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ABSTRACT

Industrial and construction vehicles require tight periodic main-
tenance operations. Their schedule depends on vehicle character-
istics and usage. The latter can be accurately monitored through
various on-board devices, enabling the application of Machine
Learning techniques to analyze vehicle usage patterns and design
predictive analytics. This paper presents a data-driven application
to automatically schedule the periodic maintenance operations
of industrial vehicles. It aims to predict, for each vehicle and date,
the actual remaining days until the next maintenance is due. Our
Machine Learning solution is designed to address the following
challenges: (i) the non-stationarity of the per-vehicle utilization
time series, which limits the effectiveness of classic scheduling
policies, and (ii) the potential lack of historical data for those
vehicles that have recently been added to the fleet, which hinders
the learning of accurate predictors from past data. Preliminary
results collected in a real industrial scenario demonstrate the
effectiveness of the proposed solution on heterogeneous vehi-
cles. The system we propose here is currently under deployment,
enabling further tests and tunings.

1 INTRODUCTION

Fleets of industrial and construction vehicles are subject to pe-
riodic maintenance. These vehicles are of different models and
types. Thus, they require to plan actions of different type and
frequency. According to the current vehicles’ workload, mainte-
nance schedule often changes. For example, some vehicles could
remain unused for a relatively long period of time, then be moved
to a construction site, and keep working at full capacity for many
days or weeks. The heterogeneity of industrial vehicle usage
has indeed prompted the need for tracking their utilization and
automating the schedule of maintenance operations [3].

In the context of industrial vehicle management, the advent
of CAN bus technology has enabled the design of data-driven
decision-making processes [5]. The CAN bus provides access to
various signals describing the vehicle usage state (e.g., working

Copyright © 2020 for this paper by its author(s).

Published in the Workshop Proceedings of the EDBT/ICDT 2020 Joint Confer-
ence (March 30-April 2, 2020, Copenhagen, Denmark) on CEUR-WS.org.

Use permitted under Creative Commons License Attribution 4.0 International (CC
BY 4.0)

time, oil pressure, temperature, engine speed). Domain experts
can thus monitor vehicle state in order to understand which
maintenance actions need to be performed. In recent years, the
significance advances of Internet of Things (IoT) and Big Data
analytics technologies have fostered the development of smart
predictive maintenance solutions [15]. Specifically, the analysis
of CAN bus data by means of data mining and machine learning
techniques allow us to (i) predict the future vehicle usage by
means of classification and regression techniques (e.g., [7, 10]),
(ii) aggregate vehicles with similar characteristics using cluster-
ing techniques, (e.g., [1, 4]), and (iii) identify malfunctioning of
specific vehicle components (e.g., [6, 15]).

Optimizing maintenance activities of fleet vehicles is a priority
in several industrial processes [2]. In fact, technological applica-
tions related to activity planning and resource management are
crucial for efficiently handling logistics [14]. This paper proposes
a machine learning approach to support the smart planning of
the fleet maintenance operations in a industrial context.

Data-driven vehicle maintenance planning has already been
addressed using various optimization methods. For example,
in [11] the authors have applied Genetic Algorithms to plan
the maintenance of geographically distributed assets by consid-
ering routing constraints and travel time to reach the assets. The
authors in [12] have presented a dynamic optimization method to
plan maintenance of heavy vehicles by jointly scheduling main-
tenance operations and production activities, whereas in [8] the
authors propose a data-driven simulation framework for planning
snow removal projects considering weather and truck-related
data acquired by real-time sensors. All the aforesaid strategies
are possible if accurate predictions of next maintenance events
are available.

Contribution. This work presents an application of regres-
sion techniques to predict for a given vehicle when the next
maintenance will be due. Specifically, it predicts the number of
days left to the next maintenance operation, based on the series
of past daily utilization levels and on the current time of usage
left to the next maintenance. The application faces three of the
main issues related to fleet maintenance planning: (i) Vehicle
heterogeneity: The industrial vehicles in a fleet are commonly
rather heterogeneous, in terms of number, type, and frequency of
the necessary maintenance operations. This makes the planning
of these activities particularly challenging and time-consuming



for fleet managers. (ii) Non-stationarity of the utilization series:
Vehicle usage pattern levels are rather irregular, whereas main-
tenance actions rather frequent. Seasonal trends may depend
on vehicle type, model, and context of use. (iii) Lack of data for
new vehicles: When a vehicle is added to the fleet, usage data
is typically not available. This hinders the learning of accurate
machine learning models, which requires historical data to train
reliable predictors.

To handle heterogeneous fleets, we train a separate regression
model per vehicle. Each regressor analyzes the vehicle usage
patterns and the current time to maintenance of a specific vehi-
cle. We conduct the analysis on 24 industrial and construction
vehicles of different models. To handle the non-stationarity of
the analyzed series, we incorporate the historical usage levels
in the predictive models and train both linear and non-linear
models. Finally, to overcome the lack of data related to new ve-
hicles, we combine the regressor outcomes achieved on similar
vehicles. The presented application is complementary to existing
optimization-based planning strategies, e.g., [8, 11], providing
the fleet management system with specific hints on future vehi-
cle usage states. The results, achieved in real industrial scenario,
show substantial improvements achieved by applying non-linear
regression models compared to classical statistics-based or linear
models. In light of the achieved results, the data owner (collecting
telematics data from real industrial vechicles) has decided to put
the present application under deployment, thus enabling further
tests, tunings, and extensions.

This paper is organized as follows. Sections 2 formalizes the
problem, while Section 3 describes the dataset and its prepara-
tion phase. Section 4 presents the data-driven methodologies.
Section 5 summarizes the main experimental results. Finally, Sec-
tion 6 draws conclusions and summarizes the future research
agenda.

2 PROBLEM STATEMENT

Given an arbitrary industrial or construction vehicle v, our goal
is to predict when the next maintenance operation for v will be
due. Let N? be the number of days for which historical data about
v usage is available and let T% be the allowed usage times (in
seconds) for v between two consecutive maintenance operations.
The period from one maintenance operation to the next one will
be hereafter denoted as a cycle. The count of the number of days
left to the next maintenance of vehicle v varies day by day. Let
D?(t) be the series of the aforesaid daily counts. Our aim is to
predict D?(t), where t denotes the current day. The series used
to drive the prediction are enumerated below. For each vehicle v:

e U?(t): series of the daily utilization of vehicle v.

e CY(t): series of the counts of the number of days already
passed from the last maintenance operation.

e LY(t): series of the utilization times left to the next main-
tenance operation. On an arbitrary day t, it is computed
as follows:

t-1
L(t) =T - Z U (i) 1)
i=t—C?(t)

In the following, we define three categories of vehicles accord-
ing to the amount of historical data that is currently available:
(i) Old: If at least one maintenance cycle has already been com-
pleted since data acquisition has started. (ii) Semi-new: If the first
maintenance cycle has not been completed yet, but data about at

least half of the usage in one cycle (T—Zv) is already available. (iii)
New: If the vehicle has been used for less than T—zv seconds since
the beginning of the data acquisition phase.

2.1 Error computation

To effectively support fleet managers in planning periodic vehicle
maintenance, our prediction system is tailored to a specific goal
that we encode by considering specific error function definition.
We define three errors for each vehicle v: the daily error E°(t),
the global error Eglobal’ and the Mean Residual Error E} (D).

The daily error counts on each day t the gap between the

predicted and actual values of the next day of maintenance:

E®(t) = |Dv(t) - Dlz;redict(t)l @

The global error is a mean of the daily errors over all the N¢
samples related to the vehicle under analysis, i.e.,

v _ Zy:l Ev(t) (3)
Global ~— N©
The global error combines the daily errors together, but it
does not consider nor weight the time that is left for the next
maintenance. In other words, an error of 1 day when we are close
to the maintenance (e.g., DY(¢) = 1) is considered as equal as an
error when we are far from the maintenance (e.g., DY (t) = 100).
In order to solve this issue, the mean residual error is considered.
It is the mean of the daily errors over specific days. In particular
we want to compute the average only for specific values of DY,
contained in a set D. D consists of a selection of days that are
closer to the maintenance operation, for each maintenance cycle.!
E? ... is computed as follows:

MRE
Zi:Dv(i)ef) E®(i)

— 4
i DY(i) € D‘

E]Z\)/IRE(D) =

The idea behind EY, . - is that fleet managers are mainly in-
terested in getting accurate predictions when the vehicles are
towards the end of their maintenance cycle, i.e., when mainte-
nance operations need to be scheduled soon. Therefore, our main
objective is to minimize E},; E(ﬁ)

3 DATA PREPARATION

The application presented in this paper has been developed and
tested on real vehicle data provided by Tierra S.p.A.%, a company
that provides IoT solutions for monitoring vehicles of multiple
vendors. The dataset consists of historical usage of 24 heteroge-
neous vehicles acquired over a 4 year period (from January 2015
to September 2019). For each vehicle, we consider the informa-
tion coming from the CAN bus. Onboard sensors and Machine
Control Systems generate messages for CAN at a frequency of
approximately 100 Hz. Each message is collected by a controller
which processes it, periodically generates a summary report, and
sends it to a cloud server [7].

To prepare vehicle data for the present study, the input CAN
bus data goes through a series of steps: (i) Data Cleaning, (ii) Nor-
malization, (iii) Aggregation, (iv) Enrichment and (v) Transforma-
tion. A more detailed description of each of the above-mentioned
steps is given below. Data cleaning entails properly handling
missing values and inconsistent values. Data normalization al-
lows us to scale the values of the utilization times to a uniform

1We have considered the last 29 days per cycle, ie., D= {1,...,29}.
https://www.tierratelematics.com/


https://www.tierratelematics.com/

50000
—_

-y

40000 ¢

30000 ¢

e (t)

20000 ¢

10000 f

Figure 1: Daily utilization in seconds (U?) in function of
the day in the series (¢) for two sample vehicles.

value range (e.g., from 0 to 1) thus avoiding to introduce bias in
regression model learning [13]. Data aggregation, enrichment
and transformation aim at providing predictive algorithms with
an appropriate set of features describing the usage patterns by
aggregating data at the desired time granularity. For each vehicle
we transformed the raw CAN bus data to produce the input fea-
tures described in Section 2. Specifically, in our case of study, we
primarily focus on daily-usage time series U(¢), i.e., the amount
of time each vehicle worked on each day.

3.1 Preliminary data exploration

Figure 1 plots part of the series of daily utilization seconds, i.e.,
U®(t), for two sample vehicles. Curves show that vehicle utiliza-
tion patterns are rather heterogeneous. Vehicle v; has a daily
utilization of about 20 000-30 000 seconds, with few days without
usage every 10-15 working days. On the other hand, vehicle v,
remains almost unused for several weeks (from ¢=0 to t=40) and
then suddenly changes its usage pattern.

After a fixed time amount of usage (we have considered T? =
2000 000 seconds), every vehicle needs to go under maintenance.
Notice that we do not know whether maintenance operations
have actually been performed or how long they take (from T?
on). Figure 2 shows two examples of target series DY (t), with
many shown cycles. When DY(t) reduces to zero, the vehicle
goes to maintenance. Then a new maintenance cycle starts, the
number of days left to maintenance is maximal, and it mono-
tonically decreases (one day for each day passed) until the next
maintenance operation is carried out. Notice how v; has a first
longer cycle (221 days), while the others are more constant and
homogeneous, with length between 65 and 105 days.

In Figure 3 we show the number of days left to maintenance
D?(t) with respect to the number of utilization seconds left for
the next maintenance L”(t). The functions seems to have a con-
stant rate when LY (¢) is closer to zero, reflecting that for most of
the time the utilization rate is relatively constant and different
from zero. However, there are some vertical steps, corresponding
to consecutive days when the utilization was null. This confirms
that the presence of low- or zero-utilization periods has a serious
impact on the target variable. Thus, predicting the correct target
value could be challenging. Hopefully, it is unlikely to see long
periods of zero-utilization in the days approaching the deadline.
This reinforces the motivations behind using Ej, E(ﬁ) as ref-
erence error metric, considering values relatively close to the
maintenance.
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Figure 2: Target variable number of days left to the next
maintenance (DY) with respect to day in the series ().
Many cycles are shown for two sample vehicles.
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Figure 3: Utilization seconds left to maintenance (L?) vs.
the number of days to maintenance (D) for a single cycle
of two vehicles.

4 METHODOLOGY

In this section we present the data mining process designed
to address the problem under analysis. We propose different
methodologies for vehicles when they are recognized as new,
semi-new, or old (see Section 2). For each old vehicle we have
enough data in order to train a prediction model on its own past.
Semi-new and new vehicles will be separately handled.

For each vehicle v we generate a relational dataset containing
the historical utilization series U?(x) [13]. More specifically, each
record corresponds to a different day t and consists of a set
of attributes denoting the past utilization levels (in seconds).
Given a window size W, the attributes include the values U?(x)
[t =W < x <t —1]. Along with the utilization level series, the
attributes include the current time left until the next maintenance,
ie., LY(t), and the target variable, i.e., the number of days left to
maintenance, i.e., DY(t).

Many machine learning techniques work better with more
data, hence we desire to increase the number of records per
vehicle. Since we do not know when vehicle actually had the
maintenance done, we can shift the time reference, i.e., chang-
ing the first starting day ¢ = 0, without introducing errors. We
randomly re-sampled multiple times the time reference starting
from different time points within the training data and build the
utilization series.



4.1 Approaches

We apply three different methods: (i) a baseline model, relying on
simple estimate, (ii) a univariate model, whose predictions rely on
a single variable, and (iii) a multivariate model, where the model
considers multiple series values. These are standard methods for
time series forecasting. Novelty relies in the categorization of the
vehicles and data engineering.

4.1.1  Baseline algorithm: With this baseline approach we sim-
ply predict when the next maintenance will be due assuming that
the utilization is constant and equal to the average utilization in
the past. Hence, we compute the average utilization of vehicle v
in the past (training set of size T;,4in). Then we use it for predict-
ing the number of remaining days until the next maintenance is
due. The average utilization is defined as follows:

T, .
Z _irazn Uv(t)
AvGv ==L - (5)
Ttrain
Let D, (t) be the number of days left to next maintenance

predicted by the Baseline algorithm at time ¢ as:

DRO = St ©

We will denote the baseline method as BL thoroughout the
paper.

4.1.2  Univariate regression model. We apply a univariate re-
gression model Fyg to predict the number of days left to main-
tenance for a given vehicle v based on the last value of the daily
utilization seconds series L:

D) = Fur(L®(1) ™

4.1.3  Multivariate regression model. We extend the univariate
regression model to a multivariate context in order to consider
the temporal correlation between the target variable and the
previous series values.

DY p() = FMrLO (1), U°(t = 1),...,U°(t =W))  (8)

Unlike the univariate model, the model formalized in Equa-
tion 8 does not consider only the last value of the daily utilization
time but also the most recent values of the historical utilization
series within a size-W window time interval, i.e., from t — W to
t — 1 (where W is a user-specified parameter).

4.2 Regression algorithms

Univariate and multivariate regression models can be solved
with linear or non-linear models. Linear models are deemed
as appropriate whenever usage patterns are quite constant for
most of the time. Conversely, non-linear models are potentially
able to capture more complex, non-stationary usage trends. As
a drawback, the complexity of non-linear models is typically
higher than those of linear ones.

The deployed system allows fleet managers to select an ac-
ceptable trade-off between the accuracy and complexity based
on empirical evidences. The results of a preliminary performance
evaluation on real vehicle data are reported in Section 5. The
models that have already been integrated and tested are briefly
described below. A more detailed description is given in [13].
Linear Regression (LR): It is the simplest linear model. It learns
a linear function minimizing the residual sum of squares between
the predicted target value and the expected target value in the

record of the training dataset.

Support Vector Regressor (SVR): It is among the most effec-
tive solutions to address regression and classification problems.
Given a multidimensional training data representation, it finds an
hyper-plane separating points belonging to different target value
ranges. According to the kernel function used to derive the hy-
perplane, the predictive model can be either linear or non-linear
(e.g., polynomial, sigmoid, rbf). Due to the high computational
complexity of non-linear kernels, in the remaining of the paper
we focus on linear SVR (LSVR).

Random Forest regressor (RF): It is an established ensemble
method combining the predictions of multiple decision trees. De-
cision trees are the most popular non-linear mapping functions
between non-predictive and predictive variables. They rely on
tree-based structures. The Random Forest Regression averages
the predictions made by various decision tree models, which are
trained on different bootstraps (i.e., samples of the training data
with replacement).

Histogram-based gradient boosting (XGB): it is a popular en-
semble method relying on a boosting strategy. It minimizes the
prediction loss by combining many decision tree regressors.

Additional models can be straightforwardly added and tested
in the deployed version of the system. Notice that some models
(e.g., Neural Networks) have not been included in this first release
due to the lack of a sufficiently large amount of training data.

4.3 Methodology for old vehicles

Old vehicles are assumed to have a sufficiently large amount of
historical data to train reliable Machine Learning models (see
Section 2). Thus, separately for each vehicle we train the multiple
regression models described in the previous section. Among the
trained models, we select those that minimizes the mean residual
error over the last 29 days predicting the maintenance (E}; E(ﬁ)

with D = {1,..., 29}). For each vehicle, we consider the first 70%
of their samples (N?) as training set, and the remaining part as
test set.

4.4 Methodology for new and semi-new
vehicles

To handle new and semi-new vehicles, we need to face the follow-
ing issues: (i) The lack of historical usage data, which hinders the
training of per-vehicle regressors. (ii) The first maintenance cycle
of most vehicles appears to have peculiar characteristics, with
less usage. Indeed, the mean daily utilization time spent by the
vehicles within the first cycle (10 676 seconds) is approximately
30% lower than in the subsequent cycles (13 792 seconds).

We design ad-hoc strategies to predict D? for semi-new and
new vehicles. We consider as training data the utilization series
in the first cycle of many old vehicles. Collecting in the training
set only usage data related to the first maintenance cycle allows
Machine Learning models to focus on the usage patterns peculiar
to that usage period (which could be significantly different all
from the subsequent ones). We take 70% of the 24 vehicles (i.e.,
17 vehicles), and consider their complete first cycle as training
set. The first cycle of the remaining 30% of the vehicles (i.e., 7) is
considered as test set.



Table 1: Epre({1,. .., 29}) with models trained on all data
and models trained in the last 29 days before maintenance,
i.e., attimes i: D(i) € D =1{1,...,29}

Alsorithm Trained on all data Trainedon D = {1, ..., 29}
g Emre({L, ..., 293) Emre({1,. .., 29})
BL 20.2 20.2
LR 26.1 10.8
LSVR 13.3 6.1
RF 6.9 2.4
XGB 10.9 5.6

4.4.1 Semi-new vehicles. When more than half of the first cy-
cle has been completed, we learn a regression model by combin-
ing data from the other training vehicles. We apply the following
strategies:

Baseline: we follow the same approach as for old vehicles. In
practice, we compute AVGY as the average utilization in the
first half of the first cycle, i, 3.5 _, uvx)<Te2U°@)/IE -
Zx<t UP(x) < T9/2))).

Unified ML model: We create a single model, hereafter denoted
as Modelyry;, on the first cycle data of the training vehicles. In
this case, we train a single regression model for all the semi-new
vehicles by merging data acquired from all the training vehicles
together. The same model is applied to all the test vehicles.
Similarity-based ML model: We pick usage data only for the
most correlated vehicle (rather than for all the old vehicles)
and train vehicle-specific Machine Learning models, denoted
as Modelg;,, on it. The key idea is to first decide whether each
vehicle is similar to the target semi-new vehicles or not by es-
timating the pairwise correlation between the utilization series
acquired in the first half of the first cycle. Then, we train the
regression model only the first cycle data of the selected vehicle.
In the current implementation, we estimate the pairwise similar-
ity in terms of point-wise average distance AVG? between the
utilization series. However, more advanced similarity measures
(e.g., [9]) can be integrated as well.

4.4.2 New vehicles. For these vehicles we have very few or
none data at all, hence we cannot even compute AVG?. There-
fore, the baseline and similarity-based ML models cannot be
applied. Hence, we apply the Unified ML model (Modelr,,;). No-
tice that, when dealing with new vehicles, it does not make sense
to compute EY o - ({1, ..., 29}) since when we are approaching
the deadline the vehicle will already be semi-new. Hence, we
focus on comparing the algorithm performance in terms of the

v
global error EZ, .

5 EXPERIMENTAL RESULTS

We have tested the proposed methodologies on real vehicles of dif-
ferent categories (new, semi-new, and old). The experiments were
performed on a machine with Intel(R) Core(TM) i7-8750H CPU
with 16 GB of RAM. To tune the algorithm parameter settings we
have performed, separately for each vehicle, a grid search using
a 5-fold cross validation. Specifically, for RF and XGB we have
tuned the maximum tree depth from 3 to 50, and the number of
estimators from 10 to 1000. For SVR, we tested the linear kernel
and varied the values of the parameters epsilon (from 0.5 to 2.5)
and C (from 0.01 to 100).

5.1 Results for old vehicles

In Table 1 we show the values of Eprre({1, . .., 29}) achieved on
the test set by training each algorithm on the whole training data

Figure 4: Improvement (%) for each algorithm by increas-
ing the number of features. W is the window of past usage
in the time series UY(t).

Table 2: Best setting for features and the corresponding
mean relative error of the different algorithms.

H Algorithm  Best windlow W Epyge({1, .. ., 29}) H
BL 0 20.2
LR 0 10.8
LSVR 6 5.2
RF 18 1.3
XGB 12 4.2

(central column) and just in the the last 29 days of the cycles in
the training data (right hand-side column). Eyqrp({1, . . ., 29})
is the average of the mean residual errors Ej p -({1,...,29})
computed over all the test vehicles.

We found out that by forcing the algorithm to train only on
the last 29 days, the error was reduced by 59% in LR, 54% in LSVR,
65% in RF and 48% in XGB. Since BL is not trained, its results
do not change. In general, RF presents the best results, with an
average relative error of only 6.9 and 2.4 days, respectively for
the two training sets. Second best results are obtained by XGB,
closely followed by LSVR.

Now we delve into the study of the usage of different features.
Figure 4 shows, for each algorithm, the performance variation
(percentage) by increasing the window size W. Positive variation
means decrease of the error shown in Table 1 (i.e., performance
improvement), and vice-versa. W is the window of past usage in
the time series UY(x). W equal to 0 means we are in the univariate
case, while W > 0 means we are in the multivariate case. For
example, W equal to 3 means usage of U(t—1), U(t—2) and U(:-3)
in the regression (other than L(t)). BL is obviously constant, since
it is not using past values of U. In RF and XGB, adding features
greatly improve the results. RF and XGB seem to reach a plateau
in performance with more than 15 previous value of utilization
U. Hence, having more than a couple of weeks of previous data
is enough to reach good performance. Respectively, the results
improved by 44% and 25% for RF and XGB. In LR the best results
are instead obtained without adding features. Finally, for LSVR
the results improve by adding up to 6 features, but then decrease
again. We report in Table 2 for each algorithm the final best
results for Epqrre({1, . . ., 29}) and the optimal size of the window
W. The non-linear algorithms (XGB and RF) reach again the best
results.
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Figure 5: Mean relative error analyzed over all the test ve-
hicles computed for D ranging from 1 to 29 days.

Finally we show in Figure 5 the error, i.e., EpR 5(5) obtained
with the best configuration, for each algorithm, in each of the last
29 days before maintenance. Here Dis a set composed of a single
value, corresponding to the number of days left for the the next
maintenance. Clearly, the closer to the deadline, the smaller the
error. All the algorithms improve the poor performance of the
baseline. Interestingly, RF gets very good results even when we
are 29 days from the deadline, with an average error of only 2.4.

We also analyze the time complexity of the proposed method-
ologies, in terms of execution time on our machine. The whole
methodology pipeline includes (i) Data preparation, (ii) Model
training, and (iii) Model Testing. Step (ii) was the most time-
consuming task for all the algorithms. The average training time
on a single vehicle is 30.4 s for XGB and 8.1 s for RF, while BL,
LR, and LSVR are faster taking respectively 2.5s, 3.8 s, and 2.8 s.
Moreover, the model complexity increases more than linearly
with the number of considered features, i.e., window size W.

5.2 Results for new and semi-new vehicles

Table 3 shows the results of the above discussed methods for
semi-new vehicles. RFs;,, has the best results among all mod-
els, meaning that comparing the similarity of average usage can
slightly improve the results (from 3.2 to 2.9 days in Epfrg). More-
over, notice how the baseline approach performs badly, with a
mean relative error of 34.9, a value much higher than all the
other metrics. This is because the limited amount of past data in
the semi-new test vehicle cannot be trusted to create a simple
predictor based on average usage.

In the last column of Table 3 we also report the results of
the above discussed methods for new vehicles. Baseline and
similarity-based models cannot be applied to new vehicle, since
there is no past data. XGByyj,; has the best result among all mod-
els. Even if the results in terms of error appears poor, we recall
that the global error accounts also for dates that are far from the
deadline. Even more promising, the global error of XGBy,; is
comparable with the baseline mean relative error in the case of
old vehicles (Table 2).

6 CONCLUSIONS AND FUTURE WORK

The paper has presented a Machine Learning application to sup-
port maintenance planning for fleets of industrial and construc-
tion vehicles. It proposes to use regression techniques to predict
the remaining days until the next maintenance is due. The trained
models are (i) vehicle-specific, when sufficient data is available

Table 3: Results for semi-new and new vehicles

Algorith Semi-new vehicles New vehicles
SO Epvre({1, ..., 29)) Eciobal
BL 34.9 -
LRsim 49 -
LSVRsim 6.2 -
RFsim 2.9 -
XGBsim 53 -
LRuni 5.1 27.2
LSVRyni 8.8 27.8
RFyni 3.2 30.1
XGByni 42 17.9

to train reliable predictors, (ii) based on data acquired from sim-
ilar vehicles, when the vehicle is semi-new (i.e., the first cycle
maintenance is partly completed), or (iii) vehicle-independent,
when the vehicle under analysis is new. The achieved results
show that, when a minimal amount of vehicle-related data is
available, Machine Learning approaches relying on non-linear
models outperform both naive approaches and linear ML models.
The deployed version of the current system will be further
extended. Specifically, we plan to enrich regression models using
contextual information (e.g., meteorological data, fleet move-
ments) and to design ML supported scheduling strategies.
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