computation of pivot topic evolution graphs and ex-
ploit the LDA document-topic matrix for enriching the analysis.
Additionally, we plan to integrate other topic extraction methods
than LDA.
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