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ABSTRACT
We propose a method for interpreting similarity computations
between neural embeddings of trees. We showcase our approach
in a search engine for mathematical equations crawled from
arxiv.org. The equations are encoded as MathML, a XML file
format that describes math in tree structures. These trees are pro-
cessed by a graph convolutional neural network to obtain fixed-
size low dimensional and dense embedding vectors for each tree.
Search is performed by performing nearest neighbor query in the
set of embeddings. However just by the embeddings it is difficult
to judge how the similarity came about. We propose two different
approaches to highlight parts of the equation that are important
for the similarity, one based on the forward-computation of the
neural network and one based on the gradient in the backward-
computation. In a qualitative study on math retrieval we show
the advantages of both methods.
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1 INTRODUCTION
The current advances in artificial intelligence, particularly in
deep learning, have had a huge impact on information retrieval
and has changed the way we process, index and retrieve data.
Artificial neural networks transformmultimedia content like text,
images, audio or video and compute latent representations which
we can use to detect semantic similarities.

In this work we focus on retrieval of mathematical expressions.
We showcase a neural-network based math retrieval engine that
finds semantically related formulas based on contextual similar-
ity. The system is designed to help scientists find related research
based on math-queries. We leverage machine learning to process
a large corpus of mathematical expressions and learn a vectorial
representation that uncovers relations between equations. A hu-
man reader can use background knowledge on conventions and
notations to infer the context of an mathematical expression or
judge the relevance of an equation for a search query. We hope
to learn a model that can perform this task using large amounts
of data. Our system starts by representing formulas or equa-
tions in an XML-tree format, namely MathML, and uses a graph
convolutional neural network to embed these trees in a dense,
low-dimensional vector space that we can search efficiently using
index data-structures for fast nearest neighbor retrieval. At the
end of this machine learning pipeline, the users are interacting
with the search interface and are presented with results. These
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results are based on neural network computations and it is often
unclear how they came about. Traditional keyword queries are
easily interpreted: We can highlight where the query-keywords
or expressions related to the keywords appear in the results,
thereby justifying the systems output. Because our system does
not rely on exact matching of sub-terms, but rates overall seman-
tic relatedness, the outputs are harder to interpret and harder to
visualize, as we cannot necessarily highlight overlapping parts of
result and query. To overcome this issue, we propose to apply so-
called salience map for visualizing the similarity scores predicted
by a graph convolutional neural network. These visualizations
help both the end user in understanding how results came about
and the machine learning engineer who deploys the models in
understanding how the model rates similarities.

The rest of this work is structured as follows: We begin by dis-
cussing related work, including aspects of interpretable machine
learning as well as geometric deep learning. Then we present
our two methods for visualizing embeddings of trees in Section
3. In Section 4 we discuss our results in the context of a search
engine for mathematical content. We discuss our dataset and data
preparation and perform a qualitative study of our visualizations.
We conclude this paper with an outlook in Section 5.

2 RELATEDWORK
The call for interpretable machine learning models is popular in
times where more and more decisions are automated using tools
of artificial intelligence. It is connected to questions of account-
ability as well as ethics and morality and is often accompanied
by dystopian visions of out-of-control artificial intelligence sys-
tems [9]. In practice, interpretable machine learning can roughly
be grouped into two groups: interpretable model families and
"model-agnostic interpretation tools" [9]. The former look at
models that are interpretable [12]: Usually we mention decision
trees and linear models here. However some restrictions apply:
In order for either of them to be interpretable, the number of pa-
rameters they use must be sufficiently small and the interactions
between the parameters must be easily understandable: A deep
decision tree is no longer easy to interpret, even when it uses
only a small number of features. A linear classification can be in-
terpretable with a larger number of used features, as the features
can be interpreted independently. A polynomial classification
is more complicated to interpret in that regard. When decision
trees become too complex to be interpreted, simpler models like
decision lists or ordered decision lists offer a simpler solution [2]
as they do not recursively branch. Many of the recent successes
of machine learning models for practical problems come from
the use of massively over-parametrized neural models. These are
diametrically opposed to the two characteristics of interpretable
models mentioned above, as they use millions of parameters and
their non-linear nature obfuscates how these parameters interact.



Here we can apply the latter group of approaches, that either aim
to make the blackbox model interpretable[13] or aim to make
the decisions of black-box models interpretable (e.g. [5]). In the
context of image classification the most popular techniques are
based on visualizations where we highlight regions of the input
image that are important for the overall classification. One of the
popular approaches in image classification computes a derivative
in the first layer and projects it onto the image [14]. Building
onto the deconvolution technique[14, 18], Springenberg et al.
propose a kind of guided backpropagation where negative gradi-
ents are set to zero in the backward step to focus solely on input
features which increase the activation of a higher layer unit [15].
Another approach by Stylianou and Pless visualizes the output of
a convolutional neural network using just the activations of the
last convolutional layer to identify the regions of interest for the
image classification [16]. We apply both directions for visualiza-
tions in a similarity learning task rather than a classification task
and modify them to work with graph convolutional networks
instead of plain convolutional neural networks.

Geometric Deep Learning is an umbrella term for deep neural
model approaches for structured data like manifolds or graph-
s/trees. The term graph convolutional neural network is also
prominent. The results allow the application of deep architec-
tures to inputs that represent e.g. molecules [3], point-clouds
[17] or social networks [6]. We work with XML-representations
of math.

Finally we want to discuss our application example of infor-
mation retrieval for mathematical expressions. Approaches in
this area can be divided into two partitions: Approaches that use
a sequential representation of the mathematical content and ap-
proaches that apply a tree-representation [7]. Similarity computa-
tion in tree-based approaches often requires computing dynamic
programming algorithms that match subtrees, hence complex
index data-structures are required for efficient retrieval. More
recently Mansouri et al. proposed to embed mathematical expres-
sion in a dense vector space[7] based on a sequential representa-
tion of the equations. Pfahler et al. propose to embed equations
using an image representation and regular convolutional neural
networks that are trained to predict contextual similarity [11].

3 METHOD
We begin to describe our method by reviewing the definition
of graph convolutional neural networks. Then we propose two
different methods for obtaining visualizations of nearest neighbor
queries: one based on forward information and one based on
backward information.

3.1 Graph Neural Networks for Trees
We define tree structures x = (X ,E) as a tuple of node-features X
and edges E. Let |x | denote the number of nodes in x . We assume
thatX ∈ R |x |×d . A graph neural network maps a given tree to an
output tree with transformed feature vectors in a d ′-dimensional
output space but with identical edge structure. We denote the
neural network by ϕ(x) = (ϕ(X ,E),E). Let ϕ(x)i ∈ Rd

′

denote
the output of the i-th node.

Graph neural networks are defined by composing different
layers. Borrowing the notation of Morris et al. [10], an abstract
graph network layer can be described by its output

x ′i = ψ
(
xi ,□j ∈N(i) ϕ

(
xi ,x j , ei j

) )

where ϕ,ψ are (sub-)differentiable operators such as linear trans-
formations or multi-layer perceptrons, □ denotes a differentiable,
permutation invariant function like sum, mean or max and N(i)
denotes the set of all neighboring nodes of i in the tree with
edges E. Note that ϕ might use information about the edges in
the form of vectorial edge-features ei j . An example of a simple
graph convolutional layer is

x ′i = σ
©«W

∑
j ∈N(i)∪i

x j
ª®¬

which linearly transforms all nodes using a weight matrixW ,
aggregates by computing the sum of all neighborhoods and ap-
plying a component-wise activation function σ like the sigmoid
function or ReLU.

As long as all layers in a graph neural network are (sub-
)differentiable operations, we can train the network via back-
propagation. Efficient software libraries for training models with
GPU-support are available, e.g. we use torch-geometric [4].

To store the fixed-size embedding of the whole tree in a vector
database, we compute the mean of all nodes denoted by ϕ̄(x) =
|x |−1 ∑

i ϕ(x)i . Then we can compute the cosine similarity or the
dot product

sim(x ,x ′) := ⟨ϕ̄(x), ϕ̄(x ′)⟩

in order to obtain the similarity of two trees.

3.2 Forward-Visualization
As the embedding of a tree is the mean of all its nodes, we can
see that each pair of nodes contributes to the overall similarity.
The similarity i.e. dot-product can be decomposed as

⟨ϕ̄(x), ϕ̄(x ′)⟩ = (|x | · |x ′ |)−1
|x |∑
i=1

|x ′ |∑
j=1

⟨ϕ(x)i ,ϕ(x
′)j ⟩.

Following the ideas of Stylianou and Pless [16], we visualize the
similarity by coloring the nodes according to their contributions
to the overall similarity. Hence given the embedding of a query
®q, we color the i-th node proportional to

ci ∼ ⟨ϕi (x), ®q⟩.

This approach is computationally cheap, we just have to run one
forward pass for every search result we want to visualize.

3.3 Backward-Visualization
Following the ideas of salience maps, we color nodes in the tree
according to the gradient of the similarity. Looking at a first order
Taylor approximation of the similarity, we can write

sim(®x + ∆, ®q) ≈ sim(®x , ®q) + ⟨∆,∇®x sim(®x , ®q)⟩

to approximate how the similarity changes based on perturba-
tions ∆ to the input ®x . If we decrease the value of x in the i-th
coordinate, the corresponding coordinate in the gradient ∇®x in-
dicates whether the first-order approximation of the similarity
decreases or increases. If the gradient is positive, then reducing
the feature reduces the similarity. Thus the feature is important
for the overall similarity. Hence we use the values in the gradient
∇®x to visualize similarity.

In classical convolutional neural networks for image process-
ing, the input is either a greyscale or an RGB-image. Thus at
every position, there is either a 1-dimensional or 3-dimensional
feature vector likewise gradient vector. If there is only one di-
mension, we do not need to aggregate the gradient, in the case



of three dimensions we often aggregate by using the maximum
gradient over all color channels.

In our case, we have higher-dimensional feature vectors in Rd .
Hence we have to aggregate the gradient

ci ∼ f (∇xi sim(x ,q)).

where f is an aggregation such as max, mean or the sum of all
non-negative gradients.

We are particularly interested in the case where x is a one-
hot encoding of XML-data. Hence x is sparse and binary. We
propose to use only gradient information of components that are
set to 1 in the input to answer the question how the similarity
changes if we flip inputs from one to zero. The component-wise
multiplication of the input and the gradient eliminates all gradient
mass at input components that are zero. We aggregate only the
remaining components

ci ∼ f (xi ⊙ ∇xi sim(®x , ®q))

and color the nodes proportional to this aggregation.

4 INTERPRETABLE SEARCH FOR
FORMULAS

We showcase our approach in a semantic search engine for math-
ematical equations which we have crawled from arxiv.org. First
we give details on our dataset and machine learning model. Then
we perform a number of example queries and discuss the quality
of our visualizations.

4.1 Data
We outline how we gather data from arxiv.org, transform them to
tree structured data and encode them into vectorial embeddings.

4.1.1 Dataset. Weareworking on data obtained from arxiv.org,
a service where scientists can upload their manuscripts or pre-
prints without reviewing process. We have downloaded all pub-
lications up to April 2019 and filtered all publications that use
the subject code cs.LG which covers computer science publica-
tions on machine learning. The publications are available as the
original LaTeX-files.

Of these 9,936 publications, we sample two subsets, train and
test of size 7,949 and 1,987 respectively. We use the train-set for
building our index and the test-set as search queries.

From all publications, we extract mathematical expressions by
using regular expressions for themost commonmath-environments
like ’equation’, ’align’, etc. Furthermore we extract user-defined
commands and macros. Using the library Katex1 we compile the
raw LaTeX-equations to the XML-based MathML format2, origi-
nally designed for displaying and storing mathematical content
in the semantic web. Since the equations are now in XML-format,
we have to work with tree-structured data.

An earlier version of the dataset used in [11] is published
at https://whadup.github.io/EquationLearning/ and the version
used in this study will be made available as well.

4.1.2 Data-Representation. We see an example of an equation
encoded as MathML in Figure 1. The MathML standard defines
30 different XML-tags like <mi> for math identifiers or <mo> for
math operators. Some of these tags use attributes, for instance
to change font or spacing. Leaf nodes contain text like numbers,
parenthesis or letters (greek, latin, etc...). We encode each node
1http://katex.org
2More specifically, we use the Presentation-MathML format for displaying maths
on the web as specified at https://www.w3.org/TR/MathML3/

<math xmlns="http ://www.w3.org/...">
<semantics >

<mrow >
<mfrac >

<mn >1</mn><mi>n</mi>
</mfrac >
<msubsup >

<mo>Σ</mo>
<mrow >

<mi>i</mi><mo >=</mo><mn >1</mn>
</mrow >
<mi>n</mi>

</msubsup >
<mi mathvariant =" normal">ℓ</mi>
<mo stretchy ="false">(</mo>
<mi>f</mi>
<mo stretchy ="false">(</mo>
<msub >

<mi>x</mi><mi>i</mi>
</msub >
<mo stretchy ="false">)</mo>
<mo separator ="true">,</mo>
<msub >

<mi>y</mi><mi>i</mi>
</msub >
<mo stretchy ="false">)</mo>
<mo separator ="true">,</mo>

</mrow >
</semantics >

</math >

Figure 1: Example MathML for 1
n

n∑
i=1
ℓ(f (xi ),yi ).

of the XML into one-hot-encoded vectors. We distinguish three
groups of features: tag for encoding the XML-tag (e.g <mi>), at-
tribute for encoding optional attributes (e.g. stretchy="false")
and content for the text in leaf nodes (e.g. x,y, i, etc.). We encode
this data using a total of 256 features where we use 32 dimensions
to encode the tags, 32 dimensions to encode the most frequent
attributes (including one special symbol for unknown attributes)
and the remaining 192 dimensions to encode the most frequent
characters of the content (also including one unknown symbol).
In addition to the one-hot encoded features, each node has an
attribute that specifies the position within the parent node. We
assume that edges in the tree are bidirectional.

4.1.3 Embedding Network. We use a graph convolutional net-
work to map the 256-dimensional tree to a 64-dimensional tree
and compute a fixed-size embedding by averaging over all nodes.
We use a network architecture with 5 layers that use a hidden
dimensionality of 256. Each layer computes a linear transforma-
tion of the inputs, computes the mean over all neighborhoods
(□ = mean) and applies the ReLU activation to the outputs. After
each layer, we use batch normalization.

The network is trained using the similarity task proposed by
Pfahler et al. [11] that proposes to rate two equations as similar
when they appear in the same paper. Using this cheap proxy label
for similarity, we can train a Siamese network [1, 8]. The detailed
procedures for training the embedding network are beyond the
scope of this work.

4.2 Qualitative Study
In this section we present a qualitative study of our proposed
method in the context of math retrieval.

4.2.1 Rendering and Color Palettes. First we want to discuss
some peculiarities of MathML trees. The advantage of these trees
is that the underlying XML-format of our representation is a
mark-up language. Hence there is a native way to visualize them

https://whadup.github.io/EquationLearning/
http://katex.org
https://www.w3.org/TR/MathML3/


Example 1: Example Query (Taylor Approximation)

Example 2: Example Query (Empirical Risk Minimiza-
tion)

Example 3: Example Query (Multi-Layer Perceptron)

by rendering the equation with a corresponding markup proces-
sor like Katex or MathJax3. We can add additional style informa-
tion to the original markup to color the nodes according to our
computed visualization. This way we obtain beautiful visualiza-
tions without worrying about issues like tree layouting etc. One
problem with this approach is that we can only visualize some of
the nodes. Particularly, with some exceptions like root or fraction
bars, we will color only leaf-nodes, as most inner nodes belong
to XML-tags that do not directly output visible symbols. For in-
stance in Figure 1, the <msubsup>-tag corresponds to a node that
does not output any symbols on its own, but only encapsulates
the symbols of its children.

One way to mitigate this issue is to set the color intensity
of the i-th node to the sum of all colors intensities on the path
from root to i-th node. However we have seen that this puts too
much emphasis on nodes that are deeper in the tree. Hence we
currently omit all hidden nodes from the visualization.

We use max-aggregation of the gradients and compute col-
ors by linear interpolation where black font indicates the most
significant parts and grey parts are less significant.

4.2.2 Results. We find semantically related equations by ap-
plying annoy to create an index structure for nearest neighbor
retrieval with dot-product similarity. The retrieved equations will
not be equivalent or strictly equal, but depicting similar concepts.
We analyze the visualizations for the nearest neighbor as output
by the index. We compare the visualization based on the for-
ward pass with visualization based on backward. In Examples 1-6
we present pairs of query (first row) and nearest neighbor and
color the result according to the forward pass (second row) and
backward pass (third row). All examples are from the context of
machine learning, which allows us to judge the results based on
our background-knowledge of the research area. We now discuss
each example in detail:

3http://mathjax.org

Example 4: Example Query (Submodular Functions)

Example 5: Example Query (Rademacher Complexity)

Example 6: Example Query (Hoeffding’s Bound)

In Example 1, we have queried the definition of the first-
order Taylor approximation. The embedding model retrieved the
second-order Taylor approximation as nearest neighbor. Both
visualization put the emphasis on the ∇-symbol, the symbol
commonly used for gradients. Interestingly, the backward visu-
alization indicates that the H symbol, commonly used for the
Hessian matrix i.e. the second order derivative, also contributes
to the overall similarity score. Apparently the model has learned
that both symbols appear frequently together, e.g. in the context
of differentiable functions.

The query in Example 2 is the empirical risk functional com-
monly used in machine learning. Both approaches highlight that
we have a sum over objects subscripted by i . In addition, the
backward approach highlights the ·̂-symbol commonly used to
indicate that a random quantity is estimated using a finite sample.
The model seems to have learned that it frequently co-occurs
with estimators of the form 1

n
∑N
i=1 zi .

Example 3 shows a query for the definition of a fully con-
nected neural network layer. The forward-visualization focusses
on the variablesW ,B for weight matrix and bias vector, while the
backward variant focusses on the superscripted index indicating
the number of the layer l .

In Example 4, we see the definition of gain used in the context
of submodular function maximization, where both visualizations
highlight the ∪ symbol. There is almost no difference between
the two variants, most notable is the stronger emphasis on the
opening curly-brace in the forward-visualization.

For Example 5, we have queried the definition of the empirical
Rademacher complexity, a measure used e.g. in statistical learning
theory. Both approaches highlight the sup operation, which is
indeed essential for the definition. Without the sup, the expected
value would trivially amount to 0. The forward visualization
seems to highlight the combination of expectation and supremum,
whereas the backward variant highlights mostly supremum and
εi . This indicates that the model has correctly learned that both
σ and ε are frequently used for Rademacher averages.

The last Example 6 shows concentration inequality, more pre-
cisely Hoeffding’s bound that bound the deviation from a sample

http://mathjax.org


mean to the true expected value of a random variable X . Both
visualizations highlight the ·̄ symbol that is frequently used to
indicate sample means and hence is related to the ·̂ symbol for
empirically estimated quantities used by the query. Additionally
both visualization highlight the X that is generally used for ran-
dom variables in statistics literature. It is interesting to note that
the forward vizualization also places emphasis on the ≤ operator,
while the backward visualization mostly highlights the ≥.

Overall we see that the forward visualizations spread the em-
phasis more evenly over the tokens than the backward pass. We
think that with each layer of the encoder network the informa-
tion in the nodes becomes less local and more global, as the
feature vector at each node is a function of all its neighbors on
the previous layer. This mixing makes it more difficult to high-
light where the important information is originally coming from.
The backward-based approach does not have this issue. Both
approaches put a lot of emphasis on math operators like equal or
plus-signs.

5 CONCLUSION AND OUTLOOK
In this work we have proposed two different approaches for visu-
alizing similarity computations between embeddings computed
by graph convolutional networks. We have applied our method
in the domain of math retrieval. Both methods have allowed us to
gain insights into the way our model scores similarities. The visu-
alizations indicate that our model was able to learn conventions
and notations to infer the context in which equations appear.

We are confident that the methods proposed in this work are
also useful in other application domains. For instance when we
workwith graph representations of molecules [3] and use geomet-
ric deep learning to solve classification or metric learning tasks,
we can color two-dimensional or three-dimensional illustrations
of the molecules using our methods.

In the future we want to also visualize the alignment between
query and result. A possibility is building interactive visualiza-
tions that allow us to focus on individual symbols of the equation
and highlight how the model judges the similarity for each indi-
vidual token.
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