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ABSTRACT
Deep learning methods have shown to be particularly effective
in inferring the sentiment polarity of a text snippet. However, in
cross-domain and cross-lingual scenarios there is often a lack of
training data. To tackle this issue, propagation algorithms can
be used to yield sentiment information for various languages
and domains by transferring knowledge from a source language
(usually English). To propagate polarity scores to the target lan-
guage, these algorithms take as input an initial vocabulary and a
bilingual lexicon. In this paper we propose to enrich lexicon in-
formation for cross-lingual propagation by inferring the bilingual
semantic relationships from an aligned bilingual vector space.
This allows us to exploit the underlying text similarities that are
not made explicit by the lexicon. The experiments show that our
approach outperforms the state-of-the-art propagation method
on multilingual datasets.

1 INTRODUCTION
In the last decade, an increasing amount of opinionated data
has been recorded in digital forms (e.g., reviews, tweets, blogs).
This has fostered the joint use of Natural Language Processing
(NLP) and Machine Learning (ML) techniques to extract people’s
opinions, sentiments, emotions, and attitude from text, i.e., the
sentiment analysis (or opinion mining) problems [16].

The recently proposed approaches (e.g., [1, 8, 9]) aim to pre-
dict the sentiment polarity of the analyzed text by means of deep
learning techniques. However, Deep Neural Networks require a
sufficiently large corpus of labeled data in order to train accurate
sentiment predictors [11]. Meeting such a requirement could be
challenging while coping with multilingual and cross-domain
data. In particular, the majority of the annotated text is written in
English whereas small amounts of data are available for less com-
monly spoken languages. Furthermore, the sentiment of a text
snippet strongly depends on its surrounding context. For exam-
ple, a word may have different connotations in different domains.
Hence, tailoring DNNmodels to the right domain and language is
crucial for developing accurate and portable sentiment analyzers.

A promising strategy to overcome the lack of multilingual
training data has recently been proposed by [9]. They propose
an approach to propagate sentiment information, encoded into
high-dimensional embedding vectors [17], across languages. The
idea behind this is to consider an initial vocabulary for which
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sentiment embeddings are known (usually in English) and a
lexicon that maps English words to those in the target language.
Themapping indicates the semantic relationship between pairs of
words. First, theword-level sentiment polarity in various domains
is extracted in the source language using a supervised transfer
learning process. Then, the vector scores for the target language
are induced using stochastic gradient descent. A more detailed
description of [9] is given in Section 3.

Challenge. The quality of the sentiment score propagation
strongly depends on the richness of the bilingual lexicon. When
a bilingual lexicon is either not available or partly incomplete, the
induction phase is unable to effectively propagate the sentiment
polarity scores from the original language to the target one.

Research goals. The goal of this work is to improve the quality
of the sentiment propagation phase across languages. The key
idea is to enrich lexicon information in the propagation phase by
deriving the semantic links among word pairs from an aligned
bilingual vector space. This allows us to exploit the underlying
text similarities that are not made explicit in the bilingual lexi-
con. We use an established model for vector representation of
words, i.e., fastText [4]. A deep learning approach to generate
aligned fastText word vectors has recently been proposed [13].
Once trained, the bilingual vector spaces not only embed lexi-
con information but also allow us to derive non-trivial semantic
text relationships directly from the latent space. This simplifies
the procedure of cross-lingual induction and exploits the vector
representation of text in the latent space to infer missing word
relationships. The authors of [13] have also published the pre-
trained aligned vectors for a large number of languages. Hence,
a promptly usable, general-purpose vector representation of text
is currently available.

Approach. To propagate the multi-domain sentiment polar-
ity scores of a word in the original language (e.g., English), we
explore the bilingual aligned vector space. Specifically, an arbi-
trary word in the original vocabulary is described by two high-
dimensional vectors: a latent vector in the original embedding
space and a sentiment vector describing the sentiment polarity of
the word in different domains. Thanks to the bilingual model, we
project words from the original word embedding to the vector
space of the target language and look for its nearest neighbors.
Neighbors are likely to be semantically related to the original
word (regardless of the presence of an explicit link in the bilingual
lexicon). The semantic links and the similarity scores between the
projected word and the neighbors are used to drive the sentiment
propagation phase towards the target language.



Achievements. The proposed approach produces sentiment
embeddings that outperform the state-of-the-art embeddings
by [9] on various multilingual benchmark datasets (e.g., using
the embeddings with an SVM classifier, it achieves 10% average
macro F1 score improvement on the Italian datasets).

Paper outline. Section 2 overviews the related literature. Sec-
tion 3 summarizes the cross-lingual propagation method pre-
sented by [9] and introduces the mathematical notation used
throughout the paper. Section 4 presents the proposed approach.
Section 5 reports the outcomes of the empirical evaluation. Fi-
nally, Section 6 draws conclusions and presents the future works.

2 RELATEDWORK
To predict the sentiment polarity of textual reviews, news, and
posts, several deep learning-based sentiment analysis approaches
have been proposed. Most of them (e.g., [2, 12, 18]) are language-
or domain-specific, i.e., they are specifically tailored to a given
context (e.g., movie reviews, Twitter posts) and language. Hence,
model learning assumes that a large enough training set is avail-
able. Unfortunately, in many real contexts and for various lan-
guages this is not the case.

To extend the applicability of existing sentiment analysis so-
lutions towards other languages, the use of automated machine
translation tool has been investigated [3, 7, 10, 20]. The main
drawbacks of using automatic text translation tools are that the
process is computationally intensive, the generated translations
are prone to errors, and the tools often miss the word semantic
differences according to the context of use [10]. Parallel strate-
gies entail (i) building sentiment lexicons tailored to different
languages and domains of interest and exploiting them to train
supervised models [5] and (ii) integrate syntax-based rules in
unsupervised models [19]. However, all the aforementioned ap-
proaches require a significant human effort, which has already
been accomplished only for the major languages and the most
popular domains.

To propagate sentiment information across different languages
and domains, a deep learning approach has recently been pre-
sented [9] by Dong and De Melo. They consider an initial vo-
cabulary of English words for which sentiment embeddings are
known and a translation lexicon representing semantic relation-
ships between pairs of words (both non-English and English
words) such as translation, synonym, orthographic variants, and
other semantic, morphological, and etymological word relation-
ships is given. In [9], links between words are extracted from a
multilingual Wiktionary dump [6]. However, for the languages
and domains not yet supported by the Etymological Wordnet
Project, still the method is unable to propagate sentiment in-
formation. Furthermore, some relevant semantic links could be
missing in the input lexicon. Our proposal is to rely on an aligned
bilingual vector space, e.g., [13], from which explicit and implicit
semantic relationships among words can be inferred.

3 SENTIMENT PROPAGATION BASED ON
TRANSLATION LEXICON

To propagate sentiment information to various languages, the ap-
proach proposed by [9] generates a sentiment embedding vector
vx for each word x in a multilingual vocabulary V . A sentiment
embedding is a high-dimensional vector reflecting the distribu-
tion of the word’s sentiment polarities across a large range of

domains1. If the same word is used in multiple languages, each
instance is treated as a distinct word in V .

The sentiment vector associated with each word x in the initial
vocabulary V0 is derived via transfer learning. Specifically, for
each domain dj a linear Support Vector Machine classifier [15]
Mj (x) = w j ·x+b is trained from a set of domain-specific textual
documents. The classifier assigns a polarity to each word, denot-
ing whether the word is peculiar to the domain under analysis.
The j-th component of the embedding vector vx incorporates the
coefficientw j of the linear modelMj . Hereafter, we will assume
sentiment information to be known for an initial vocabulary
V0 ⊂ V , which usually consists of a subset of English words (i.e.,
the most popular language used in electronic documents).

The translation lexicon TL is a set of triples {(x1, x ′1,we1),. . .,
(xm, x

′
m,wem )} [x1, x ′1, . . . , xm, x

′
m ∈ V ] providing evidence of

the semantic relationships holding between pairs of words in the
multilingual vocabulary. The lexicon maps words in the origi-
nal language to the corresponding translations. Notice that each
word may have multiple translations. To incorporate relation-
ships such as synonyms, orthographic variants, and etymological
connections, the lexicon includes also links between pairs of
words of the same language. In [9] the translation lexicon is
extracted from a multilingual Wiktionary dump [6]. The links be-
tween pairs of words represent translations, synonyms, morphol-
ogy, derivation, and etymological links. The weight associated
with a triple (xq , x

′
q ,weq ) [1 ≤ q ≤ m] denotes the relevance

of the semantic relationship. In [6] it indicates the number of
semantic links occurring in the data source.

The sentiment vectors of all the words in V are populated by
propagating the cross-domain polarity scores of the words in V0
via an iterative optimization approach, i.e., Stochastic Gradient
Descent (SGD). The optimization problem addressed by the SGD
entails assigning values to the sentiment vector vx for all words
x in the multilingual vocabulary V according to the following
objective function:

C ·
∑
x ∈V0

| |vx − ṽx | |2 +

−
∑
x ∈V

vTx

[
1∑

(x ,x ′,we)∈TL we
·

∑
(x ,x ′,we)∈TL

we vx ′

]
where, given a word x ∈ V0, ṽx represents its initial sentiment
vector (learned through transfer learning).

The first term of the loss function ensures that the sentiment
vectors of the words in the initial vocabulary V0 do not diverge
significantly from the original ones, for a large enough constantC .
The second term guarantees that the inferred sentiment vectors of
words that are linked together (to some extent) in the translation
lexicon are kept similar. A drawback of the aforesaid loss function
is that the dot product in the second term allows for arbitrarily
large magnitudes for the inferred sentiment vectors. Indeed, the
dot product can grow by indefinitely increasing the magnitude
of the vectors that are being learned. This issue will be addressed
by the proposed approach.

4 PROPOSED APPROACH
Instead of propagating sentiment information directly by means
of the translation lexicon, we aim to link the semantically related
words indirectly according to their similarity in a bilingual word
1The vectors used in the experiments have 26 dimensions, one for each domain
plus an extra dimension combining all domains together.



embedding space. The idea behind this is to improve the quality
of the cross-lingual propagation phase by projecting polarity
scores extracted from a richer text representation based on latent
spaces.

4.1 Bilingual embedding space
Each word in a dictionary is mapped to a vector in the latent
space. The application of word embeddings to address many nat-
ural language processing tasks is established. A pioneering work
in this field is the Word2Vec model [17]. fastText is a famous
extension of Word2Vec, which has been presented in [4]. It pro-
vides a more effective vector representation by incorporating
sub-words in the input dictionary. The vectors associated with
the sub-words can be conveniently combined in order to gen-
erate the embeddings of new words that are not present in the
dictionary.

Vector representations of text are generated, separately for
each language, using deep learning architectures. However, pre-
trained vector models (learned from the Wikipedia corpus) are
also available for a large number of languages2. To links words in
different languages, the per-language models need to be aligned
first. The procedure to align bilingual fastText vector spaces is
thoroughly described in [13]. Notably, a large number of pre-
trained aligned models is available3. This allows users to exploit
the general-purpose, multilingual vectors (characterized by 300
dimensions and trained fromWikipedia for 44 languages) without
the need for retraining them from scratch.

4.2 Sentiment propagation strategy
Let Eo be the fastText embedding space in the original language
(e.g., English) and let ET be the aligned embedding space in the
target language (i.e., a language other than English). Each word
x in the original language has a corresponding vector veox in Eo .
Thanks to the aligned bilingual vector space, we can project veox
to the target vector space in order to get the corresponding target
vector vetx in ET . Notice that the new vector does not necessarily
correspond to any real word in the target language.

We exploit word similarities in the latent space to propagate
sentiment information. Specifically, letvsx be the sentiment vector
of an arbitrary word x ∈ V0. We aim to propagate sentiment
information to other words in V \V0. This issue is addressed in
two steps: (i) first, we create a word graph representing the most
significant pairwise word similarities. (ii) Next, we propagate
the sentiment scores to the other words using gradient descent.
Unlike [9], we adopt a new loss function tailored to the problem
under analysis. Notice that step (i) allows us to get a richer word
representation compared to a bilingual lexicon.

Word Graph Creation. The word graph G = (V , E) is a undi-
rected weighted graph connecting pairs of words in V . Edges
in E are triples (x , x ′,wxx ′ ), where x , x ′ ∈ V are the connected
vertices and wxx ′ is the edge weight. For each word x ∈ V we
explore the neighborhood of vector vetx in the target latent space
to look for the neighbor words that are most semantically related
to x . More specifically, we look for theK nearest vectors (whereK
is a user-specified parameter) corresponding to the words of the
target languages that are closest to vetx and select these words.

Given the set NNx of x ’s nearest neighbors, we create a
weighted edge e ∈ E connecting every x ′ ∈ NNx to x . The

2https://fasttext.cc/
3https://fasttext.cc/docs/en/aligned-vectors.html

x x ’s nearest neighbors Cosine similarity
excellent eccellente 0.575

ottimo 0.513
apprezzabile 0.369

buon 0.367
adatto 0.322

Table 1: Example: K nearest neighbors of excellent. Origi-
nal language = English, target language = Italian, K = 5

excellent

eccellenteottimo

10 9.5 9.9 9.8 9.9

0.575
0.51

3

Figure 1: Example: word sub-graph associated with excel-
lent. Original language = English, target language = Italian,
K = 5, α = 0.4

weight of the edge connecting words x and x ′ indicates the pair-
wise word similarity in the latent space and is computed using
the cosine similarity [15]. To avoid introducing unreliable word
relationships and to limit graph connectedness, we filter out the
edges (links) with weight below a given (user-specified) thresh-
old α . The effect of parameters K and α on the performance
and complexity of the proposed approach will be discussed in
Section 5.

Example. Suppose that the original language is English and
the target language is Italian. Let us consider the following input
parameters: K = 5 and α = 0.4. Table 1 and Figure 1 report an
example related to the English word excellent. Specifically, Table 1
reports the five nearest neighbors of excellent while Figure 1
shows the word sub-graph associated with that word. Only the
first two neighbors of excellent are characterized by a cosine
similarity greater than or equal to 0.4. Hence, only the Italian
words eccellente and ottimo are connected to excellent in the word
graph G. This is semantically correct because eccellente is the
Italian translation of excellent and ottimo has a similar meaning.
The three discarded neighbors are other “positive” adjectives but
they do not have the same meaning of excellent (the translations
of the other three neighbors are appreciable, good, and suitable,
respectively). Hence, the enforcement of the minimum similarity
threshold helps us to remove noisy connections.

The English word excellent, which is one of the words inV0, is
characterized by a sentiment embedding (i.e., a vector of cross-
domain polarity scores). The sentiment vectors of the Italian
words are populated by propagating the cross-domain polarity
scores of the English words via the iterative optimization ap-
proach described in the following.

Gradient Descent with Updated Loss Function. The Gradient
Descent is used to propagate sentiment information through the
word graph. As discussed in Section 3, the iterative propagation
process should both preserve the values of the vectors in the
initial vocabulary V0 and guarantee a high degree of similarity



between the sentiment vectors of linked words. To achieve these
goals, we adopt the following objective function:

C ·
∑
x ∈V0

| |vx − ṽx | |2 +

−
∑
x ∈V







vx −

[
1∑

(x ,x ′,wxx ′ )∈E wxx ′
·

∑
(x ,x ′,wxx ′ )∈E

wxx ′ vx ′

]
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where, for each word x in the initial vocabularyV0, the first term
minimizes the deviation from its initial sentiment embedding
vector ṽx . The second term minimizes the deviation from the
sentiment vectors of neighbors, represented as connected words
in the word graph. Adopting the L2-norm in the second terms
allows the propagation of the vector dimensions without altering
the vector magnitude. Therefore, words in the initial vocabulary
keep, to a good approximation, the same original vectors, whereas
new words get sentiment polarity scores similar to those of their
neighbors in the target latent space.

5 EXPERIMENTS
The experiments presented in this section are aimed at evalu-
ating the quality of the sentiment vectors resulting from the
application of the proposed methodology. The evaluation pro-
cess is formulated as a binary sentiment analysis problem. The
sentiment embeddings are compared, in terms of macro-F1 score,
with those produced by the method presented by [9].

All the experiments were run on a machine equipped with
Intel® Xeon® X5650, 32 GB of RAM and running Ubuntu 18.04.1
LTS.

The rest of this section is organized as follows. Subsection 5.1
describes the settings used in the experimental validation as
well as the analyzed datasets. Subsection 5.2 summarizes the
main results. Subsection 5.3 discusses the influences of the main
parameters of the performance of the proposed approach. Finally,
Subsection 5.4 analyzes the spatial complexity of the proposed
approach.

5.1 Experimental setting
To validate the quality of the generated sentiment vectors, we
set up a binary sentiment classification task over multilingual
datasets. Specifically, given a set of short text snippets labelled
as positive or negative according to their sentiment polarity, we
aim at predicting the sentiment polarities of a subset of related
snippets for which the polarities are assumed to be unknown.

To accomplish the classification task, we train two popular
classification models, i.e., the Support Vector Machines (SVM)
and the Random Forest (RF) classifiers [15]. Classifiers are first
trained separately on each multilingual training dataset and then
applied to a the corresponding test set. More specifically, each
dataset is split into a training set (80% of the data) used for training
the models and for tuning of the hyper-parameters, and a test
set (20%), which is used for performance evaluation. Classifier
settings are set up according to the outcomes of a grid search
based on a 5-fold Cross-Validation. Separately for each language
and dataset, we evaluate the performance of each classification
model in terms of macro-F1 score. The F1 score is a popular
metric that indicates the harmonic mean of precision and recall
of the generated model [15]. Unlike the traditional F1 score, in the
macro-F1 score the precision values of each class are multiplied
with the recall values of all other classes. Hence, the metric is

Dataset Cardinality #Positive #Negative
cs 2,458 1,660 798
de 2,407 1,839 568
es 2,951 2,367 584
fr 3,912 2,080 1,832
it 3,559 2,867 692
nl 1,892 1,232 660
ru 3,414 2,500 914

Table 2: Cardinality and class distribution for each of the
datasets presented in [9]

Dataset Cardinality #Positive #Negative
IT1 10,024 5,012 5,012
IT2 13,888 6,942 6,946

Table 3: Key statistics for the new Italian datasets

more deemed as more suitable for evaluating imbalanced datasets,
i.e., datasets for which the class labels are unevenly distributed
in the training data.

Classifiers are trained on a vector representation of the input
text snippets. The vectors associated with each snippet are com-
puted by averaging the values of the vector dimensions of the
words included in the snippet. Notice that the aforesaid task could
be alternatively addressed using Recurrent Neural Networks and
Convolutional Neural Networks [14]. The comparison between
different Deep Learning techniques is out of the scope of the
present work.

Classifier performance achieved on the sentiment vectors pro-
duced by our method are compared with that of the vectors
produced by [9]. The comparison is aimed at showing the higher
effectiveness of the proposed approach compared to state-of-the-
art solutions.

Data. The list of datasets used for the experiments comprises
all the datasets adopted by [9] plus a couple of larger external
datasets with different data distributions. Specifically, Table 2
enumerates the characteristics of the existing datasets.

The datasets provided by [9] have been extracted from several
websites and collect the reviews left by users on a specific topic
(e.g. places, movies, food). The target binary class (positive or
negative) is derived from the user rating. However, users ratings
are not necessarily binary values (i.e., they usually comply with
the 5-star system). To generate the binary sentiment polarities
we have discretized the 5-star ratings as follows: reviews with 3
stars are discarded (as they are considered neutral). 1’s and 2’s
are assigned to the negative class, 4’s and 5’s to the positive one.

The statistics reported in Table 2 clearly show a strong class
imbalance in the analyzed data. This may hinder the training of
robust classifiers, as the minority class may be not sufficiently
represented by the trained models. To evaluate the performance
of the proposed approach on more balanced data as well, we have
considered also two additional datasets for the Italian language
(i.e., the language for which the imbalance ratio of the corre-
sponding datasets is maximal). Table 3 describes the two new
Italian datasets. Data was extracted from reviews of TripAdvisor4
users in different Italian cities.

4https://www.tripadvisor.com



Dataset Our method Dong and De Melo
SVM RF SVM RF

cs 0.7403 0.7198 0.7227 0.7297
de 0.6847 0.6981 0.6495 0.6756
es 0.6131 0.531 0.4451 0.4892
fr 0.7021 0.7291 0.6389 0.6764
it 0.8256 0.794 0.6805 0.6644
nl 0.6869 0.6369 0.5903 0.6022
ru 0.6840 0.6112 0.7221 0.7009
IT1 0.8439 0.8424 0.7435 0.7311
IT2 0.8441 0.8427 0.7415 0.7494

Table 4: Comparison, in terms of macro-F1 score, between
the embeddings produced by the proposed methodology
(Our method) and those generated by [9] (Dong and De
Melo)

5.2 Performance comparison
Table 4 summarizes the results obtained on the various datasets.
For each dataset, the performance for SVM and RF are reported
for both the proposed methodology (denoted as Our method) and
for the sentiment embeddings produced by [9] (denoted as Dong
and De Melo). The outcomes of the proposed methodology were
achieved by setting K to 5 and α to 0.4. Subsection 5.3 discusses
the effect of the input parameters on the performance of the
proposed method.

The proposed methodology for cross-lingual sentiment prop-
agation performs better than the method proposed by [9] in
terms of macro-F1 score on the majority of the analyzed datasets
(Russian reviews are the only exception).

To gain insight into classifiers’ performance, we explore also
the abilities of the classifier to correctly assign each class label
(i.e., precision) as well as to recognize the largest extend of the test
samples labeled with each class (i.e., recall). Table 5 reports the
macro-precision and macro-recall values (indicating the means of
per-class precision and recall values, respectively) [15]. Based on
the achieved results, we can conclude that classifier performance
is not biased towards any of the aforesaid metrics. Interestingly,
the embeddings produced by [9] show higher precision for multi-
ple languages, but the recall is often worse than those achieved by
the proposed method (relying on the unified latent space model).

5.3 Parameter analysis
We study also the effect of setting different values for parameters
K and α on the quality of the generated embeddings. To do so, we
separately analyze their impact on the macro-F1 scores achieved
by the binary classifiers. Hereafter, for the sake of brevity, we
will report only the results achieved on a representative dataset
(IT2). It is the largest and more balanced dataset among all the
tested ones. Similar results were achieved on the other datasets.

The parameterK indicates the number of neighbors considered
while linking the words in the original to those in the target
language. The higherK , the more word relationships are included
in the word graph. As a drawback, when K is relatively high, the
model may include less relevant or unreliable links. Furthermore,
since the connectedness of the graph increases, the complexity of
the sentiment propagation process gets worse (see Section 5.4).

Figure 2 shows how the macro-F1 score varies as K increases,
for α = 0.4. The plot highlights a knee in the curve for K = 5.
This implies that, for the purpose of sentiment classification,
using a larger value of K does not yield significant performance

Dataset Metric Our method Dong and De Melo
SVM RF SVM RF

cs Precision 0.7347 0.7326 0.7203 0.7547
Recall 0.7593 0.712 0.7474 0.7177

de Precision 0.6797 0.7481 0.6563 0.7735
Recall 0.7372 0.6766 0.7131 0.6507

es Precision 0.6111 0.7747 0.4010 0.6181
Recall 0.6154 0.5428 0.5 0.5172

fr Precision 0.7025 0.7301 0.6488 0.6784
Recall 0.7019 0.7309 0.6403 0.6760

it Precision 0.8494 0.8168 0.6750 0.8030
Recall 0.8071 0.7765 0.7637 0.6336

nl Precision 0.6868 0.6651 0.6059 0.6491
Recall 0.704 0.6317 0.6162 0.6022

ru Precision 0.6805 0.6623 0.7151 0.7362
Recall 0.7221 0.6025 0.7634 0.6845

IT1
Precision 0.8441 0.8425 0.7442 0.7314

Recall 0.8439 0.8424 0.7436 0.7312

IT2
Precision 0.8442 0.8428 0.7416 0.7495

Recall 0.8441 0.8427 0.7415 0.7495
Table 5: Results in terms of macro-precision and macro-
recall, for embeddings generated by the proposedmethod-
ology (Our method) and with those introduced in [9]
(Dong and De Melo)

improvements. Notice that, to remove the less reliable links, the
word graph is early pruned by enforcing the cut-off threshold
value α . The impact of the pruning phase is higher while setting
high K values.
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Figure 2: Macro-F1 score as a function of K , on dataset IT2

We separately analyze also the impact of parameter α . Enforc-
ing low α values potentially introduces a bias in the graph due to
the presence of “noisy” links, whereas setting high α values limits
word graph connectedness. Given an edge (x, x ′,wxx ′) ∈ E, the
edge weightwxx ′ is computed as the cosine similarity between x
and x ′ [15]. The cosine similarity takes (absolute) values between
0 (orthogonal vectors) and 1 (parallel vectors). Hence, α has the
same value range. Figure 3 shows how the macro-F1 score varies
as α increases. The lower bound set for α (approximately 0.4) is
the best we can manage using the hardware resources currently
in use (i.e., setting lower values requires more computational
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Figure 3: Macro-F1 score as a function of α , on dataset IT2

memory). Specifically, the empirical results show that, by set-
ting α to 0.4, the sentiment propagation process converges to a
satisfactory solution with the hardware resources available for
this study. Subsection 5.4 provides a more detailed analysis of
the space complexity of the problem. Setting lower α (limited
graph pruning) values yields sentiment embeddings with a higher
quality. Conversely, when high α values are set (specifically, for
values of α ≥ 0.7), the pruning phase is not beneficial.

5.4 Complexity analysis
The most computationally intensive step of the proposed method
is sentiment propagation on the word graph based on Stochastic
Gradient Descent. It entails computing the gradient of the loss
function described in Section 4 and then iteratively updating the
sentiment polarities until a local minimum is reached.

To exploit the hardware optimizations available for matrix
computations, the gradient can be computed on the entire matrix,
rather than separately for each weight. Specifically, to process the
information embedded in the word graph, an adjacency matrix A
is defined. Each matrix valueAi j indicates the weight of the edge
linking two arbitrary words xi and x j . If the edge does not exist,
the corresponding matrix value is zero. Since graph connected-
ness is bounded by the cut-off threshold α , the adjacency matrix
is rather sparse (the higher α , the sparser A). To compute the
gradient of the adopted loss function, the adjacency matrix of the
word graph is loaded into main memory. Large sparse matrices
can be efficiently loaded into main memory by storing only the
non-zero elements. However, this limits the types of operations
that can be performed. Hence, in most cases, a denser in-memory
representation would be needed.

Let N be the size of the initial vocabulary Vo in the original
language (English, in our case). For each word in Vo , K neighbor
words are selected from the target language. Hence, in the worst
case, the word graph contains (K + 1)N words. Since part of
the neighbors in the target languages are overlapped, we can
assume, to a good approximation, that each word in the original
language has one translation in the target language, yielding
2N words in the resulting graph. The corresponding adjacency
matrix consists of 4N 2 cells. Let us assume to use B bytes to
represent each floating point number (where B = 4 or B = 8
in modern systems), the total adjacency matrix size is 4BN 2.
On the other hand, the size N of the initial English vocabulary

ranges between 80, 000 and 100, 000. Thus, the required memory
allocation ranges between 100 and 300 GB.

A possible way to optimize the process is to identify connected
sub-graphs and to run the Stochastic Gradient Descent separately
on each sub-graph. It is potentially feasible because nodes and
edges external from the connected sub-graph would not influence
sentiment propagation within the sub-graph. This reduces the
size of the processed adjacency matrices, which are stored into
main memory. However, when graphs are highly connected (as
in our case), the optimization is not very beneficial. Therefore, as
discussed in Section 5.3, in the experimental evaluation reported
in this study we have decided to limit the computational com-
plexity of the propagation process by properly setting the K and
α parameters.

6 CONCLUSIONS AND FUTUREWORKS
This paper presents a in-progress research study on the use of a
bilingual latent space to propagate sentiment information across
multiple languages. The proposed approach overcomes the lim-
itations of the solutions previously proposed in literature due
to the dependence of the propagation phase on the bilingual
lexicon. Our claim is that relying on latent word relationships
(embedding lexicon information as well) would enhance the pro-
cess of sentiment propagation in cross-lingual and multi-domain
contexts.

We have empirically compared the sentiment embeddings
generated by the proposed methodology with those produced by
the approach presented in [9]. Specifically, the embeddings have
been exploited to tackle a binary sentiment analysis problem.
The results confirm the initial claim: for most of the considered
languages, the propagated information yields better results.

The presented study leaves room for several extensions. Firstly
(and most importantly), we aim at extending the Deep Learning
process (based on a dual-channels CNN) presented by [9] by
embedding the enhanced sentiment vector propagation phase.
This allows us to fully explore the potential of the new method-
ology in a state-of-the-art Deep Neural Network Architecture
for sentiment analysis.

A further exploration will be devoted to identifying the op-
timal setting of the α parameter. We plan not only to increase
the computational power but also to study more sophisticated
strategies to optimize the propagation phase as well as to de-
sign greedy strategy able to overcome the limitations due to the
iterative optimization process.

Finally, we plan to test further multilingual datasets. Since
most of the publicly available datasets are small- or medium-sized
and quite imbalanced, we aim at crawling, releasing, and testing
new data related to various domains and written in different
languages.
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