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ABSTRACT
Espresso quality attracts the interest of many stakeholders: from
consumers to local business activities, from coffee-machine ven-
dors to international coffee industries. So far, it has been mostly
addressed bymeans of human experts, electronic noses, and chem-
ical approaches. The current work, instead, proposes a data-
driven analysis exploiting time-series feature engineering. We an-
alyze a real-world dataset of espresso brewing by professional
coffee-making machines. The novelty of the proposed work is
provided by the focus on the brewing time series, from which we
propose to engineer features able to improve previous data-driven
metrics determining the quality of the espresso. Thanks to the
exploitation of the proposed features, better quality-evaluation
predictions are achieved with respect to previous data-driven
approaches that relied solely on metrics describing each brewing
as a whole (e.g., average flow, total amount of water). Yet, the
engineered features are simple to compute and add a very limited
workload to the coffee-machine sensor-data collection device,
hence being suitable for large-scale IoT installations on-board
of professional coffee machines, such as those typically installed
in consumer-oriented business activities, shops, and workplaces.
To the best of the authors’ knowledge, this is the first attempt to
perform a data-driven analysis of real-world espresso-brewing
time series. Presented results yield to three-fold improvements
in classification accuracy of high-quality espresso coffees with
respect to current data-driven approaches (from 30% to 100%),
exploiting simple threshold-based quality evaluations, defined in
the newly proposed feature space.

1 INTRODUCTION
Espresso is an almost syrupy beverage generated by a machine,
typically using a motor-driven pump, forcing pressurized hot
water through finely ground coffee. Each espresso shot in a bar
can generate one or two cups of coffee, being called, respectively,
single or double, and requiring proportional amounts of ground
coffee.

Drinking espresso coffee is a ritual rooted in the pleasure of
its taste. In some countries, such as Italy, where 97% of adults
drink espresso daily [18], espresso quality is a main driver for
consumers’ habits and a primary focus of coffee industries.

In 2018, each Italian had 2.2 daily espresso cups on average,
i.e., 6 kg yearly, in one of the 150 thousand bars, with each bar
using 1.2 kg of ground coffee daily to serve almost 200 coffees on
average, and most of them were espresso, representing approxi-
mately one third of a medium bar turnover [18].

According to common knowledge and online sources [12, 18],
such as the Italian Espresso National Institute, a perfect espresso
depends on different variables: (i) the coffee blend, (ii) the grinder
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settings, i.e., the weight of coffee grounds and how fine it is
ground; (iii) the espresso machine, with professional machine
makers improving such technology over and over to promise the
perfect espresso all the time; (iv) the barista, i.e., the human-in-
the-loop preparing the espresso in the bar, from blend choice,
to manual grinder settings, and to proper usage of the coffee
machine and its brewing procedure.

In the current work, among the different quality-influencing
variables, we focus on (i) coffee ground size, (ii) ground amount,
and (iii) water pressure. Regarding the quality-evaluation vari-
ables, we exploit the following common metrics as selected by
domain experts and related works: (i) total extraction time, (ii)
the total volume of coffee in cup, and (iii) the derived average
flow of the extraction [5].

The ideal portion [12] of ground coffee for each cup is declared
to be 7 ± 0.5 g, while the water pressure should be 9 ± 1 bar, the
extraction time 25 ± 5 s, and the volume in cup 25 ± 5 ml.

The coffee ground derives from the process of coffee grinding
from coffee beans. Small changes in the grind size can drastically
affect the taste and the quality of the brewed espresso. In general,
if the coffee is ground too coarse, the espresso can be under-
extracted and less flavorful. On the other hand, too fine ground
may result in an over-extracted and bitter coffee. The amount
of ground itself impacts on quality, resulting in a too watery
or bitter coffee. Water pressure must be set to brew the right
coffee amount in a proper time, thus leading to the right flow
rate determining an intense flavour.

The novelty of the proposed work is provided by the exploita-
tion of the brewing time series, from which we propose to engi-
neer features able to improve the standard data-driven metrics
determining the quality of the espresso, i.e., extraction time, vol-
ume, and flow (as the ratio of volume and time). The proposed
features are applied on a real-world dataset where we show that
they can provide better quality-evaluation predictions, by allow-
ing to reduce the false positives, i.e., apparently good coffees,
without any loss in true positives.

Since the engineered features are simple to compute and add a
very limited workload to the coffee-machine sensor-data collec-
tion device, they are also suitable for large-scale IoT installations
on-board of professional coffee machines, such as those typically
installed in consumer-oriented business activities, shops, and
workplaces.

Presented results uncover insights into the espresso quality
evaluation, its relationships with the main quality variables, lead-
ing to positive impacts on both coffee consumers and coffee-
making industries, respectively enjoying and providing more
pleasure in drinking higher-quality espresso coffee.

The rest of the paper is structured as follows. Section 2 dis-
cusses related works, Section 3 describes the dataset and the ex-
perimental design, Section 4 introduces the time-series feature en-
gineering algorithm, and Section 5 presents experimental results.
Finally, Section 6 draws conclusions and outlines future works.



2 RELATEDWORK
Espresso quality assessment is traditionally performed with sen-
sory analysis, the scientific discipline that statistically and ex-
perimentally analyze reactions to stimuli perceived through the
human senses (sight, smell, taste, touch and hearing). Sensory
evaluation is however time-consuming and affected by subjec-
tiveness and low-reproducibility due to the human component.

Considering these limitations, objective analysis as chemical
techniques, electronic noises and data-driven approaces are com-
monly exploited for coffee quality control. Different chemical
techniques adopt Gas Chromatography (GC) and Mass Spec-
troscopy (MS) analysis. Several works study the effect of external
variables (e.g. water pressure, water temperature) or of coffee
characteristics on the final espresso quality. Some works are fo-
cused on the influence of water, as its composition, pressure [1],
temperature [2] and of water pressure and temperature com-
bined [6]. Others studies instead consider the impact of coffee
features themselves, as the roasting conditions [19] or the type
of coffee and roast combined [3].

However, GC and MS analysis often require a significant
amount of time and human intervention. Many studies exploit
Electronic Nose (EN) systems to overcome the complexity and
cost of GS/MS techniques. An electronic nose is a device intended
to mimic human olfaction. It consists of an array of chemical
sensors for chemical detection and a pattern recognition system
capable of identifying the specific components of an odor [11]. EN
are frequently exploited for determining and discriminating cof-
fee characteristics. Several works aim at determining the roasting
degree [17], using PCA and Neural Networks (NN) coupled with
GRNN, while others focus on distinguishing coffee blends, explot-
ing both NN [15] and Support Vector Machines techniques [16].
EN systems are also used in conjunction with GS analysis, as
in [14], to characterize roasting degree and coffee beans from
different countries. The analysis in [20] studies espresso chemical
attributes when the extraction time and grinding level are varied.
The work emphasizes the importance of the first 8 seconds of the
espresso brew, because in this range the major amount of organic
acids, solids and caffeine are extracted. This result confirms the
relevance of analyzing the entire trend of coffee extractions to
characterize their quality.

Finally, data-driven approaches can be applied for large-scale
and real-time espresso quality assessment, exploiting Internet of
Things (IoT) sensors in place of the more sensitive and unstable
EN devices. Recently, a data-driven approach that exploits asso-
ciation rule mining has been proposed to analyze the correlation
of coffee-making machine parameters and espresso quality [5].
The work relies solely on metrics describing each espresso brew-
ing as a whole (e.g., average flow, total amount of water). In the
proposed work, instead, we focus on the brewing time series to
fully characterize the coffee extractions.

Time series analysis is a popular and well-known approach in
many application fields [10, 13], from physiological data [4] to
energy and weather data [9]. However, in our work, we exploit
a basic intuition on the time series trend and resort to feature
engineering to avoid a direct analysis of the time series itself.
Feature engineering from time series has been extensively ad-
dressed for different applications, as in [7] for industrial one in
the context of IoT and Industry 4.0, or for pattern matching of
technical patterns in financial applications [8].

With respect to the state of the art, the current work con-
tributes by cleverly transferring known and simple time-series

feature engineering techniques into the espresso quality evalua-
tion domain, leading to significant improvement in classification
performance with respect to the state of the art. To the best of the
authors’ knowledge, this is the first attempt to perform a data-
driven analysis of real-world espresso-brewing time series, as
until now the focus has been limited to whole-extraction metrics.

3 DATASET DESCRIPTION
The dataset under analysis consists of real-world espresso brew-
ing data. Since the dataset is provided by a leading coffee com-
pany, we cannot disclose exact details of the real-world settings
(e.g., the coffee-machine maker and model, the precise location
and name of the involved business activities). Each espresso
extraction has been performed on professional coffee-making
machines and the values of the quality-evaluation variables have
been collected every 300 ms. In particular, our time series consist
of the values of the amount of water at each time interval, as
provided by flow-meter pulse counter, then deriving the instant
flow rate (i.e., the ratio of the amount of water and the time).

Each extraction has been performed with specific values of
the quality-influencing variables, hence allowing us to know the
ground-truth labels of high-quality espresso coffees, i.e., those
having all optimal settings for (i) coffee ground size, (ii) ground
amount, and (iii) water pressure. An exhaustive set of coffees has
been produced to observe the effect of non-optimal values on the
espresso quality. For each quality-influencing variable, different
values are considered: ground size can be coarse, optimal, or fine;
ground amount can be high, optimal, or low; brewing water pres-
sure can be high, optimal, or low. All possible combinations of
the three external-variable values (e.g., optimal, high, low) have
been included in the dataset, hence generating 33 = 27 possible
input configurations. For each configuration among the 27 com-
binations of external variables (for instance: coarse ground size,
optimal ground amount, and high water pressure), 20 espresso ex-
tractions have been performed. Experiments have been repeated
on a professional coffee-making machine, generating a datasets
consisting of 540 espresso extractions.

The domain-expert quality thresholds used in our experiments
are as follows: espresso volume from 20–30 ml, extraction time
from 20–30 s. The values have been selected according to public
literature, e.g., those published by the Specialty Coffee Associa-
tion of Europe [5, 12]. The flow rate thresholds derive from the
above-mentioned ones, as the flow rate is the ratio of the volume
by the time, hence obtaining the range 0.67–1.50 ml/s.

Given such thresholds, espresso extractions can be labelled
with their quality assessment. Quality labels are optimal, too
low or too high for each of the quality variables: volume, time,
and flow. Table 1 recaps the domain-based threshold values and
corresponding labels.

Table 1: Domain-based quality thresholds.

Quality Variable Low Optimal High

extraction time (s) <20 [20–30] >30
volume (ml) <20 [20–30] >30
flow rate (ml/s) <0.67 [0.67–1.50] >1.50

The problem tackled by this work stems from the fact that
analyzing the standard quality-evaluation variables without the
additional time-series novel features, many false positives are



provided: some espresso extractions are characterized by high-
quality values in terms of water amount, flow rate and extraction
time, however, their ground size, ground amount or water pres-
sure were not optimal (compensation effect [5]).

4 TIME-SERIES FEATURE ENGINEERING
Feature engineering refers to the process of extracting features
from raw data. It is typically executed to improve the performance
of predictive or classification models. In the current work, we
exploit feature engineering to leverage the coffee-brewing time
series with the aim of improving the espresso quality assessment.

For each coffee extraction, the time series of the flow-meter
pulses is stored, with sampling time equal to 300 ms. Flow-meter
pulses are firstly converted to quantity of brewed water q, as
follows:

q =
nump ∗ pulseq

numc
(1)

where nump is the number of pulses of the flow-meter, pulseq
represents the quantity of brewed water per pulse of the flow-
meter and numc represents the number of brewed coffees. In the
experimental data under analysis, pulseq=0.5 ml, as given by the
coffee-machine datasheet, and numc=2, since two espresso cof-
fees are brewed for each extraction. The time series captures the
water quantity over time, hence the instant flow rate is known.

Figure 1 shows an example of a real time series from the dataset.
We notice a clear two-segment trend that is observable for any
arbitrary extraction: a first steeper phase is followed by a second
part having a lower flow rate. This phenomenon is known by
domain experts. In the first, transient, phase of coffee brewing,
water is forced in the coffee panel inside the filter holder, and
coffee grounds do not slow the water flow yet. On the contrary,
in the second phase, water penetrate and dampen coffee grounds
yielding the actual coffee extraction.

We propose to extract the following new features to capture
the two-fold behavior of the extraction. We firstly determine the
point where a significant flow variation is observed. We refer
to this point as trend point. The trend point is used to approxi-
mate the water quantity time series as a polygonal chain. The
approximate polygonal chain is constituted by two line segments
that represent the two phases of the water flow and its vertex
of intersection is the trend point. The trend point is estimated
by considering the maximum variation of the slope average of
the points in two consecutive not-overlapping sliding windows
of sizeW . The slope si (or gradient) of two consecutive points
pi = (ti ,qi ) and pj = (tj ,qj ) is computed as follows.

si =
qj − qi

tj − ti
(2)

In Equation 2, t is the time reference and q is the water quantity,
and they represent the axes of Figure 1. The slope s describes the
steepness of the water flow.

The procedure for the trend point estimation is reported in
Algorithm 1.

The maximum variation of the slope and the corresponding
points are initialized in Lines 1 and 2. In Lines 4 and 5, two con-
secutive not-overlapping sliding windows of sizeW are defined.

Letwk be a time window of sizeW . The slope averagewkmean
of all consecutive points of the time window is computed as
follows

wkmean =
1

W − 1

W −1∑
j=1

qj − qj−1
tj − tj−1

(3)
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Figure 1: A real sample time series of the total water quan-
tity of an espresso coffee brewing.

Algorithm 1: Trend point computation
Result: Trend point

1 maxtd = 0.0;
2 pointmaxtd = (0.0, 0.0);
3 for i = 0 to N − 2W do
4 w1 = ranдe(i, i +W );
5 w2 = ranдe(i +W , i + 2W );
6 w1mean =mean(compute_slopes(w1));
7 w2mean =mean(compute_slopes(w2));
8 trend_di f f = w2mean −w1mean ;
9 maxtd ,pointmaxtd = updateMax(trend_di f f );

10 end
11 trend_point = pointmaxtd ;
12 return trend_point

where pj = (tj ,qj ) and pj−1 = (tj−1,qj−1) are consecutive points
of the time window.

The slope average is estimated for the two sliding windows, as
reported in Lines 6 and 7. The two terms capture the average flow
rate in the corresponding time window. The difference of the
two slope averages is computed in Line 8. The maximum slope
variation and the corresponding point are updated in Line 9.

The point of maximum variation corresponds to the intersec-
tion point of the two considered sliding windows. The process
is repeated until all N points of the time series are considered.
Finally, the trend point is returned (Line 12).

The trend point ptp = (ttp ,qtp ) represents the intersect vertex
of an approximate polygonal chain of the water quantity time
series. It is exploited to compute two features that capture the two
phases of the espresso extraction. Let be p0 = (t0,q0) and pN =
(tN ,wqN ) the first and last points of the time series, respectively.
We define s1 and s2 as follows.

s1 =
qtp − q0

ttp − t0
(4)
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Figure 2: Features engineered from the espresso extrac-
tion time series with Trend Point, Slope 1, and Slope 2.

s2 =
qN − qtp

tN − ttp
(5)

In Figure 2, the approximate polygonal chain of a coffee ex-
traction time series is reported. The dashed line indicates the
average water flow. The slope s1 represents the average flow of
the first phase of the espresso brewing while slope s2 the average
flow of the second phase. These two features are exploited in the
analysis to better characterize the coffee extraction, providing
additional information with respect to the overall average flow.
The extracted features will also be exploited to compute new
ranges for the optimal quality parameters, hence improving the
recognition of high-quality coffees.

5 EXPERIMENTAL RESULTS
This section provides a description of the data cleaning proce-
dures applied to the dataset (Section 5.1), a discussion of the data
characterization of the extracted features (Section 5.2), and their
contribution to the espresso quality assessment improvement
(Section 5.3).

5.1 Data cleaning
The dataset has been pre-processed by applying the data clean-
ing steps described in [5]. The original dataset consists of 1080
coffees, corresponding to 540 extractions. Among them, 30 extrac-
tions were missing the time series data due to low-level hardware
issues. Domain-driven thresholds, aimed at removing values be-
ing unacceptable for the phenomena under exam, lead to other 38
extractions to be discarded. As described in [5], domain-driven
threshold values of valid espresso extractions have been set to
10–40 ml and 10–40 s, according to leading industrial domain
experts. Finally, the statistical-based outlier removal approach
of [5] removed 15 additional samples from the dataset. After the
cleaning procedure, 457 extraction time series remain out of the
540 original records.

5.2 Data characterization
We firstly analyze the relationship between the extracted features
and the quality-evaluation variables (i.e., total extraction time,
average flow rate, total water amount). The trend point and the
consequent slope values have been computed with a window size
W set to 10.

The correlation analysis shows that slope s2 is highly cor-
related with the average flow rate (over the whole extraction),
with a Pearson correlation coefficient equal to 0.95, and the total
brewing time, with a correlation coefficient of -0.94. As expected,
lower flow rates lead to longer extraction times, since the total
amount of coffee is an almost constant goal of the coffee machine.

We then investigate the relationship between the two aver-
age flows (i.e. s1 and s2) and the three external quality-influencing
variables: water pressure, coffee ground amount and coffee ground
size, also known as grinding setting).

Figure 3 shows the pressure behavior with respect to s1 and s2.
The pressure values (low, optimal, and high) are represented by
the label in the scatter plot.We can observe that coffee extractions
in the (s1, s2) space are clearly divided in three macro-areas,
determined by s1 value. The central partition is characterized by
an optimal pressure, while the first and last areas by low and high
values of pressure respectively. Hence, the value of the external
variable highly influence the first phase of coffee extractions,
when water is forced into the coffee panel. To a low pressure
corresponds a low water flow in the initial phase and vice versa
for the high pressure. The flow in the second phase is instead
almost independent from the pressure value.

Regarding the total amount of water, we report in Figure 4
the coffee extractions as a function of s1 and s2. Differently from
the pressure-labeled scatter plot, it is not observable a sharp dis-
tinction. We can however identify a relationship with s2. Higher
amounts of coffee ground lead to lower values of the flow s2. In
this case, the average flow in the second phase of the extraction
is hindered by the higher amount of coffee ground. Hence, the
water flow is reduced. Likewise, the lower quantity of coffee
ground facilitates the flow of water, with a consequent increase
in flow s2. The coffee ground amount, instead, do not influence s1,
since it captures the average flow of the water when it is forced
in the coffee panel and before the coffee ground tampering.

Finally, we observe a similar behavior when considering the
coffee ground size (i.e., grinding settings), hence we do not report
the plot. A coarser grinding generally corresponds to a higher
flow. The finer coffee grinding instead hinders the water flow.
This results in a lower flow s2 in the second phase of the coffee
extraction.

5.3 Quality Evaluation
In this section, we evaluate the extracted feature ability to char-
acterize espresso quality and to improve the detection of high-
quality espresso coffees. All the three external variables are under
the barista control. However, brew pressure is set at first in the
espresso machine calibration phase and it is periodically checked
and configured, typically with the support of technicians. On
the other hand, the grinding settings and the amount of coffee
ground are determined by the barista at each espresso brewing.
Hence, it is particularly relevant to control that these two exter-
nal variables are set properly by the barista. In existing works,
domain-experts and data-driven thresholds on quality indexes,
such as espresso volume, extraction time and brewing flow rate,
have been applied to evaluate coffee quality. The analysis in [5]
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Figure 3: Extractions in the proposed feature space, la-
beled according to the water pressure value.
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Figure 4: Extractions in the proposed feature space, la-
beled according to the coffee ground amount.

explored the phenomena of compensating sub-optimal values
of different external variables. A compensation effect is observ-
able when configurations of values of external variables allow
to achieve apparently high-quality coffees, in terms of quality
indexes, despite one or more values are, in fact, not optimal. Inter-
pretable exploration techniques highlighted that high amounts
of coffee ground, that generally hinder the water flow and lead
to long percolation times, could be compensated by a coarser
grinding that, on the other hand, facilitates the flow [5]. Simi-
larly, the low amounts of coffee ground could be compensated
by a finer grinding. Despite the optimal quality-index values,
the low amount of coffee has generally a negative impact on
coffee intensity and body, and therefore on the final customer

experience, hence possibly affecting also the brand image of the
coffee supplier. To this aim, we exploit the time-series features
to better characterize the quality of espressos so that false high-
quality coffees can be detected and, if not totally avoided, at least
significantly reduced.

As a reference, we consider domain-driven thresholds on cof-
fee quality indexes. In Figure 5 the espresso extractions with
optimal values of quality indexes are reported in the s1 and s2
space. They can be grouped as follows. (i) True high-quality ex-
tractions present optimal values for both the quality-evaluation
indexes and, in particular, for all external variables. (ii) False
high-quality extractions present optimal quality-index values
with respect to domain-expert thresholds, but at least an external
variable has a sub-optimal value [5]. Such espresso extractions
(ii) are the result of compensation effects.

We refer to true high-quality extractions as optimal, and we
characterize them as a function of the proposed time-series fea-
tures s1 and s2. LetO be the set of optimal extractions {o1,o2, ...,oN },
where each point oi ∈ O is defined in terms of s1 and s2, i.e.,
oi = (oi_s1 ,oi_s2 ). We define novel quality thresholds for optimal
extractions To_min and To_max in the (s1, s2) space as follows:

To_min = (min(oi_s1 ),min(oi_s2 )) (6)

To_max = (max(oi_s1 ),max(oi_s2 )) (7)
Among the whole set of espresso extractions E = {e1, e2, ..., eM },
a generic sample ej = (ej_s1 , ej_s2 ) ∈ E is labeled as optimal
e ∈ O , with O ⊆ E, if its values of flow rate (ej_s1 , ej_s2 ) are
within the thresholds To_min and To_max .

In Figure 5 two rectangular areas are shown. The green area
contains the optimal extractions. Its boundaries are defined by the
thresholdsTo_min andTo_max . The orange dashed area contains
the false high-quality extractions, which current state-of-the-
art solutions would (incorrectly) classify as high-quality coffees.
Exploiting the proposed thresholds in the new feature space, we
can detect many false positives (orange squared points in the
plot). Specifically, instead of assigning an optimal label to the
overall 67 extractions (green and orange ones), we can correctly
detect the 20 true optimal extractions (green ones), and we can
discard 31 out of 47 false positives (orange ones). State of the
art thresholds would lead to the same true positive detection (20
out of 67), while the proposed approach leads to a drastically
better accuracy (76% instead of 30%) and precision of high-quality
extractions (56% instead of 30%).

To drill down the analysis, we further distinguished two types
of false positives, stemming from different compensation effects:
(i) low amount of coffee ground with fine grinding and (ii) high
amount of coffee ground with coarse grinding. The former is
less common, since very few baristas intentionally use higher
amounts of coffee ground, being a cost for them. On the contrary,
the latter is much more frequent, because it brings savings on
coffee ground costs. For this reason, extractions affected by the
latter are of greater interest.

In Figure 6 three areas are shown. The green one still contains
the true optimal extractions, the blue one contains the extractions
belonging to the first type of compensation and the orange one
now contains only the extractions belonging to the second type
of compensation. Again, exploiting thresholds in the new feature
space, the target extractions can be correctly classified and the
compensation effect can be detected. Results show that all 23
extractions from type-(ii) compensation can be correctly detected,
besides 8 extractions out of 24 from type-(i) compensation, which
means improving from 30% accuracy of data-driven state of the
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Figure 5: True optimal extractions and false high-quality
extractions in the proposed feature space.
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Figure 6: Optimal extractions in the proposed feature
space and false high-quality extractions due to different
compensation effects.

art to 100% accuracy considering only true optimal and type-
(ii) compensation extractions. To this aim, in our dataset, the
new feature thresholds have been set as 5.19 < s1 < 5.48 and
2.64 < s2 < 3.73.

6 CONCLUSIONS
This work presented a data-driven analysis of a real-world time-
series dataset of espresso brewing by professional coffee-making
machines. The proposed feature space, despite being simple and
easy to compute, brought a large improvement in the classifica-
tion accuracy of high-quality espresso with respect to current

state-of-the-art data-driven approaches: results yielded to three-
fold improvements in accuracy, from 30% to 100%, with specific
focus on currently misclassified extractions due to common com-
pensation effects. The proposed methodology can be applied
in similar contexts to improve current data-driven analyses of
espresso quality.

Future works aim to widen the scope of the analysis includ-
ing additional quality variables, definitely different models of
professional coffee-making machines, diverse coffee blends, and
environmental variables. Furthermore, we plan to apply cluster-
ing techniques for determining the quality-index thresholds.
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