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ABSTRACT
Visual clutter and overplotting are the main challenges for vi-
sualizing large multidimensional data in parallel coordinates,
which greatly hampers the recognition of patterns in the data.
Although many automatic clustering and edge-bundling methods
have been used in parallel coordinates to reduce visual clutter and
overplotting, a scalable, transparent, and interactive approach
that allows analysts to interact with large data and generate
interpretable results of visualization in real time is lacking. To
solve this problem, we propose an approach, human-in-the-loop
edge bundling, to visually explore and interpret large multidimen-
sional data in parallel coordinates. This approach combines data
binning-based clustering and density-based conuent drawing,
which reduces much data processing time and rendering time. It
provides novel interactions, such as splitting, adjusting, andmerg-
ing clusters, to integrate human judgment into the edge-bundling
process. These interactions make the underlying clustering trans-
parent to users, which allow users to generate interpretable visu-
alization without complex data clustering. The scalability of our
approach was evaluated through experiments on several large
datasets. The results show that our approach is scalable for large
multidimensional data, which supports real-time interactions
on millions of data items in web browsers without hardware-
accelerated rendering and big data infrastructure-based data pro-
cessing. We used a case study to highlight the eectiveness of
our approach. The results show that our approach provides an
interpretable way of visually exploring large multidimensional
data in parallel coordinates.

KEYWORDS
interactive visualization, human-in-the-loop, visual exploration,
multidimensional data, big data, parallel coordinates

1 INTRODUCTION
A multidimensional dataset contains numerical or categorical
dimensions (or features), with n (n > 3) dimensions andm data
items. To avoid confusion, in this paper, a data item is an n-
dimensional point, and a data point is the projection of a data
item to a particular dimension. Parallel coordinate plots (PCPs)
are widely used, and have become a standard tool for visualizing
multidimensional data [6]. In PCPs, axes corresponding to the
number of dimensions are aligned parallel to each other, and
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data items are mapped to lines (or edges) intersecting the axes at
their respective values. The embedding of an arbitrary number of
parallel axes into the plane allows for the simultaneous display of
many dimensions to provide a good overview of the data, which
reveals intrinsic patterns and trends. However, when datasets are
large, PCPs create visual clutter and overplotting in which lines
are crossed and plotted on top of one another, overwhelming
the display, and obscuring the underlying patterns. This hides
information and hampers the recognition of patterns in the data.

Edge bundling [7] and automatic data clustering [10] are two
widely used approaches to reduce visual clutter and overplotting
in PCPs. Edge bundling bends similar lines to the center of vi-
sual clutters in groups to create more informative visualizations.
Automatic data clustering aggregates data points in groups that
can be visualized in an illustrative fashion using dierent forms
of edge bundling.

However, when datasets become large, these methods face
challenges in supporting real-time interactions (limiting the vi-
sual response in a few milliseconds) along with mechanisms for
information abstraction. Without interactions, these automatic
methods provide only groups that may contain interesting com-
binations of dimensions and data points, but do not give analysts
control over the data clustering and visualization processes, and
do not oer opportunities for analysts to take advantage of their
judgments and expertise.

In this study, we propose a web-based visual analytics sys-
tem that uses data binning-based clustering and density-based
conuent drawing to create a new edge-bundling paradigm in
PCPs for large multidimensional data. To the best of our knowl-
edge, this is the rst web-based system that supports the HITL
(human-in-the-loop) edge-bundling process in PCPs through
specic interactions, such as splitting, adjusting, and merging
clusters of each dimension, for large multidimensional data. The
contribution of this study are as follows:

• Newparadigm for edge bundling inPCP.Our approach
provides a novel edge-bundling paradigm (HITL edge
bundling) for the visual exploration of large multidimen-
sional data in PCPs. With the real-time interactions, such
as splitting, adjusting, and merging clusters, it enables
analysts to integrate their judgments and expertise into
the data clustering and edge-bundling processes of large
multidimensional data.

• Fast, scalable, and transparent edge-bundling algo-
rithm. To support the real-time interactions of large data
in PCPs, we propose a fast, scalable, and transparent edge-
bundling algorithm that consists of two parts: 1) a data
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binning-based clustering method, and 2) density-based
conuent drawing.

• A web-based visual analytics system.We build a web-
based visual analytics system to support HITL edge bundling
in PCPs for large multidimensional data.

• Experiments, and a case study. We conducted experi-
ments and a case study on several datasets to highlight
the benets of HITL edge bundling in PCPs for large mul-
tidimensional data.

The remainder of this paper is organized as follows: Section 2
presents the proposed approach. Section 3 reports the experi-
ments, a case study, and discusses the result. Section 4 draws
the conclusions of this study and discusses directions for future
work.

2 SYSTEM AND METHODS
In this section, we rst describe the HITL edge-bundling process
with our system. Then, we introduce the methods used in the
system and the novel interactions provided by the system.

2.1 System Overview
Figure 1 shows the overview of our system. The system rst
visualizes multidimensional data in a classic PCP without edge
bundling. For example, in Figure 1 (A), the Cars dataset [1] is
visualized in a classic PCP without edge bundling. The system
then bundles the edges according to the initial clusters for each
dimension as shown in Figure 1 (B). The system supports HITL
edge bundling by allowing analysts to split, adjust, and merge
clusters for each dimension, which is shown in Figure 1 (C).
During the HITL edge-bundling process, the system can update
the visualization according to the corresponding interactions
in real time for large multidimensional data. This makes the
underlying clustering process transparent to analysts. With the
interactions, analysts can integrate their judgments and expertise
into the edge-bundling process to generate visualizations that
can be better interpreted. For example, in Figure 1 (C), by creating
an empty cluster that ranges from 6 to 8 and a cluster with 0
diameter (ranges from 8 to 8) at 8 on the axis cylinders, we found
that all cars with eight cylinders in the dataset weighted between
3354 and 5140 kilograms. Moreover, by highlighting the subsets
that contains cars with eight cylinders in red, the patterns of
other features of these cars are clearly highlighted.

The rudiment of our system is the combination of data binning-
based data clustering and density-based conuent drawing, which
supports the real-time interactions for large multidimensional
data without hardware-accelerated rendering and big data infrast-
ructure-based data processing. Figure 2 shows the workow of
our system, where the HITL process is highlighted in the dashed
line rectangle. The system rst uses data binning to cluster data
points for each dimension with the default settings. Then the
density of each pair of clusters on two adjacent axes is computed,
and the edges are bundled and rendered through density-based
conuent drawing. Finally, users create a more interpretable vi-
sualization of edge bundling through the interactions, including
splitting, adjusting, and merging clusters.

2.2 Data Binning-Based Clustering
Data binning groups a number of more or less continuous values
into a smaller number of given data intervals (also called "bins") to
transform numerical variables into their categorical counterparts
[12]. Multidimensional binning is used to implement focus +

context visualization in PCPs to represent outliers [9]. In this
study, we use one-dimensional (1D) binning to cluster data points
for each dimension with the following three considerations:

• In PCPs, for a single dimension, the clusters must be or-
dered because the data points are ordered.

• A data point belongs to only one cluster.
• For large data, to support HITL edge bundling in PCPs, the
clustering process must be fast, scalable, and transparent
to analysts.

With the rst and second considerations, for each axis, the data
points are binned into ordered and adjacent clusters, which is
shown in Figure 3. Since a data point belongs to only one cluster,
there is no overlaps between clusters. This reduces the overplot-
ting of clusters in PCPs created by multidimensional clustering
methods, such as DBSCAN [5]. As shown in Figure 3, for each
axis, the data points are rst grouped into the same number of
clusters. For a particular axis, the initial clusters have the same
initial diameters. Users then use the control points to split, adjust,
and merge clusters (see Section 2.4), which makes the clustering
process transparent for analysts. For an axis with k initial clusters
(the initial value of k is congured by users), the initial diameter
L is computed as:

L = (dmax − dmin )/k

where dmax and dmin are the maxima and minima, respectively,
of the data points on the corresponding axis. For an axis, the
initial control points Pi denotes the boundaries of clusters, which
are computed as:

Pi = dmin + i × L, i = 1, 2, ...,k − 1

Then, a data point d is grouped into a cluster Ci as:

d ∈ Ci if
{
Pi−1 < d < Pi , i = 1, 2, ...,k − 1
d > Pi−1, i = k

To reveal the internal patterns and distribution of data, we com-
pute the density of each pair of clusters and use it for density-
based conuent drawing (see Section 2.3). For two adjacent axes
axisn and axisn+1, a cluster pair (Ciaxisn ,C

j
axisn+1

) consists of a
cluster in axisn and another in axisn+1, where Ciaxisn is the i-th
cluster in axisn , and C j

axisn+1
is the j-th cluster in axisn+1. For

two adjacent axes, an edge containing two data points (dn,dn+1)
that belongs to a pair of clusters is dened as:

(dn,dn+1) ∈ (Ciaxisn ,C
j
axisn+1

) if dn ∈ Ciaxisn ∧dn+1 ∈ C
j
axisn+1

The density Di , j of a pair of clusters is computed as:

Di , j =
N (Ciaxisn ,C

j
axisn+1

)∑i
i=1

∑j
j=1 N (Ciaxisn ,C

j
axisn+1

)
,n = 1, 2, ...

where N (Ciaxisn ,C
j
axisn+1

) is the number of edges that belong to
the cluster pair (Ciaxisn ,C

j
axisn

).
The clustering process, including computing the clusters and

the density of cluster pairs, is linearly dependent on the number
of dimensions, the number of data points, and the number of
clusters (see Section 3.1). This fast and scalable clustering process
is the basis of real-time interactions (see Section 2.4), which
supports HITL edge bundling for large multidimensional data in
PCPs.

Categorical variables are not clustered using the abovemethod.
Instead, we treat each category as a cluster.
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Figure 1: Overview of the system that supports HITL edge bundling in PCPs. A. Visualization of the Cars dataset [1] in a classic
PCP. B. Edge bundling of the dataset with 3 initial clusters for each dimension. C. Interpretable edge bundling of the dataset with a
subset highlighted (continuous path over axes) in red, which is generated through user interactions.
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Figure 2: The workow of the system.

2.3 Density-based Conuent Drawing
Conuent drawing is a technique for bundling links in node-
link diagrams. It coalesces groups of lines into common paths
or bundles based on network connectivity to reduce edge clut-
ter in node-link diagrams [2, 4]. In this study, we use conuent
drawing to coalesce edges that belong to a pair of clusters to
reduce visual clutter in PCPs, where we use the clusters as nodes
and edges between them as links. Each pair of clusters then has
only one bundled edge, which is shown in Figure 4. This elimi-
nates the occlusion and ambiguity near the bundle joints created
by bundling techniques that bundle edges by spatial proximity.
More importantly, it reduces rendering time by coalescing edges,
which supports real-time interactions for HITL edge bundling of
large multidimensional data in PCPs.

To reveal the information hidden by coalescing of the edges
and the distribution of the data points between axes, we use the
density Di , j of a pair of clusters (Ciaxisn ,C

j
axisn+1

) to dene the
widthWi , j of the coalesced bundle as follow:

Wi , j = Di , j ×Wmax

Diameter

Cluster

Data Point

Control Point

Figure 3: Using 1D binning to cluster data points for each
axis in PCPs. The blue points are data points and the red points
are control points. An edge between the axes represents two data
points that belong to two clusters respectively. Elliptical areas
represent clusters in an axis. The initial k is 2. For each axis, the
two initial clusters have the same diameter. The two red clusters
form a pair of clusters. Its density is 0.4.

whereWmax is the width of a bundle with the density of one.
Wmax is a constant and is congured by users.

To guarantee C1-continuity across axes, we draw bundles as
Bézier curves. Figure 4 shows the bundled edge of a pair of clus-
ters. Between two adjacent axes, the width of a bundle represents
the proportion of the data points (coalesced edges) that belong to
the corresponding cluster pair. This reveals the trend and distribu-
tion of the data items as well as outliers in large multidimensional
data in PCPs (see Section 3.2).
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Cluster Center

Control Point

Bézier Curve

Cluster

Width

Figure 4: Using the density-based conuent drawing to
bundle the edges that belong to a pair of clusters. For a
pair of clusters, the bundled edge is rendered as a Bézier curve
that starts from the center of a cluster and ends at the center of
another. Its width represents the density of the cluster pair.

Axis Area
Double Click

Control Point
Double Click & Drag

Axis A Axis B

Label Area
Drag

Axis A

Bundle
Mouseover

Figure 5: Interactions provided by our system for support-
ing HITL edge bundling. Double click on the axis area to add
a control point to split a cluster. Double click on a control point
to delete it to merge two clusters. Drag a control point along an
axis to adjust the adjacent clusters.Mouseover on a bundle to
highlight a subset with color. Drag an axis label to re-order the
axes.

2.4 Interactions for HITL Edge Bundling
In our system, in addition to common interactions in PCPs such
as re-ordering the axes and brushing (highlighting) [11], we use
specically designed interactions to allow users to split, adjust,
and merge clusters. Our system updates the visualization ac-
cording to user interactions in real time, which is the key to
implement the HITL edge bundling process. These interactions
are supported by the combination of the data binning-based clus-
tering and the density-based conuent drawing. Figure 5 shows
the interactions provided by our system, which are described as
follows:

• Split a cluster. Each axis has a clickable area (called axis
area) around it, which is shown as gray rectangle area
around Axis A in Figure 5. Double-clicking on this area
adds a new control point to the corresponding position on
the axis. This control point splits the original cluster into

two new clusters. In Figure 5, the red dashed line circle on
Axis A is a newly added control point by double-clicking.

• Adjust clusters. All control points can be dragged along
the axes. Dragging a control point to a new position ad-
justs the boundaries and the diameters of the two adjacent
clusters. Figure 5 shows dragging the control point onAxis
B to a new position (red dashed line circle on Axis B).

• Merge clusters. All control points can be double-clicked
to be deleted. The two adjacent clusters of the deleted
control point are merged into a new cluster.

• Highlight bundles over axes.Hovering the pointer over
a bundle highlights it and its related bundles in red. Only
bundles with a density greater than a threshold will be
highlighted. The threshold is a constant and is congured
by users.

• Re-order axes. The labels of axes can be dragged to the
front or back of other labels to re-order them to the corre-
sponding positions.

3 EVALUATION
In this section, we evaluate the scalability and the eectiveness
of our system through experiments and a case study on the Oce
Occupancy Detection dataset [3] and the Cars dataset [1].

3.1 Experiments
To examine the scalability of our system, we synthesized several
large datasets based on the oce dataset. All experiments were
conducted on the same laptop without big data infrastructure-
based data processing and hardware-accelerated rendering.

In our system, the HITL edge-bundling process contains two
time-consuming processes: the data binning-based clustering and
the density-based conuent drawing (rendering process). We rst
performed a run time analysis of the clustering process. Table
1 shows the run times (measured by the second) of the cluster-
ing process on large multidimensional datasets (with dierent
number of dimensions, data points, and clusters). According to
Table 1, the computation time of data binning-based clustering is
linearly dependent on the number of dimensions, the number of
data points, and the number of clusters. More importantly, this
data binning-based clustering is much faster than other cluster-
ing algorithms used for bundling edges in PCPs. For example,
Palmas et al. [10] used a density-based clustering method for
each dimension independently to bundle edges in PCPs, which
takes approximately 60 seconds to cluster 105 data points for
one dimension. By contrast, our clustering method takes approx-
imately 1 seconds to cluster 106 data points for four dimensions.

We then examined the eciency of the rendering process by
comparing the rendering time of our method with both the clas-
sic PCP and Lima et al.’s edge-bundling PCP [5] that also uses
conuent drawing to coalesce edges. To compare the rendering
time, all three PCPs were implemented with the same JavaScript
library (D3.js) and rendered in Chrome. The times needed for
rendering the axes, labels, and stickers were not included, which
are constant regardless of the number of data points. Table 2
shows the rendering time of the three methods (measured by the
second) on the datasets that has six dimensions and the dierent
numbers of data items. For our method and [5], each dimension
has 3 clusters. According to Table 2, the classic PCP and [5] take
1.7672 and 3.6989 seconds to visualize 105 data points. The clas-
sic PCP takes 8.7183 seconds to visualize 5 × 105 data points
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Table 1: Run-time analysis of the data binning-based clus-
tering

Dimensions Data Points Clusters Run-time

2 104 3 0.0169
2 104 4 0.0167
3 104 3 0.0230
3 104 4 0.0277
2 105 3 0.0505
2 105 4 0.0554
3 105 3 0.0937
3 105 4 0.0996
4 105 3 0.1175
4 105 4 0.1404
4 105 10 0.2574
4 105 20 0.4139
4 105 30 0.5495
4 105 40 0.6892
4 105 50 0.8872
4 106 3 0.8211
4 106 4 0.9398

Table 2: Comparison of the rendering time

Data Points Our Method Classic PCP [5]

103 0.00243 0.0273 0.0503
104 0.00231 0.1916 0.3740
105 0.00230 1.7672 3.6989

5 × 105 0.00229 8.7183 N/A
106 0.00248 N/A N/A

and crashes the browser when visualizing 106 data points. The
method [5] crashes the browser when visualizing 5 × 105 data
points. By contrast, the rendering process of our method is inde-
pendent of the number of data points, which takes approximately
0.002 seconds for each dataset.

3.2 Case Study
To assess the eectiveness of our system, we compared our
method with the classic PCP and several algorithmic analysis
methods with the oce dataset. The oce dataset uses the data
on temperature, humidity, light, and CO2 to detect the occupancy
of an oce room. It has ve dimensions and 20,560 data points
for each dimension.

Figure 6 shows the visualization of the oce dataset in the
classic PCP and our system. Figure 6c shows the visualization
in our system, which is generated by a user who does not have
knowledge of the dataset. In Figure 6b and Figure 6c, the red
bundles are the subsets highlighted by hovering the pointer on
the widest bundle between the axes of light and occupancy. The
extreme narrow bundles (data points with extreme low densi-
ties) are visualized as the dashed lines to detect and highlight
the outliers (rare data points that raise suspicions by diering
signicantly from the majority of the data [8]) in the dataset. By
comparing Figure 6a and and Figure 6c, it is clear that for large
multidimensional datasets, our method reduces the visual clutter
and overplotting in the classic PCP and reveals the patterns in
the data.
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Figure 6: The visualization of the oce dataset in the clas-
sic PCP and our system. (a) Visualization of the oce dataset
in the classic PCP. (b) Visualization of the oce dataset in our
system with 4 initial clusters for each dimension. (c) Visualiza-
tion of the oce dataset in our system generated by a user who
does not have knowledge of the dataset.

Moreover, by integrating human judgments into the edge-
bundling process, ourmethod creates a interpretable visualization
in PCPs for the oce dataset. For example, during the HITL edge-
bundling process (from Figure 6b to Figure 6c), the user obtained
the following ndings:

• Finding 1. The dataset contains outliers which are high-
lighted by the dashed lines in Figure 6c.

• Finding 2. When the value of light is smaller than 354
Lux, the room is considered unoccupied. When it is be-
tween 354 and 1131 Lux, the room is considered occupied.
The accuracy of this estimation is higher than 90% (the
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Table 3: The comparison our system with the algorithmic
methods in [3].

Criteria Our Method [3]
Finding 1 Yes No
Finding 2 Yes Yes
Finding 3 Yes Yes
Finding 4 Yes Yes
Interpretability Interpretable

visualization
with transparent
clustering process.

Black-box process
of training themod-
els.

Processing time Real-time. Time for training
and selecting mod-
els.

estimated sum of the densities of the two widest bundles
between the axes of light and the occupancy).

• Finding 3.When the temperature is between 19 and 22℃,
the room is considered unoccupied.When the temperature
is higher than 22 ℃, the room is considered occupied.
The accuracy of this estimation is higher than 80% (the
estimated sum of the densities of the two widest bundles
between the axes of temperature and light).

• Finding 4. Using all features may reduce the accuracy of
prediction. Humidity has a much weaker correlation with
occupancy than other features.

Candanedo and Feldheim tested linear discriminant analysis,
classication and regression trees, and random forest on the
oce dataset to detect the occupancy of rooms [3]. In Table 3, we
compared the ndings obtained in our system with that obtained
in [3] of the oce dataset. It shows that our system obtained
more ndings of the data than the algorithmic methods in [3]. We
also compared the interpretability of our system with that of the
algorithmic methods in [3]. It shows that without the black-box
process of training the models, our system is more interpretable
with the visualization by integrating human judgments into the
edge-bundling process. Moreover, our system can obtain the
result faster by eliminating the time to train the models.

3.3 Discussion
Our approach uses data binning to create initial clusters for each
dimension. For a particular dimension, it divides the entire range
of values into a series of consecutive, non-overlapping and equal-
size intervals (clusters/bins). By computing the density of cluster
pairs, our approach counts the number of data points for each
cluster, which is represented by the total width of the bundled
edges starting from the cluster. Therefore, the initial clustering re-
sults in our approach is an adapted histogram for each dimension.
With the appropriate initial number of clusters, it can capture
the accurate distribution of data points for each dimension. This
is the basis for users to use their judgments and expertise in the
edge bundling process and generate interpretable visualization.
With HITL edge bundling, to obtain the nal interpretable visual-
ization, for example, from Figure 6b to Figure 6c, users may need
several iterations to adjust the initial clusters for each dimension,
such as merging a cluster with small density to an adjacent clus-
ter, or splitting a cluster with large density to obtain more details
of data. This process may take 1 or 2 minutes. However, during

this process, users can continuously gain insights from data and
visualization.

4 CONCLUSION AND FUTUREWORK
In this study, we proposed HITL edge bundling and built a system
based on it to support the visual exploration of large multidi-
mensional data in PCPs. The system provides an interpretable
visualization, which reduces the visual clutters and overplotting,
and eliminates the occlusion and ambiguity of large multidimen-
sional data in PCPs. More importantly, the system provides the
specically designed interactions, including splitting, adjusting,
and merging clusters, to integrate human judgments into the
edge-bundling process in real time. We evaluated the scalability
and eectiveness of the system through experiments and a case
study. We compared our system with the classic PCP and the
algorithmic analysis methods. The results show that our system
provides a scalable and interpretable way of visually exploring
large multidimensional data in PCPs.

Anchoring bundled edges in dierent positions, such as the
mean/centroid position of all data points in a cluster, could be
investigated in the future to improve the continuity across axes
and reveal more information of clusters. This requires more com-
putation and may delay the visual response of the interactions.
The interactions and color eects (highlighting subsets in dif-
ferent colors) of the system are not fully evaluated. This can be
done in a qualitative user study in future work.
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