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ABSTRACT
Automated Machine Learning (AutoML) is a rapidly rising sub-
field of Machine Learning. AutoML aims to fully automate the
machine learning process end-to-end, democratizing Machine
Learning to non-experts and drastically increasing the produc-
tivity of expert analysts. So far, most comparisons of AutoML
systems focus on quantitative criteria such as predictive perfor-
mance and execution time. In this paper, we examine AutoML
services for predictive modeling tasks from a user’s perspective,
going beyond predictive performance. We present a wide palette
of criteria and dimensions on which to evaluate and compare
these services as a user. This qualitative comparative method-
ology is applied on seven AutoML systems, namely Auger.AI,
BigML, H2O’s Driverless AI, Darwin, Just Add Data Bio, Rapid-
Miner, and Watson. The comparison indicates the strengths and
weaknesses of each service, the needs that it covers, the segment
of users that is most appropriate for, and the possibilities for
improvements.
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1 INTRODUCTION
Automated Machine Learning (AutoML) is becoming a separate,
independent sub-field of Machine Learning, that is rapidly rising
in attention, importance, and number of applications [23, 35]. Au-
toML goals are to completely automate the application ofmachine
learning, statistical modeling, data mining, pattern recognition,
and all advanced data analytics techniques. As an end result, Au-
toML could potentially democratize ML to non-experts (Citizen
Data Scientists), boost the productivity of experts, shield against
statistical methodological errors, and even surpass manual expert
analysis performance (e.g., by using meta-level learning [11]).
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Finally, AutoML could improve replicability of analyses, sharing
of results, and facilitate collaborative analyses.

To clarify the term AutoML, we consider the minimal require-
ments to be the ability to return (a) a predictive model that can
be applied to new data, and (b) an estimate of predictive perfor-
mance of that model, given a data source, e.g., a 2-dimensional
matrix (tabular data). Thus, do-it-yourself tools that allow you
to graphically construct the analysis pipeline (e.g. Microsoft’s
Azure ML [31]) are excluded. In addition, we distinguish between
libraries and services. The former require coding and typically
offer just the minimal requirements, namely return a model and
a performance estimation. AutoML services, on the other hand,
include a user interface and strive to democratize ML not only to
coders, but to anybody with a computer; they typically offer a
much wider range of functionalities.

Algorithmically, AutoML encompasses techniques regarding
hyper-parameter optimization (HPO, [3, 48]), algorithm selection
(CASH, [22]), automatic synthesis of analysis pipelines [36], per-
formance estimation [53], and meta-level learning [54], to name
a few. In addition, an AutoML system could not only automate
the modeling process, but also the steps that come before and
after. Pre-analysis steps include data integration, data preprocess-
ing, data cleaning, and data engineering (feature construction).
Post-analysis steps include interpretation, explanation, and vi-
sualization of the analysis process and the output model, model
production, model monitoring, and model updating. The ideal
AutoML system should only require the human to specify the
data source(s), their semantics, and the goal of the analysis to
create and maintain a model into production indefinitely.

Given the importance and potential of AutoML, several aca-
demic and commercial libraries, as well as services have appeared.
The first AutoML system was the academic Gene Expression
Model Selector (GEMS) [46]. Recent works formulate the AutoML
problem [56, 57], introduce techniques and frameworks for cre-
ating new AutoML tools [6, 45], survey the existing ones [43, 57]
and comparatively evaluate them [42, 51, 55]. This is a a techni-
cally challenging task requiring the availability of a plethora of
datasets with different characteristics [14], extensive computa-
tional time, ability to set time-limits to all software and many
others (see [18] for a discussion on the set up and results of the
AutoML Challenge Series).

AutoML strives to take the human expert out of the ML loop;
but, unfortunately, it seems the majority of AutoML surveys and
evaluations also take the human user out of the loop, focusing
solely on predictive performance and ignoring the user experi-
ence for the most part. Still, some exceptions can be found. In



[26], an interactive environment is proposed, emphasizing on
user-centric aspects of AutoML. Moreover, in [49] a brief quali-
tative evaluation on AutoML services and libraries is presented,
mainly regarding their ML capabilities.

The contribution of this paper is to provide a user-centric
framework for comparing AutoML services. We define a set of
qualitative criteria, spanning across six categories (Estimates,
Scope, Productivity, Interpretability, Customizability, and Con-
nectivity) that highlight user-experience beyond predictive per-
formance when selecting or evaluating AutoML services. Us-
ing this framework we evaluated seven such services, namely
Auger.AI [2], BigML [4], H2O’s Driverless AI [19], Darwin [7],
Just Add Data Bio [1], RapidMiner [39], and Watson [24]. The
comparison is meant to indicate the strengths, weaknesses, scope,
and usability of the services, indicating the needs it covers, the
tasks it is most appropriate for, and the opportunities for im-
provement. To the best of our knowledge no other survey or
benchmarking paper proposed the aforementioned qualitative
criteria and methodology for evaluating AutoML services and
libraries.

2 AUTOML SERVICES CONSIDERED
In the present evaluation study we consider seven current Au-
toML service platforms that offer a free trial version, so we could
base it on first-hand experience. All of these services, specialize
on tabular data, helping us apply the qualitative criteria on all
of them. It was conducted from 01/12/2019 until 07/12/2019
and we used the live versions of the services at the time. In
alphabetical order, the services are:

• Auger.AI[2]: A new service, going live in 2019, Auger.AI
boasts to have high accuracy and a well-implemented API
to help users run experiments with ease.

• BigML [4]: One of the oldest ML services, BigML sup-
ports AutoML tasks and offers extended support, a custom
programming language and a cloud infrastructure for the
user.

• Darwin [7]: SparkCognition’s new AutoML service, pro-
viding the users with convenient tools to speed-up their
ML tasks.

• Driverless AI (DAI) [19]: One of the most well-known
AutoML services, DAI supports various ML tasks and also
has advanced interpretability mechanisms.

• Just Add Data Bio (JAD) [1]: JAD was launched in No-
vember 2019 focusing on the analysis of molecular biolog-
ical data (small-sample, high-dimensional) with emphasis
on feature selection.

• RapidMiner Studio (RM) [39]: The oldest AutoML ser-
vice used in our evaluation, RM provides multiple tools
to its users and supports user-created components. We
are looking into the standard version, not including the
available user-created add-ons.

• IBM’sWatson (Watson) [24]: Watson contains multiple
components, but here we focus on the AutoAI experiment
toolkit1, being closer to what we define as AutoML service
for tabular data.

Due to registration fees, we were not able to include in our bench-
mark recent services such as Google AutoML Tables2. Regarding

1https://www.ibm.com/cloud/watson-studio/autoai
2https://cloud.google.com/automl-tables/

Data Robot3, we were not able to obtain the free trial licence
advertised on their website.

3 QUALITATIVE CRITERIA
To qualitatively evaluate the seven AutoML services, we present
32 user-centric qualitative criteria spanning across six different
categories. The criteria are partitioned in the following categories.
The Estimates category is concerned with metrics and estimates’
properties about the predictive power of the final model. The
Scope criteria describe the applicability scope of a service mainly
in terms of data types and ML predictive tasks. The Productivity
category is concernedwith the ease of use, while Interpretability is
concerned with the ability to interpret the results of the analysis.
The last two categories are Customizability of the analysis and
Connectivity of the service. The criteria are graded on a 4-level
scale. F(ail) (✗), C for fulfilling the basic requirements of the
criterion, B for providing additional functionalities and A for
achieving a level that should satisfy most users in our opinion.

3.1 Estimates
Criteria for Estimates (Table 1), concern the wealth and depth of
estimated quantities regarding the predictive model. ROC curves
are a useful visualization for interpreting the performance of a
classification model and are widely used by the ML community.
We grade with B the services that output ROC curves (Auger.AI,
BigML and RM) and with A the ones which also output perfor-
mance metrics for different points on the curve (DAI, JAD and
Watson). In addition to the out-of-sample estimate of predictive
performance, a service should be able to report the uncertainty
of this estimation (criterion STD/CI calculation in Table 1 stand-
ing for standard deviation and confidence interval respectively).
With B, we grade the services that only calculate the STD (BigML,
DAI and RM) and with A the ones calculating the whole prob-
ability distribution of performance and its confidence intervals,
a richer piece of information (JAD). Regarding Label Predictions
on new data, the services that support either individual samples
predictions or batch predictions are graded with B (Darwin), and
the ones supporting both with A (the rest of the services). For
binary classification tasks, the services able to generate Label
probability estimations get an A (all services except Auger.AI).
Overall, JAD has a full score on all the criteria, followed by DAI
and RM.

3.2 Scope
Scope criteria (Table 1) cover the range of input data that can
be analyzed. When it comes to Outcome types, services able to
handle binary (classification), multi-class (classification), contin-
uous (regression) and censored time-to-event outcomes (survival
analysis) score A (JAD), while the ones not handling survival
analyses score B (the rest of the services). Regarding Predictor
types, the services which support all the standard tabular data and
also text or time-series data are graded with A (all services except
for JAD), while the ones only supporting the former with B (JAD).
The term Clustered data (not to be confused with clustering of
data) in statistics refers to samples that are naturally grouped
in clusters (or groups) of samples that may be correlated given
the predictors. Examples include matched case-control data in
medicine and repeated measurements taken on the same subject
or client. With A, we grade the services able to handle clustered
data (DAI and JAD). It is important to mention the absence of
3https://www.datarobot.com/



Table 1: Estimates and Scope criteria.

Criteria Auger.AI BigML DAI Darwin JAD RM Watson
Es
tim

at
es ROC curves B B A ✗ A B A

STD/CI calculation ✗ B B ✗ A B ✗

Label predictions A A A B A A A
Label probability estimations ✗ A A A A A A

Sc
op

e

Outcome types B B B B A B B
Predictor types A A A A B A A

Clustered data handling ✗ ✗ A ✗ A ✗ ✗

Missing values handling A A A A A A A

clustered data and repeated measurements handling frommost of
the services. Essentially, most services assume independently and
identically distributed (i.i.d.) data reducing their scope. Finally,
we grade a service’s ability to handle missing data with A (all
services). In this category, DAI and JAD lead with the highest
score.

3.3 Productivity
The Productivity criteria (Table 2) concern the ease of use and
boost of user productivity. We start off with Data manipulation
functionalities available to prepare and manipulate the input
data before analysis. Grade B goes to the services providing the
user with custom data partitioning and preprocessing recom-
mendations (DAI and Darwin) and grade A to the services that
additionally provide data merging, filtering and sub-sampling
(BigML, JAD, RM, Watson). About Pipeline automation, the ser-
vices where the best model is automatically selected according to
pre-specified user preferences (e.g., maximize AUC) score A (DAI,
Darwin, JAD and Watson). The services producing a ranking of
all tried models instead and require the user to select the one that
satisfies their criteria the best score B (Auger.AI, BigML and RM).
On one hand, ranking all the models arguably provides richer
information to the user, on the other, it does reduce automation
and could confuse the non-expert. So, our grading in this crite-
rion is admittedly subjective. We next grade the ability to Early
stop or pause an analysis. The services able to do both score A
(RM) and in case they have implemented either one but not the
other, they score B (the rest of the services). When it comes to
Collaboration features, we grade a service with A if it has imple-
mented mechanisms to create custom organizations and teams
to allow sharing of resources, such as data and analyses (all ser-
vices except DAI and Darwin). Lastly, about Documentation and
support, the services providing e-mail support score C (JAD). If
they also deliver extensive documentation to the user, they score
B (Auger.AI and Darwin) and when they additionally have direct
technical support and user forums, their score is A (BigML, DAI,
RM and Watson). In general, Productivity is a category empha-
sized by all services, making it relatively straightforward to any
user to complete an ML analysis.

3.4 Interpretability
Interpretability criteria (Table 2) is arguably on the most impor-
tant categories for selecting an AutoML service[32]. The criteria
concern (a) Exploring and visualizing the data (Data visualiza-
tion) before conducting the analysis. (b) Monitoring the execution
of the analysis progress (Progress report). (c) Understanding and

interpreting how the final model functions (Final model interpre-
tation). A particular means to understanding of results is through
Feature selection, which deserves its own criterion, along with the
available mechanisms for the Final feature set interpretation. (d)
Understanding and validating the process that took place during
the analysis (Analysis exploration). Regarding Data visualizations
prior to the analysis, a service which only provides histograms,
scores C (JAD). If it also implements correlation plots and data
heatmaps, its score is B (BigML). The services with more options
getA (DAI, RM andWatson). During the analysis (Progress report),
if a service only reports the completion percentage, it gets the
grade C (Darwin). When it shows additionally a performance
estimation of the best model and keeps track of the analysis pro-
cedure, its grade is B (BigML and JAD). The highest grade (A)
goes to the services that also show variable importance rankings,
generated models ranking and hardware usage (Auger.AI, DAI,
RM and Watson).

Once the analysis is complete, the AutoML service should be
able to explain how the final model works. This adds transparency
to the model and pinpoints possible flaws or bias in its decision
making, making it more trustworthy. The interpretability of the
results is a subdomain of ML with increasing popularity and
every year multiple new mechanisms are introduced [9, 33]. We
have selected a set of such mechanisms and grade the AutoML
services based on how many of them they have implemented.
The mechanisms are: a) the confusion matrix, which is created
based on the predictions made during the training phase, to
help the user understand what type of errors are produced by
the final model; b) report of the performance of the final model
using multiple performance metrics; c) residuals visualization,
i.e. the difference between observed and predicted values of the
data; d) PCA procedure [44] to highlight strong patterns of the
data and visualize them on a 2-D space; e) visualization of the
final model, when this is possible; f) techniques to explain the
predictions in case of a complex final model (e.g. LIME-SUP [21],
K-LIME, a variant of LIME [40], decision tree surrogate models
[8], etc.).When the service has implemented at least 2 of the above
mechanisms, its corresponding grade is C (Darwin and Watson),
while for a service with more than 2 available mechanisms, its
grade is B (Auger.AI, BigML, RM). The grade A is reserved for the
services with more than 4 of the aforementioned mechanisms
implemented (DAI and JAD).

Feature selection is often the primary goal of an analysis. It
leads to simpler models that require fewer measurements to pro-
vide a prediction, which may be important in several applications.
Most importantly however, feature selection is used as a tool for
knowledge discovery [28] to gain intuition and insight into the



Table 2: Productivity and Interpretability criteria. ✜: only for certain models

Criteria Auger.AI BigML DAI Darwin JAD RM Watson
Pr
od

uc
tiv

ity
Data manipulation ✗ A B B A A A
Pipeline automation B B A A A B A
Early stop or pause B ✗ B B B A B

Collaboration features A A ✗ ✗ A A A
Documentation and support B A A B C A A

In
te
rp
re
ta
bi
lit
y Data visualization ✗ B A ✗ C A A

Progress report A B A C B A A
Final model interpretation B B A C A B C

Feature selection ✗ C C ✗ A B ✗

Final feature set interpretation C B A C A B C
Analysis exploration A✜ B B ✗ B A A

problem (hence, its inclusion in the interpretability category).
A pharmacologist is not only interested in predicting cancer
metastasis but also in the molecules involved in the prediction to
identify drug targets; a business person is interested in the quan-
tities that affect customer attrition to devise new promotions and
advertisements. Such reasoning is theoretically supported by the
fact that feature selection has been connected to the causal mech-
anisms that generate the data [50]. It is defined as the problem of
identifying a minimal-size feature subset that jointly (multivari-
ately) leads to an optimal prediction model (see [17] for a formal
definition). Thus, feature selection removes not only irrelevant,
but also redundant features. In some data distributions, there may
be multiple solutions to the feature selection. For example, due to
low sample size the truly best feature subset may be statistically
indistinguishable from slightly sub-optimal feature subsets. Or,
it could be the case there is informational redundancy that leads
to feature subsets that are equally predictive. While all solutions
are equivalent in terms of predictive performance, returning all
solutions is important when feature selection is used as a tool for
knowledge discovery.

The services which offer single feature selection functionality,
score C (BigML and DAI). BigML treats feature selection as a
preprocessing step, before the modeling process and the estima-
tion of performance protocol. This approach is methodologically
wrong and leads to overestimating performance (see [20], page
245). There are different notions of multiple feature selection.
When a service returns several feature subsets as options, but
does not provide any theoretical guarantees of statistical equiv-
alence, its grade is B (RM). On the other hand, when a service
returns several feature subsets that lead to models with statisti-
cally indistinguishable performance from the optimal, its grade
is A (JAD). Feature selection by itself is not enough. The services
should also provide users with mechanisms for interpreting and
understanding how each feature in the final set affects and con-
tributes to the decision making of the final model. We base our
grading on a set of Final feature set interpretation mechanisms
and how many of them each AutoML service has implemented.
The mechanisms are: a) random forest feature importance rank-
ing of the participating features [5]; b) LOCO feature importance
[27]; c) partial dependence plots (PDPs) [12]; d) SHAP plots [29];
e) ICE plots [15]; f) a report of the standardized individual and
cumulative importance of the participating features; g) the actual
standardized coefficient for each feature, in the case of a linear
final model; h) information about the resulted feature sets, in the

case of multiple feature selection. A service that has implemented
at least 1 of these mechanisms, is graded with C (Auger.AI, Dar-
win and Watson). If more than 2 mechanisms are available, the
service’s grade is B (BigML, RM) and the grade A is reserved for
the services with 4 or more mechanisms (DAI, JAD).

Expert analysts would often like to verify the correctness and
completeness of the analysis that took place. It is not only the
results (model) that should not be treated as a black-box, but
also how these results were obtained. A service which displays
an Analysis exploration graph, to help the users understand the
methods used in each step scores A (Auger.AI, RM and Watson).
If the service displays all pipelines that were tried, in the form
of list instead of as a graph, its score is B (BigML, DAI and JAD).
When it comes to analysis interpretation, DAI and JAD seem to
be the best choice, providing the user with advanced mechanisms
for understanding the final results. Some services, do not provide
any information about which analysis pipelines they tried; the
analysis process is essentially a black box to the user. We note
that in our opinion, there is room for improvement regarding
interpretability for most of the services.

3.5 Customizability
The Customizability category (Table 3) grades the ability of the
services to customize analysis according to user choices and
preferences. About Time budget, we grade with B the services
giving the ability to impose a non-strict time limit on an analysis
(Auger.AI, BigML and JAD) and with A the ones which allow
setting a strict time limit (DAI and Darwin). Our take on this
subject is that every service should give the ability to pose a
strict time budget, as an analysis can be part of a bigger project,
running under specific time restrictions. Moving to the hardware
Resources budget, if a service allows the user to select a preset
hardware configuration, it scores B (Watson) and if it allows
setting up the exact hardware specifications, A (DAI and JAD).
Next, we consider the Customization of analysis components, i.e.
the ability to choose the methods and algorithms to try, along
with their hyperparameters, in each step of the ML pipeline. If
the user is able to fully customize the included components, the
service gets A (Auger.AI, BigML, DAI and RM). If the service
provides the user with a set of limited settings, it gets B (Darwin,
JAD and Watson).

A service that allows the user to Enforce final model inter-
pretability, is graded with B (JAD) and if it provides additional
interpretability settings, with A (DAI). Another customization



Table 3: Customizability and Connectivity criteria. ✧: for RM server, not RM studio

Criteria Auger.AI BigML DAI Darwin JAD RM Watson
Cu

st
om

iz
ab
ili
ty Time budget B B A A B ✗ ✗

Resources budget ✗ ✗ A ✗ A ✗ B
Analysis components customization A A A B B A B

Enforce Model Interpretability ✗ ✗ A ✗ B ✗ ✗

Feature selection options ✗ A A ✗ A B ✗

Visualizations customization ✗ A B ✗ ✗ A A

Co
nn

ec
tiv

ity

Service deployment ✗ A A ✗ ✗ A✧ ✗

3rd party storage connection A A A ✗ ✗ A A
API access A A A A A A A

Downloadable results A A A ✗ B A B
Analysis components contribution B A A ✗ ✗ A B

Model deployment A A A A ✗ A A
Visualizations exportability ✗ B B ✗ B A A

criterion is about the available Feature selection options. If the
AutoML service allows the user to select the exact number of
selected features, it is graded with A (BigML, DAI and JAD) and
if it allows the user to set certain parameters, such as the effort
put in feature selection, with B (RM). Finally, we also consider
the Visualizations customization options. When a service gives
the user the ability to set user-specific thresholds on certain vi-
sualizations, its grade is B (DAI). If the user can fully customize
the resulted visualizations (e.g. changing the axes, titles, legend,
colors), the service’s grade is A (BigML, RM and Watson). In
general, when it comes to customizability, DAI has a clear edge
over the competition, giving the users options to fine-tune and
setup an analysis according to their needs. We distinguish two
different schools of thought on this category. On one hand, ser-
vices such as DAI, let the user fully customize the algorithms and
hyperparameter values to search during an analysis. On the other
hand, services like JAD provide the user with a few preference
choices that do not require expert knowledge of ML. The first
approach empowers an expert analyst but it may be intimidating
to the non-expert user. There is a fine line between providing
enough choices to an expert to fully customize an analysis and
achieve better results and providing too many choices that make
the process complex and easy to break. For this reason, we would
recommend to equip AutoML services with some kind of warning
system that can actually detect when the selected setup might
create problems and notify the user accordingly.

3.6 Connectivity
The Connectivity criteria (Table 3) grade the options offered to
connect a service with external tools and resources. First, re-
garding the Service’s deployment at an external infrastructure,
the services supporting it score A (BigML, DAI and RM). The
ones able to Connect to 3rd party storage providers also get an
A (all except from Darwin and JAD). Furthermore, all services
have implemented their own API (grade A). We also look into the
Downloadable results options. In the case where only part of the
results are downloadable, the services are graded with B (JAD
andWatson) while the ones allowing the user to download all the
results and also generate a summary report, with (A) (all services
except JAD and Watson). A user might be interested in Adding
custom components to the AutoML service. If it is allowed to the
user to add components through a service’s API, the service is

graded with B (Auger.AI andWatson). If the service has moreover
implemented a complete system for user-defined components, by
creating their own marketplace or extensions library, its grade
is A (BigML, DAI and RM). Creating the best final model does
not always suffice, as the user will probably want to deploy it in
an external service and use it for new data predictions. Most of
the participating services, have added various model deployment
options (grade A) (all except JAD). The currently implemented
ideas are to use data transfer libraries, e.g. cURL (Auger.AI, Wat-
son), create actionable models (BigML, Darwin, RM) or scoring
pipelines (DAI). All of the above provide the same functional-
ity; predicting labels on new unseen data. Finally, when writing
reports or papers with the results, the visualizations need to be
exported. The services which provide less than 3 export options
score B (BigML, DAI and JAD) and those with more, score A (RM
and Watson). Taking a look at the participating services, most
of them cover the majority of the proposed criteria. The export
formats available for data visualizations are static in all tools, an
area that could greatly be improved. Additionally, we find the
lack of connections to public repositories, such as OpenML [52]
important, as they can be useful to a user who is interested in
conducting ML analyses for academic reasons.

4 LIMITATIONS AND DISCUSSION
Admittedly, the current study has several limitations. We take
the opportunity to discuss some in depth, pointing to important
open issues and future work. First of all, we were not able to
evaluate every known AutoML service.
Estimates: While all services provide estimated quantities from
the data, the major question remains: are the estimates re-
turned correct and reliable? Statistical estimations are par-
ticularly challenging with low samples; even more so with high
dimensional data. Is performance overestimated, standard de-
viations underestimated, probabilities of individual predictions
uncalibrated, feature importance’s accurate, or multiple feature
subsets returned not statistically equivalent? Which AutoML ser-
vices return reliable results one can trust, and which ones are ac-
tually misleading the user and potentially harmful? In case of
medical applications, overestimating performance or confidence
in a prediction (uncalibrated predicted probabilities) is dangerous
and could impact human health, while in business applications
it may have significant monetary costs. Such questions require



significant experimentation with all services to answer. Experi-
mentation should be performed on datasets with a wide range of
characteristics, e.g., sample size, number of features, percentage
of missing values, mixture of types of predictors (continuous,
discrete, ordinal, zero-inflated, etc.), outcomes, etc. to provide
a full quantitative picture of the pros and cons of each service
and its correctness properties. Unfortunately, most quantitative
evaluations are currently performed on datasets with a limited
range of such characteristics or are restricted by time limitations.
Scope: In this paper, we are only concerned with predictive
modeling (supervised learning) tasks and not other ML categories.
Each different task would require a separate set of criteria that
applies to it.We do note, however, that BigML, DAI, RM, andWatson
also support clustering, anomaly detection, and some NLP tasks
which are useful to numerous users. A major limitation of our
scope grading is that it misses important criteria concerning the
maximum volume of data a service can handle in reasonable
time or memory resources, both in terms of number of features,
samples, or their combination (total volume). Unfortunately, we
are not able to test the limits of each service as we are confined to
analyses that run on the free trial versions. However, regarding
the scalability with respect to feature size, we note that almost
all services have difficulty scaling to thousands of features. JAD
on the other hand, was created to scale up to the feature size of
typical multi-omics datasets that can reach up to hundreds of
thousands of features.
Productivity/Interpretability: Although, we presented a first
qualitative assessment, a true measure of productivity increase
requires an extensive user study with representative datasets
spanning a wide-range of characteristics (in terms of the number
of features and samples). In such a user-study, one should mea-
sure how much productivity has improved over manual scripting,
eventually by trading off learning performance, and how much
insight has been gained by the interpretation tools offered by
each service. To assess how an AutoML tool performs against
human experts Kaggle4 and other ML competitions could be ex-
ploited. As data and tasks are specific for a competition problem,
solutions by human experts usually take the top positions as they
apply domain-specific knowledge and sometimes create custom
methods and mechanisms to help them win these competitions.
Still, AutoML tools that have been tested on such tasks, achieve
comparable performance. AutoML tools are becoming more and
more sophisticated, by automating an increasing number of tasks
inML pipelines (e.g., feature engineering), while supportingmeta-
level learning techniques. This can lead to minimizing the gap
between human experts and AutoML in competitive environ-
ments [45] and aid in producing high quality ML models for both
commercial and academic purposes.

There are several other criteria categories that are missing
from the present methodology, due to space limitations. These
include model monitoring and maintenance that regards function-
alities to maintain a model into production [30], such as monitor
the health of the production model, raise alarms when there is a
drift in the data distribution, automatically re-train and update
the model, and others. As ML systems move from computer-
science laboratories into the open world, their accountability [13]
and auditing [10] becomes a high priority problem. In this re-
spect, we need a deep understanding of the ML system behavior
and its failures. Current evaluation methods such as single-score
error metrics and confusion matrices provide aggregate views
4https://kaggle.com

of system performance that hide important shortcomings. Un-
derstanding details about failures is important for finding ways
for improvement, communicating the reliability of systems in
different settings and for specifying appropriate human oversight
and engagement [34].

Finally, we would like to mention that each category could be
expanded with many more criteria. Only the criteria that were
addressed by at least one of the services were included. Function-
alities that were not addressed by any of the services examined
are missing. One example is the ability to handle continuous
signals and streaming data [38].

5 CONCLUSION
AutoML has made tremendous progress since its first embodi-
ment in the GEMS system. Several AutoML services are already
available, routinely analyzing business and scientific data for
thousands of users. They do increase productivity and allow non-
experts to perform sophisticated ML analyses. Our prediction
is that within a few years, most of data analysis will involve
the use of an AutoML service or library; scripting as a means
to manual ML analysis will gradually become obsolete or pass
to the next level, where it is customizing and invoking AutoML
functionalities.

The proposed criteria intend to turn the spotlight back onto
the human user. Users do not only consider learning performance
when choosing a service. They also consider a plethora of other
criteria such as the ones presented. One of the most important
ones is interpretability of results. Users are rarely satisfied with
just a predictive model; they also seek to understand the pat-
terns in their data. Thus, results should not be a black-box, but
explained, visualized, and interpreted. Users need to examine
the analysis process and ensure its correctness or optimality:
AutoML should automate, not obfuscate. The analysis process
should be transparent, verifiable, and customizable by the user.
Some of the AutoML services examined, clearly abide to these
principles but some fail in this set of criteria. Arguably, it is per-
haps interpretation of results and ease-of-use that will determine
the success of an AutoML service, and not necessarily predictive
performance.

Current AutoML systems mostly focus on tabular, iid-sampled
data. Obviously however, most of the world’s data is not in this
format or sampled as iid. Ultimately, AutoML competes with the
human expert not only in learning performance but in scope
and the range of problems it can handle. There are ongoing ef-
forts to develop AutoML solutions for regression or anomaly
detection tasks in time-series, time-course data, and streaming
data (e.g., Microsoft Azure [31], Yahoo EGADS [25], Facebook
Prophet [47]), or to generate features from relational tables or
CSV/JSON files [16]. Future AutoML systems should also auto-
mate more data preparation tasks including data cleaning (e.g.
error correction and deduplication) [41] and support ML tasks
such as reinforcement, transfer and federated learning, or causal
modeling [37] to name a few. Still, interpreting the results of
the analysis in each category is quite challenging and probably
requires a different, specialized set of methods. There is a long
road ahead, where ML is entering a new generation of systems
and algorithms, but an exciting road indeed.
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