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Abstract
We present efficient algorithmic mechanisms to partition graphs
with up to 1.8 billion edges into subgraphs which are fixed points
of degree peeling [3]. Similarly to [1], we are able to process graphs
with tens of millions of edges in seconds and hundreds of millions
of edges in minutes. For fixed points that turn out to be larger than a
desired interactivity parameter we further decompose them with a
novel (to our knowledge) linear algorithm into what we call “graph
waves and fragments”. This decomposition is used to create span-
ning views of fixed points that we call “DAG Covers”. We illustrate
these decompositions by presenting intuitive and interactive visu-
alizations of the meta-structures of a variety of publicly available
data sets including social, web, and citation networks [18].
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1 Introduction
How far can we simplify computation and visualization in order
to maintain “large scale” macro structural graph features without
losing the ability to interactively extract more detailed connectivity?
Some progress in this direction appears in [3]. In general, macro
structural graph views can be obtained by using some form of
vertex or edge aggregation that can be represented as hierarchy
trees [4, 8, 12, 23, 29]. The choice of suitable representations that
facilitate smooth visual interaction is a subject of active research
[13, 19, 20, 22]. In [11] an edge stratification technique is proposed
that is applied to a given layout of a graph with a few hundred
vertices and edges. All of these techniques require algorithms with
running time greater than linear in the number of graph elements.
Our focus is on graph decompositions that are applicable to graphs
of several orders of magnitude larger for which a direct layout is
unavailable due to memory constraints or impractical due to screen
size contraints.

Some hierarchical decompositions have faster techniques. Major
approaches include SPQR-trees, k-core and nuclei based decomposi-
tions [1, 5, 10, 15, 17, 24] or even simple stochastic sampling [21, 27].
k-connectivity decomposition techniques have been explored in
[4, 6, 16] and terrain metaphors have been explored in [2] and [28].
For large graphs, such techniques are limited because there is no
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known canonical hierarchical decomposition for k-connectivity.
The notion of cores was first introduced in [25] and their utiliy was
further identified in [5]. One of the main advantages of core based
vertex decompositions is that they can be computed efficiently [10]
and they provide an arguably “natural” hierarchical view of any
network. The vertex core decomposition has been used to obtain
edge partitions where each set of edges in the partition is a max-
imal edge subgraph that is a fixed point of degree peeling. The
maximality of these decompositions is desirable because it provides
bounds on the connectivity between the decomposed subgraphs [3].
The pragmatic challenge of computing this iterative edge “layer”
decomposition for graphs with several hundred million edges in a
few minutes has been undertaken in [1]. However, if a particular
layer in the decomposition is large, the navigation and visualiza-
tion of such big fixed points is still a major task. For example, in
the Friendster social network there are four fixed points with over
100 million edges. We address this issue by introducing a novel
and efficient algorithm that we call the “wave decomposition”. The
“waves” produced by the decomposition can be naturally separated
into connected sub-waves which can in turn be refined into a collec-
tion of “fragments”. For large fragments we propose using maximal
matching based contractions combined with graph rendering and
clustering techniques similar to [9, 30]. Our notion of fragments is
quite different to that used in [7]. The ultimate goal of this work is
to obtain a humanly-interpretable, hierarchical description of any
graph.

First we introduce fixed points and waves in sections 2 and 3. In
sections 4 and 5 we show sample visualizations and runtime results.
Lastly we discuss our contributions and future work in section 6.

2 Fixed Points and Degree Peeling
We deal with undirected graphs𝐺 = (𝑉 , 𝐸) with vertex set𝑉 (𝐺)
and edge set 𝐸 (𝐺). We denote by 𝑛 the number of vertices in 𝑉 ,
𝑚 the number of edges in 𝐸, and the degree of a vertex 𝑢 ∈ 𝑉 by
deg(u).
Definition 1. (Peel Value) The peel value of a vertex 𝑢 ∈ 𝑉 (𝐺)
denoted 𝑝𝑒𝑒𝑙𝐺 (𝑢) is the largest 𝑖 ∈ [1, 𝑑𝑒𝑔(𝑢)] such that 𝑢 belongs to
a subgraph of 𝐺 of minimum degree 𝑖 .

Definition 2. (Graph Core) The core of 𝐺 , 𝑐𝑜𝑟𝑒 (𝐺), sometimes
called the k-core of𝐺 , is the subgraph induced by the maximal subset
of vertices of 𝐺 whose peeling value is maximum.

Cores can be intuitively thought of as dense subgraphs. Although,
they are not necessarily maximally dense in any known way, [26]
shows that k-cores are 2-approximate locally dense subgraphs.

In a previous work, [3] utilizes k-cores to produce an iterative
decomposition of a graph’s edges into layers of fixed points (which
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we redefine below) with the same peel value. Since the decomposi-
tion forms a partition of edges, we call vertices that appear in more
than one fixed point, clone vertices. The notion of clone vertices can
be used to define a diversity measure and are useful for detecting
community overlap [3].
Definition 3. (Fixed Point) A graph 𝐹𝑘 is a fixed point of degree
peeling 𝑘 if 𝑐𝑜𝑟𝑒 (𝐹𝑘 ) = 𝑉 (𝐹𝑘 ) and the peel value of each vertex in 𝐹𝑘
is 𝑘 .

From proposition 1 in [3] it is easy to verify that a fixed point
of peel value k must have minimum degree k and average degree
strictly less than 2k. In Figure 1 we show the distribution of the
average degrees of fixed points in the Patents citation and Friendster
social networks, along with two black lines indicating the minimum
and supremum average degree possible.

cit-Patents

com-Friendster

Figure 1: Plots of average degree of fixed points (y-axis) by peel
value (x-axis) with frequency of fixed points of a given peel value
and average degree along the z-axis being emphasized by color (blue
to red) and point size. Note that the x-axis and z-axis are shown on
a log scale.

What we call fixed points of degree peeling 𝑘 , fixed points of peel
value k, or simply fixed points, are in fact extensions of forests called
k-dense forests in [14]. In that paper the authors first formulate the
notion of k-dense cycles as connected graphs where each vertex
is of degree > k. From there it is natural to define a k-dense forest
as a graph without k-dense cycles. Using any algorithm to find
the k-core of a graph, one can find what [14] calls a k-elimination
order of a fixed point of degree peeling k. Thus, by Lemma 2.9
in [14] the definition of a fixed point of degree peeling k and the
definition of a k-dense forest are equivalent. The importance of
noticing that fixed points are generalizations of trees is that it
motivates a decomposition of fixed points that works by iteratively
peeling “leaf-like” fragments (subsection 3.1).

3 Waves and Fragments
Waves are introduced in order to decompose Fixed points. Previous
works do not address decompositions of fixed points if they are

large. To further decompose fixed points we introduce a “wave de-
composition” which forms an edge partition by iteratively removing
“leaf-like” fragments.

3.1 Wave Decomposition
Definition 4. We define the boundary of a vertex set 𝑆 ⊂ 𝑉 as
𝜕𝑆 = {𝑣 ∈ 𝑉 : ∃ (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆}. We define the k-
boundary of S as 𝜕𝑘𝑆 to be the vertices in 𝜕𝑆 with degree less than k
restricted to the graph induced by 𝑉 \ 𝑆 . We extend these boundary
definitions to a collection of disjoint sets by taking their union.

Definition 5. (Graph Fragment) Given a seed set of vertices 𝑆 ⊂
𝑉 the fragment generated by S, denoted frag(S), is the set of edges,
(𝑢, 𝑣), such that 𝑢 ∈ 𝑆 .

In Figure 2 (right) we show a decomposition of a fixed point into
fragments. Next, we use graph fragments to introduce the notion
of graph waves of fixed points.
Definition 6. (Graph Waves of Fixed Points) A wave of a fixed
point of peel value𝑘 is the union of fragments in the sequence {frag(𝑆 𝑗 )}𝑚𝑗=0
with 𝑆0 being the set of vertices of minimum degree 𝑘 and each sub-
sequent 𝑆 𝑗+1 = 𝜕𝑘 (∪

𝑗

𝑖=0𝑆𝑖 ).
Notice that a fixed point could consist of only one wave and a

wave could consist of only one fragment (i.e. k-regular graphs).
Due to space limitations pseudo code of the wave decomposition,

Alg.1, is in the appendix. If we let 𝑘 = 1 then 𝐹1 is a forest and the
first fragment is the neighborhood of the leaves of that forest. For
𝑘 > 1, the wave decomposition mimics the iterative removal of
leaves in a forest by removing collections of k-leaves (a.k.a frag-
ments) from k-dense forests (a.k.a fixed points of degree peeling)
[14]. The example in Figure 2 shows a coloring corresponding to
the edge partition formed by applying the wave decomposition.
The wave decomposition was heavily inspired by the method of
computing k-cores in [10] and much like the implementation of
that algorithm the wave decomposition can be computed in linear
time and space with respect to the number of edges in a graph.

Figure 2: (Left): A fixed point of peel value 2whose edges are colored
based on the wave decomposition (wave 1: blue, wave 2: green, wave
3: red). (Right): The same graph sub-divided into fragments: wave 1
with 1 blue fragment, wave 2 with 3 fragments (green, yellow, or-
ange), and wave 3 with 1 red fragment.

3.2 DAG Cover of Waves and Fixed Points
The concept of fragments is powerful in its own right. Consider
the ordered collection of vertex sets 𝑆 = {𝑆0, 𝑆1, ..., 𝑆 𝑗 } as defined
in Def. 6. These sets form a vertex partition of the wave vertices.
We construct a directed acyclic graph (DAG) representation of the
wave decomposition by directing thoses edges (𝑥,𝑦) with 𝑥 ∈ 𝑆𝑖
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and 𝑦 ∈ 𝑆𝑖+1 for 0 ≤ 𝑖 < 𝑗 − 1. We call this a DAG cover of a
wave because it contains (or covers) all the vertices of the wave
plus the edge cuts between consecutive sets in 𝑆 . We create a DAG
cover of a fixed point by using its ordered wave decomposition.
Similarly we could create a DAG cover for an entire graph by using
its fixed point decomposition. Moreover, we use this DAG cover in
conjunction with other techniques to produce graph drawings. In
particular, we next illustrate how we use the DAG cover to visualize
stratification of fixed points and their waves.
3.2.1 Visualization of Fixed Points with DAG Cover

We use three different techniques – color, force manipulation,
and edge sparsification – driven by the DAG cover to provide better
interpretability of the structure of fixed points.

The most visually striking technique is to use the DAG cover
to color the vertices and edges of a graph. First we assign a color
to each vertex in the DAG cover based on the sets in 𝑆 , then we
color the edges of the original graph as a function of the color of
their end points (e.g. hue average). Using a spectrum color scheme
from blue to red, we show a few examples of fixed points (Figure 3)
for which the DAG coloring reveals more clearly a stratification
structure than an uncolored drawing with the same layout.

Figure 3: (Left): A fixed point of peel value 22 from the Patents cita-
tion network with 742 vertices and 12985 edges shown using a basic
force-directed layout in grey. (Right): The same fixed point shown
with the DAG coloring.

Another technique we use is to manipulate the forces in a force-
directed layout using the information of the DAG set ordering. In a
standard force-directed layout, there is a repulsive force between
each pair of vertices and an attraction between pairs of vertices
connected by an edge. In addition to those forces, we apply unique
radial forces to each of the sets of vertices in 𝑆 centered at increas-
ingly larger radii based on their order in 𝑆 . Furthermore, we remove
forces along the edges which are not part of the DAG cover. This
tends to separate out the vertex sets in the layout and helps untan-
gle hairball looking fixed points when the standard force-directed
layout does not. Figure 4 shows a fixed point with four sets dis-
played using a standard force-directed layout and a DAG induced
force-directed layout. Unlike the standard layout, the DAG induced
layout helps to easily identify independent (or “near-independent”)
sets of vertices to highlight a “bipartite-like” structure even without
using color.

For a typical, interactive force-directed layout drawing applica-
tion there is a maximum number of edges that can be rendered
before making the system unresponsive. For such cases we could
push the system to draw larger fixed points by only rendering the
edges in the DAG cover. Figure 5 shows a graph rendered before
and after filtering by the DAG cover. Note that the full graph took

Figure 4: A fixed point of peel value 30 from the Patents citation
networkwith 80 vertices and 1547 edges drawnwith a force-directed
layout (Left) and with forces applied to the DAG sets (Right).

on the order of a minute to render on a machine without a dedi-
cated GPU whereas the DAG cover visualization rendered nearly
instantly and remained interactive. The fraction of edges in the
DAG cover is clearly less than or equal to the number of edges in
the original graph and in practice the reduction often exceeds a
factor of 2. Despite not having all the edges of the original graph,
the graph drawing of just the DAG cover edges in combination
with the DAG coloring and DAG set forces often still shows the
general graph stucture.

Figure 5: A fixed point of peel value 32 from the Friendster social
network with 752 vertices and 21,055 edges drawn with a force-
directed layout (Left) and with only the 2,686 DAG cover edges
(Right).

4 Visual Exploration
Using the iterative edge core and wave decompositions we have
designed an interactive graph visualization tool capable of exploring
large graph data up to 1.8 billion edges. The system offers multiple
high level views including a spiral view and a layer view that, in our
experience, aid in meaningful graph exploration. These structures
allow the user to make intuitive decisions as to which subgraphs
(created by our decompositions) to zoom in to for deeper analysis.
We define interactivity parameters 𝐼𝑒 and 𝐼𝑣 to be the maximum
number of edges and vertices respectively that a user allows to
be drawn on their screen. These parameters are predominantly
dependent on screen size, GPU power, and user preference for
interactivity versus displaying more data points/links at a time.

4.1 Fixed Points Spiral View
To offer users an overall view of the entire collection of fixed points
appearing in a very large graph we tabulate the fixed points of
degree peeling found through the iterative edge core decomposition.
We then create buckets containing connected fixed points. These
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connected fixed points are grouped together into buckets according
to the number of edges. Each 𝑖𝑡ℎ bucket has fixed points of size
s such that 𝑙𝑜𝑔𝑖−1 (𝑚) < 𝑠 ≤ 𝑙𝑜𝑔𝑖 (𝑚). This bucketing scheme is
visually represented by a spiral of boxes that we call the spiral view.
It provides direct access to any group of similarly sized fixed points
in the graph data set.
4.1.1 Spiral View

The spiral view consists of boxes of two types corresponding to
the type of fixed points the bucket contains. If a bucket has many
fixed points we show a polar bar graph of frequencies of fixed
points per unique size. If a bucket has only one fixed point larger
than the interactivity parameter, 𝐼𝑒 , we show a 2D wave map as
described in subsubsection 4.2.1. Notice how in (Figure 6) the size
of the spiral view of the larger Friendster network (1.8 billion edges)
is about the same as that of the smaller Patents citation network
(only 0.16 billion edges). Since the size of the spiral view scales at
most logarithmically with graph size it works well for navigating
graphs at almost any scale.

Figure 6: The spiral view of the Patents citation network with
3,774,768 vertices and 16,518,947 edges (Left) and the Friendster
social network with 65,608,366 vertices and 1,806,067,135 edges
(Right). The colors indicate the relative size of the buckets (num-
ber of edges increasing from blue to red) and with stronger opacity
indicating higher density.

4.1.2 Layer View
The layer view (Figure 7 top) shows a rectangular representa-

tion of buckets. The size of each sub-rectangle encodes the overall
number of fixed points in the bucket. When a bucket is clicked,
either the fixed points in the bucket are displayed sorted by peel
value and size, or a 2D wave map (see subsubsection 4.2.1) is shown
if there is only one very large fixed point (i.e. size greater than
𝐼𝑒 ) in the bucket. Actually, the system only shows one graph for
each fixed point of the same degree distribution in a bucket and
explicitly indicates the multiplicity of such graphs. For example, if
a fixed point is annotated as x16 it means that there are 16 fixed
points with the same degree distribution as the one being shown.
Furthermore, the user can filter the displayed fixed points by peel
value using a layer ribbon (Figure 7 bottom left).

4.2 Visualizing Waves and Fragments
For fixed points larger than the interactivity parameter 𝐼𝑒 we use
the wave decomposition of the fixed point to partition its edges
into smaller chunks which can be viewed individually. To have an
overview of the whole fixed point we use 2D and 3D wave maps,
that give a sense of the distribution of wave sizes in a fixed point.

Figure 7: (Top): The layer view of a bucket smaller than 𝐼𝑒 . (Bottom
Left) The first 13 layers of the layer ribbon. (Bottom Right): The 2D
wave map of a bucket larger than 𝐼𝑒 which consists of a fixed point
with 10,585 vertices and 103,101 edges. All of these are produced
from the Patents citation network

4.2.1 2D Wave map
A 2D wave map (Figure 7 bottom right) is a collection of con-

centric rings. Each ring represents a wave and is made of multiple
arcs representing connected components (or sub-waves) of a wave.
The thickness of any arc represents the number of fragments in
the sub-wave and the arc length is proportional to the number of
edges in that sub-wave. The arcs are color coded by increasing
wave number, from blue to red.
4.2.2 3D Wave map

A 3D wave map (Figure 8) is a “vase” made of multiple conic
frustums, each representing a wave. The volume of each frustum is
proportional to the number of edges in that wave and the area of
the intersection of two frustums represents the number of shared
vertices between those two waves. Recall, waves form an edge
partition of the fixed point so any two waves may share common
vertices, however only the shared vertices of adjacent waves are
represented in the 3D wave map. Users can either select a wave or
individual fragments of wave larger than 𝐼𝑒 to view the correspond-
ing subgraph. The color coding of the frustums and the color bar is
the same as for the 2D wave map (see subsubsection 4.2.1).

5 Implementation and Results
5.1 Procedure
The process we use to perform the iterative edge-core decomposi-
tion is taken from [1]. The implementation of the wave decomposi-
tion was partly inspired by the implementation for computing the
k-core of a graph in [10]. The connected components implemen-
tation used was from the Boost Graph Library. The visualization
was developed using D3, three.js, chart.js, plotly.js. To produce our
results we performed the following steps:
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Figure 8: (Left): The 3D wave map of a fixed point of peel value 11
with 18,208 vertices and 151,196 edges from the Patents citation net-
work. (Right): The 3D wave map of a fixed point of peel value 71
with 126,835 vertices and 8,339,470 edges from the Friendster social
network.

(1) Input: a graph 𝐺 = (𝑉 , 𝐸) represented using an edge list.
(2) Pre-processing: each edge 𝑒 ∈ 𝐸 is reversed (i.e. 𝑒 = (𝑢, 𝑣)

becomes 𝑒 = (𝑣,𝑢)) and appended to the original edge list. The
modified edge list is then sorted in increasing order removing
duplicates. Additionally we remove self loops, i.e edges of the
type 𝑒 = (𝑢,𝑢).

(3) Iterative edge-core decomposition: we use the parallelized
implementation of the algorithm in [1] to compute the peel
layers of the graph. This assigns a layer value to each edge in
the graph. The metadata, like that shown in Table 1 is written
to a separate output log.

(4) Connected Components: the connected components of the
entire graph, as well as of each layer are computed using the
Boost Graph Library. The metadata of this calculation (time,
number of components) is logged as well as the metadata for
each component (size of component).

(5) Waves/Fragments:Using the metadata from the previous steps
we compute the wave decomposition of fixed points with more
than 𝐼𝑒 = 216 edges.We also compute the connected components
for each wave. The metadata of this calculation (time, number
of waves) is logged as well as the metadata for each wave (size,
number of components, fragment distribution). Results for the
Patents citation network waves are shown in Table 2 and for the
Friendster social network in Table 3
We chose a wide range of of graphs, varying in both size and

domain (e.g. social, geographic, hyperlink, and co-occurrence net-
works) [18]. We performed most of our experiments on a single
computer equipped with an Intel® Core™ i7-8750H CPU clocked at
2.20GHz with 32GB of RAM. The com-friendster data set however
was processed on a server with an Intel® Xeon® CPU E5-2620 v2
clocked at 2.10GHz with 126GB of RAM. Results of the iterative
edge-core decomposition are reported in Table 1, which includes
the graph that is decomposed, its vertex and edge count, its highest
degree, the number of layers and connected component in each
graph, the highest peel value and number of waves from the decom-
position, and the algorithm compute time and I/O time averaged
over 5 runs. Notice that the computation times of the iterative edge
core decomposition for graphs with at least 1 million edges grows as

|𝐸 |
√
|𝑉 |. Due to space limitations we include the results of the wave

decomposition on the Patents citation and Friendster networks in
Table 2 and Table 3 of the appendix.

For our experiments (see Table 2 and Table 3) we computed the
wave decomposition on all the fixed points in a layer simultaneously
as this was actually quicker than filtering by connected components.

Although not included in Table 2 and 3, we note that layer 1 of
the Patents citation network has 534,601 trees totaling 2,370,043
vertices and 1,835,442 edges out of a total 3,774,768 vertices and
16,518,947. What is surprising is that about 63% of vertices in this
network are part of a forest. In the Friendster network, layer 1 has
11,222,669 trees totaling 43,053,668 vertices and 31,830,999 edges.
So similarly about 65% of vertices in Friendster are part of trees.

5.2 Handling Large Fragments
The sheer size of very large networks is usually dealt with some
form of iterative vertex or edge decomposition. The level of granu-
larity of the decomposition may be driven by storage or computa-
tional resources coupled with graph structure. The iterative edge
core decomposition first introduced in [3] has been used in [1] as a
useful graph abstraction to make sense of very large graphs. In this
work, we go two steps beyond and decompose “large” fixed points
into waves and if they are still “large” we decompose them further
into fragments (see subsection 4.2). It is worth mentioning that
the overall approach is basically the same, i.e., iterative removal of
vertices that satisfy certain degree conditions. Fragments can be
viewed as the most atomic graph types obtained by plain vanilla
iterative degree removal methods. However, the main limitation
is that these fragments can be “large” too and require specialized
methods beyond the degree peeling based approaches.

In these situations we propose a variation of the maximal match-
ing edge contraction approach first suggested in [4]. Namely, we
iteratively select a random maximal matching {𝑒1, 𝑒2, ..., 𝑒 𝑗 } and
contract its edges until the set of vertices remaining have cardinality
equal to the interactivity parameter, 𝐼𝑣 . This contracted graph can
then be visualized as a metagraph, where each vertex represents
the subgraph of contracted edges. The combination of contractions
and matchings is an area of study that deserves further research.

6 Summary and Future Work
Our approach presents a high level computational overview of
“large graphs” as sequences of “waves”. This is fundamentally dif-
ferent to previous approaches in the sense that it is amenable to a
visual representation (i.e. wave maps ) that is closely tied to “intu-
itive” hierarchical navigation and exploration. Our next step will
be to perform user experiments to evaluate the usability of the
proposed system. To our knowledge this is the first type of system
that offers a high level representation of graphs at the billion edge
scale that can be visually explored at different levels of connectivity
within a global context.

We believe that graph partitioning processes will become useful
tools to addressmassive graph computations in a divide and conquer
manner. This line of thinking opens up research to investigatewhich
types of massive graph problems can be solved by composing their
local fixed point and wave solutions.
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Table 1: Results of performing the iterative edge-core decomposition across a number of different graphs varying in size and domain sorted
by number of edges. (CC: number of connected components MP: max peel value, L: number of layers, MW: max number of waves)

Graph Name |V | |E | Max Deg CC MP L MW Time (s) I/O Time (s)
Gnutella P2P network (p2p-gnutella31) 62586 147892 95 12 6 5 9 0.05 0.05
Astro Physics (ca-astroph) 18771 198050 504 289 56 47 10 0.14 0.10
Amazon co-purchasing (amazon0601) 403394 2443408 2752 7 10 10 22 1.00 0.98
California road network (roadNet-CA) 1965206 2766607 12 2638 3 3 63 1.34 1.33
Berkeley-Stanford web (web-BerkStan) 685230 6649470 84230 676 201 88 314 5.37 3.50
Patents citation network (cit-Patents) 3774768 16518947 793 3627 64 41 47 18.37 13.33
Pokec (soc-pokec) 1632803 22301964 14854 1 47 29 45 15.62 14.86
LiveJournal network (LiveJournal) 3997962 34681189 14815 1 360 119 49 54.04 35.73
Orkut (com-orkut) 3072441 117185083 33313 1 253 91 88 81.62 56.90
Friendster (com-friendster) 65608366 1806067135 5214 1 304 72 213 3085.42 2351.32

We close by mentioning that being able to efficiently compute
the proposed wave decomposition in semi-external memory set-
tings or in a streaming fashion will enhance in a major way the
applicability of our approach not only to “large graph visualization”
but to massive graph computation in general.

A video demonstrating our current prototype can be accessed at:
https://dl.dropboxusercontent.com/s/a4kpwv5609op73w/graphwaves_
bigvis.avi. Other formats are available at: https://www.dropbox.
com/sh/bowfhdrr82ti18u/AAAAFwUZwkq5pQD63Kqyh-Ela?dl=0.
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Appendix

Alg. 1: Wave Decomposition (O(m))
Input: 𝐹𝑘 = (𝑉 , 𝐸), a fixed point of peel value k.
Output:𝑀 = {𝑊1,𝑊2,𝑊3, ...,𝑊𝑚} where each𝑊𝑖 ⊂ 𝐸 are

waves.
Output: 𝑆 = {𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑛} where each 𝑆 𝑗 ⊂ 𝑉 .

1 function waves(𝐹𝑘 ):
2 𝑀 ← ∅
3 𝑆 ← ∅
4 𝑖 ← 1
5 𝑗 ← 0
6 while 𝐸 ≠ ∅ do
7 𝑊𝑖 ← ∅
8 𝑆 𝑗 ← {𝑣 ∈ 𝑉 : deg(𝑣) = 𝑘}
9 while 𝑆 𝑗 ≠ ∅ do

10 𝑆 ← 𝑆 ∪ {𝑆 𝑗 }
11 𝐸 ← 𝐸 \ frag(𝑆 𝑗 )
12 𝑊𝑖 ←𝑊𝑖 ∪ frag(𝑆 𝑗 )
13 𝑆 𝑗+1 ← {𝑣 ∈ 𝜕𝑆 𝑗 | deg(𝑣) < 𝑘}
14 𝑗 ← 𝑗 + 1
15 end
16 𝑀 ← 𝑀 ∪ {𝑊𝑖 }
17 𝑖 ← 𝑖 + 1
18 end
19 end

Table 2: Results of performing the wave decomposition on layers
2 through 13 of the Patents citation network. These are only the
layers that contain a fixed point of size at least 216 edges. (L: layer,
𝐹𝑘 : number of fixed points, W: number of waves, F: number of frag-
ments). The highlighted row corresponds to the layer containing
the largest fragment of 1,356,327 edges.

L |V | |E | 𝐹𝑘 W F Time (s)
2 773841 953738 7682 7 55 2.779
3 1663386 4097177 37 33 411 18.587
4 198984 579406 787 15 267 1.652
5 617644 2457675 42 17 610 8.187
6 438875 2210942 100 47 996 8.935
7 246576 1406616 66 19 619 4.02
8 158620 1051389 85 44 765 3.243
9 80554 590337 61 25 511 1.46
10 56961 469522 73 45 579 1.211
11 20602 168159 80 14 188 0.272
12 13507 126909 73 12 236 0.192
13 15043 154245 38 13 284 0.249

Table 3: Results of performing the wave decomposition on select
layers of the Friendster social network. These are only the layers
that contain a fixed point of size at least 222 edges. (L: layer, 𝐹𝑘 : num-
ber of fixed points, W: number of waves, F: number of fragments).
The highlighted row corresponds to the layer containing the largest
fragment of 21,128,481 edges.

L |V | |E | 𝐹𝑘 W F Time (s)
2 20031131 26084775 39188 8 99 168.9
3 20912756 46640174 564 27 564 887.1
4 1509262 4760942 4816 11 317 27.0
5 14030072 54607126 447 10 536 314.2
6 6352083 32606979 793 25 1177 233.0
8 2882071 19767228 193 14 903 116.1
11 13635761 131376950 5 75 2532 1422.0
15 5011964 68883449 9 46 1874 496.0
17 738488 11279923 16 18 970 50.8
21 432014 7931887 5 106 978 40.9
25 10460847 229286219 1 17 1127 1511.5
29 244598 6430697 2 15 722 23.4
38 3144226 107272464 1 213 3279 1828.4
40 216081 8035443 2 50 889 31.4
53 6878498 322297063 1 10 1260 2543.1
65 155562 9282393 1 7 415 31.6
71 126835 8339470 1 56 768 30.9
89 4570064 367562291 1 49 737 5647.4
120 908835 97669888 1 2 367 418.0
140 764401 94970270 1 7 443 410.1
169 228332 32277749 1 29 357 115.6
175 197091 32971011 1 40 931 121.1
234 157908 32985831 1 128 1188 123.8
304 24528 6301889 1 7 203 19.2
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