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ABSTRACT
The development of technological solutions satisfying non dis-

criminating requirements is currently one of the main challenges

for data processing. Concepts like fairness, i.e., lack of bias, and

diversity, i.e., the degree to which different kinds of objects are

represented in a dataset, have been recently taken into account in

designing non-discriminating set selection, ranking, and OLAP

approaches. Information extraction is however also at the basis

of back-end data processing, for preparing, e.g., extracting and

transforming data, usually based on SQL queries, before loading

them inside a data warehouse for further front-end processing.

The impact of an unfair data preparation process might have a

relevant impact on front-end analysis. As an example, an under-

represented category in the warehouse might lead to an under-

representation of that category in most of the following processes.

This kind of guarantee is known as coverage. In this paper, we

start from this consideration and we propose an approach for

automatically rewriting back-end queries, whose results do not

guarantee some coverage constraints, into the “closest” queries

satisfying those constraints. Through rewriting, coverage-based

modifications of data preparation steps are traced for further pro-

cessing. We also present some preliminary experimental results

and we identify some directions for future works.

1 INTRODUCTION
Background. Nowadays, large-scale technologies for the manage-

ment and the analysis of big data have a relevant and positive

impact: they can improve people’s lives and enhance scientific

exploration. At the same time, it becomes increasingly important

to understand the nature of these impacts at the social level and

to take responsibility for them, especially when they deal with

human-related data [7].

The development of technological solutions satisfying non-

discriminating requirements is currently one of the main chal-

lenges in data processing and, in particular, in data management.

Due to the above-mentioned social relevance, themes such as

diversity, non-discrimination, fairness, protection of minorities,

and transparency are becoming increasingly crucial when deal-

ing with any data processing step. More concretely, consider a

population upon which a data processing (either operational or

analytical) task has to be applied. Suppose that a subset of our

population shares some characteristics that should not be em-

ployed for discrimination (e.g., race, gender, disability status). It is

important to guarantee that the result of the processing task is not

discriminating with respect to the considered sensitive attributes.

This may include ensuring a fair probability of selection, not

giving undue relevance to individuals sharing these properties,

or other related constraints. This type of requirements is made

desirable by the ethical need to take responsibility; however, it

is also made mandatory by the recent General Data Protection

Regulation of the European Union [5]. The latter imposes that
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this type of guarantee is provided by design, i.e., intrinsically

embedded in the mechanisms of the data processing workflow.

Among the relevant themes from a social point of view, vari-

ous non-discriminating constraints, like fairness, i.e., lack of bias,

and diversity, i.e., the degree to which different kinds of objects

are represented in a dataset, have recently received attention

from the data management community. As pointed out in [6, 8],

an important direction is developing a holistic treatment of non-

discriminating constraints through different stages of the data

management and analysis life-cycle, from data cleaning, integra-

tion, and preprocessing, through selection and ranking, to result

interpretation. In this context, a key issue concerns enforcing

non-discriminating constraints incrementally through individual

independent choices, rather than as a constraint on the set of

final results.

Problem. Recently, various approaches to cope with non-discri-

minating constraints during front-end information extraction

stages, aiming at presenting the users with data organized as

to satisfy their needs, have been proposed, in the context of set

selection [20], ranking [2, 3, 22], and OLAP [14, 15, 17].

Information extraction is however also at the basis of back-end

processing in analytical systems, in which source data have to

be prepared, namely extracted, transformed, and loaded, into

an analytical repository - a data warehouse - for further front-

end processing. This kind of processes is probably simpler from

the point of view of data manipulation with respect to relevant

front-end search functionalities and can often be represented in

terms of Select-Project-Join (SPJ) queries. However, an unfair data

preparation process might have a huge impact on many front-end

processes: as an example, an under-represented category in the

warehousemight lead to an under-representation of that category

in any following process. As pointed out in [16], this motivates

the study of fairness-aware data transformations, where the idea

is to minimally rewrite the transformation query so that certain

fairness constraints are guaranteed to be satisfied in the result of

the transformation.

In this paper, we start from this considerations andwe consider

fairness constraints guaranteeing that there are enough entries

in the dataset for each object category, before starting front-end

processes. Such property has been called coverage in [4] and has

relationships with both fairness and diversity issues [22]. More

precisely, consider a (source) dataset 𝐼 in which some items are

characterized by a sensitive attribute (e.g, gender, race, age) and

an SPJ query 𝑄 over 𝐼 , including the sensitive attribute in the

projection list. Now suppose that some coverage constraints are

given with respect to the result of 𝑄 when executed over 𝐼 (e.g.,

we would like the number of females is greater than a given

threshold). Suppose𝑄 , when executed over 𝐼 , does not satisfy the

constraints. We are interested in rewriting 𝑄 into a new query𝑄 ′

such that 𝑄 ′ relaxes predicates in 𝑄 , thus, 𝑄 ⊆ 𝑄 ′
, and 𝑄 ′

is the

smallest query containing 𝑄 satisfying the coverage constraints

when executed over 𝐼 .

Notice that we are interested in rewriting 𝑄 into 𝑄 ′
in order

to achieve transparency: through rewriting, the coverage-aware



relaxation process is traced for further analysis or processing. In

this respect, the approach we propose can be seen as a revision

of existing query refinement techniques, addressing the empty

or few answer problem (see, e.g., [12]), to take care of coverage

and fairness issues.

Contributions. The main contributions of the paper can be sum-

marized as follows:

• We formally define a query rewriting problem based on

coverage constraints.

• We present a baseline algorithm for query rewriting, relax-

ing the query with the aim of satisfying the constraints at

hand and we propose two optimizations based on pruning

and incremental refinement.

• We present some preliminary experimental results show-

ing that the proposed approach is effective and efficient

when applied over some real datasets.

Organization. The remainder of this paper is organized as follows.

Section 2 discusses related work about non-discrimination in

information extraction and query relaxation. The problem we

consider is then presented in Section 3. The proposed grid-based

algorithm is introduced in Section 4 while experimental results

are presented in Section 5. Finally, Section 6 outlines future works

and presents some concluding remarks.

2 RELATEDWORK
There are several areas of research that are related to our work,

which we discuss below.

Non-discrimination in information extraction. Information extrac-

tion aims at presenting the users with data organized as to satisfy

their needs. Non-discriminating information extraction takes

into account non-discriminating properties, like fairness and di-

versity, in generating results to be returned to the user. Fairness

and diversity constraints have been taken into account for design-

ing set selection [20] and ranking [2, 3, 22] approaches. Fairness

has also been considered to provide fairness-aware rewriting of

OLAP, i.e., aggregation-based, queries [14, 15], and database re-

pair approaches [17, 18] that provide provable fairness guarantees

about classifiers trained on database training labels. The notion

of causal fairness and the design of data management techniques

for it have been investigated in [16]. Coverage over multiple

categorical attributes has been introduced in [4], where efficient

techniques for determining the least amount of additional data

that must be obtained to guarantee coverage satisfaction have

been proposed. A web application made up of a collection of

visual widgets that implement most latest research results on

fairness, stability, and transparency for rankings, and that com-

municate details of the applied methodology to the end-user, is

presented in [19, 21]. In [1], an interaction model for explain-and-

repair data transformation systems, in which users interactively

define constraints for transformation code and the resultant data,

is proposed. The system satisfies these constraints as much as

possible and provides an explanation for any encountered prob-

lem. In this paper, we consider coverage constraints, as proposed

in [4], over a single sensitive attribute. The problem we address is

closely related to [1]. However, differently from [1], we consider

transformations corresponding to SPJ queries with the aim of

satisfying coverage constraints through an approach that can be

easily integrated inside an SQL engine.

Query relaxation. Query relaxation is a well-studied problem in

database literature, in which the goal is to help users in revising

query specification or execution so that generated results better

match users’ desired results. Previous work has exploited query

logs [9] and data being queried [23]. In order to address the empty

or few answer problem, a skyline-based refined query execution

has been proposed in [10] while an interactive framework for

query relaxation through rewriting has been presented in [12].

The approach we propose can be seen as a reinterpretation of

such last query relaxation framework to take care of coverage

and fairness issues without any required user interaction.

3 PROBLEM DEFINITION
Let 𝐷 = {𝑅1, ..., 𝑅𝑛} be a relational database schema, let 𝑆 ∈ 𝑅𝑘 ,

𝑘 ∈ {1, ..., 𝑛} be an attribute called sensitive attributewith domain

𝐷𝑆 = {𝑠1, ...𝑠ℎ}. Let𝑄 be an arbitrary SQL query. Let 𝑠𝑒𝑙1, ..., 𝑠𝑒𝑙𝑑
be the selection conditions in 𝑄 , 𝑠𝑒𝑙𝑖 ≡ 𝑆𝑖𝜃𝑣𝑖 , attribute 𝑆𝑖 has

domain 𝐷𝑆𝑖 and belongs to the schema of a relation 𝑅 𝑗 in 𝐷 ,

𝑣𝑖 ∈ 𝐷𝑆𝑖 . When needed, we denote 𝑄 by 𝑄 ⟨𝑣1, ..., 𝑣𝑑 ⟩ or 𝑄 ⟨𝑣⟩,
𝑣 ≡ (𝑣1, ..., 𝑣𝑑 ). For the sake of simplicity, we assume that 𝑆𝑖 ,

𝑖 = 1, ..., 𝑑 , is a numeric attribute; the proposed approach can

however be easily extended to deal with any ordered domain.

We restrict our attention to SQL queries 𝑄 in which: (i) the

sensitive attribute 𝑆 belongs to the projection list; (ii) 𝑄 ⟨𝑣⟩ ⊆
𝑄 ⟨𝑢⟩ when 𝑢𝑖 ≥ 𝑣𝑖 , 𝑖 = 1, ..., 𝑑 (denoted by 𝑢 ≥ 𝑣). Such queries

are called sensitive selection monotone queries.
We then denote with 𝑄 ↓𝑠 𝑗 the query 𝜎𝑆=𝑠 𝑗 (𝑄), 𝑗 ∈ {1, ..., ℎ},

and with |𝑄 (𝐼 ) | the cardinality of the result of 𝑄 when executed

over a database instance 𝐼 of 𝐷 . For each value 𝑠𝑖 of the sensitive

attribute 𝑆 , a constraint 𝐶𝐶 𝑗 ≡ |𝑄 ↓𝑠𝑖 | ≥ 𝑘𝑖 , is called coverage
constraint with respect to 𝑠𝑖 or simply coverage constraint.

The problem we want to address is the following: given a

database instance 𝐼 , a sensitive selection monotone query 𝑄 ⟨𝑣⟩,
and a set of coverage constraints 𝐶𝐶 = {𝐶𝐶1, ...,𝐶𝐶𝑡 }, 𝑡 ≤ ℎ,

not satisfied by 𝑄 (𝐼 ), rewrite 𝑄 ⟨𝑣⟩ into a new relaxed query

𝑄 ′ ≡ 𝑄 ⟨𝑢⟩ so that: (i) 𝑄 ⊆ 𝑄 ′
; (ii) ∀𝑗 ∈ {1, ..., 𝑡}, 𝐶𝐶 𝑗 is satisfied

by 𝑄 ′(𝐼 ); (iii) there is no other query 𝑄 ′′
satisfying conditions

(i) and (ii) such that 𝑄 ′′ ⊂ 𝑄 ′
(thus, 𝑄 ′

is the smallest query

satisfying (i) and (ii)); (iv) 𝑄 ′ ≡ 𝑄 ⟨𝑢⟩ is the closest query to 𝑄 ⟨𝑣⟩
according to the Euclidean distance between 𝑣 and 𝑢. Query 𝑄 ′

is called a coverage-based rewriting of 𝑄 with respect to 𝐶𝐶 and 𝐼 .
Coverage constraints can be provided together with query

𝑄 or they can already be available in the system. This could be

useful when they represent generally valid non-discrimination

rules that must be satisfied by any query execution. Since the user

might not be aware of the available constraints, we relax only

selection predicates appearing in 𝑄 with the aim of generating

relaxed queries that are syntactically close to𝑄 (thus, potentially

increasing user satisfaction). Additionally, differently from [12],

we assume the user is not involved in the relaxation process to

make the rewriting process “lighter” from the user point of view.

Consider a numeric selection predicate 𝑠𝑒𝑙𝑖 ≡ 𝑆𝑖 < 𝑣𝑖 . A relax-
ation of 𝑠𝑒𝑙𝑖 is any predicate 𝑠𝑒𝑙 ′

𝑖
≡ 𝑆𝑖 < 𝑣 ′

𝑖
s.t. 𝑣 ′

𝑖
≥ 𝑣𝑖 . We can

convert any predicate on a numeric domain to a predicate of the

form 𝑆𝑖 < 𝑣𝑖 . For instance, a predicate 𝑆𝑖 > 𝑣𝑖 can be transformed

into −𝑆𝑖 < −𝑣𝑖 ; range predicates of the form 𝑆𝑙
𝑖
< 𝑣𝑖 < 𝑆𝑢

𝑖
can be

transformed into two separate predicates −𝑆𝑖 < −𝑣𝑙
𝑖
and 𝑆𝑖 < 𝑣𝑢

𝑖
.

In the rest of the paper, for ease of exposition, we assume that

numeric predicates have been appropriately transformed into

predicates of the form 𝑆𝑖 < 𝑣𝑖 . We rewrite the equality operator

𝑆𝑖 = 𝑣𝑖 as a conjunction of 𝑆𝑖 ≥ 𝑣𝑖 and 𝑆𝑖 ≤ 𝑣𝑖 .



4 A GRID BASED APPROACH FOR
COVERAGE-BASED REWRITING

Let 𝑄 ⟨𝑣⟩ be a sensitive selection monotone query and 𝐶𝐶 ≡
{𝐶𝐶1, ...,𝐶𝐶𝑡 } be a set of coverage constraints. Relaxed queries

generated through coverage-based rewriting starting from 𝑄 ⟨𝑣⟩
and 𝐶𝐶 have the form 𝑄 ⟨𝑢⟩, with 𝑢 ≥ 𝑣 , and can be represented

as points 𝑢 in a 𝑑-dimensional space.

Let 𝐼 be an instance of 𝐷 and suppose that each selection

attribute 𝑆 𝑗 assumes in 𝐼 values in 𝐷𝑆 𝑗
≡ [𝑎𝑚𝑖𝑛

𝑗
, ..., 𝑎𝑚𝑎𝑥

𝑗
], 𝑗 =

1, ..., 𝑑 . In order to navigate the 𝑑-dimensional space in a discrete

way, we assume to discretize 𝐷𝑆 𝑗
into a fixed number of bins 𝑛,

that we assume to be expressed as 2
𝑚
, for some integer number

𝑚. The space can thus be represented as a multidimensional 𝑛×𝑑
matrix, called cumulative multi-dimensional grid for 𝑄 and 𝐶𝐶
in 𝐼 (𝐶𝑀𝐺𝑄,𝐶𝐶,𝐼 or 𝐶𝑀𝐺 for short when no ambiguity arises).

Each cell of the CMG with index (𝑖1, ..., 𝑖𝑑 ), 𝑖 𝑗 ∈ {0, ..., 𝑛 − 1},
corresponds to query𝑄 ⟨𝑣1 + (𝑎𝑚𝑎𝑥

𝑗
− 𝑣1)/𝑛 ∗ 𝑖1, ...., 𝑣𝑑 + (𝑎𝑚𝑎𝑥

𝑗
−

𝑣𝑑 )/𝑛 ∗ 𝑖𝑑 ⟩. For the sake of simplicity, we denote such query with

𝑄 (𝑖1,...,𝑖𝑑 )
. Notice that 𝑄 (0,...,0) ≡ 𝑄 ⟨𝑣⟩.

In order to detect a coverage-based rewriting for 𝑄 with re-

spect to 𝐶𝐶 and 𝐼 , we store in each cell (𝑖1, ..., 𝑖𝑑 ) of the 𝐶𝑀𝐺

the estimated cardinality |𝑄 (𝑖1,...,𝑖𝑑 ) (𝐼 ) | (in the following denoted

by 𝐶𝑀𝐺 ((𝑖1, ..., 𝑖𝑑 )).1) and a list of estimated cardinalities, one

for each value of the sensitive attribute for which a coverage

constraint has been specified, namely ( |𝑄 (𝑖1,...,𝑖𝑑 ) ↓𝑠1 (𝐼 ) |, ...,
|𝑄 (𝑖1,...,𝑖𝑑 ) ↓𝑠𝑡 (𝐼 ) |) (denoted by 𝐶𝑀𝐺 ((𝑖1, ..., 𝑖𝑑 )) .2).

Given an index 𝑎, we denote with 𝑢𝑟 (𝑎) (upper right elements

of 𝑎), the set {𝑏 |𝑏 ≥ 𝑎}, and with 𝑙𝑙 (𝑎) (lower left elements

of 𝑎), the set {𝑏 |𝑏 ≤ 𝑎}. Since we deal with sensitive selection

monotone queries, it is easy to show that the following properties

hold:

(a) 𝐶𝑀𝐺 (𝑎) .1 ≥ 𝐶𝑀𝐺 (𝑏) .1 and𝐶𝑀𝐺 (𝑎) .2 ≥ 𝐶𝑀𝐺 (𝑏) .2when
𝑎 ≥ 𝑏.

(b) 𝑄𝑎 ⊆ 𝑄𝑏
for all 𝑏 ∈ 𝑢𝑟 (𝑎);

(c) 𝑄𝑎 ⊇ 𝑄𝑏
for all 𝑏 ∈ 𝑙𝑙 (𝑎).

As an example, Figure 1(b) shows matrix 𝐶𝑀𝐺 for the dataset

in Figure 1(a), when only one coverage constraint is provided. For

the sake of simplicity, each cell 𝑎 reports only 𝐶𝑀𝐺 (𝑎) .2. Grey
cells correspond to 𝑢𝑟 ((1, 1)) while light grey cells correspond to
𝑙𝑙 ((1, 1)). Cell (1, 1) is included in both 𝑢𝑟 ((1, 1)) and 𝑙𝑙 ((1, 1)).

In order to identify a coverage-based rewriting for 𝑄 , we pro-

pose three algorithms. The first is a baseline algorithm that iden-

tifies the solution by navigating the CMG, one cell after the other,

at increasing distance from 𝑄 . The second algorithm is obtained

from the first one by pruning the space, thus reducing the number

of visited cells with a limited overhead; finally, the third algo-

rithm visits the space, after pruning, by iteratively refining the

size and the number of matrix cells to be visited, thus converging

to the solution faster.

4.1 The Baseline Approach
Algorithm 𝐶𝑅𝐵𝑎𝑠𝑒 (Coverage-based Rewriting Baseline algo-

rithm) visits the CMG according to a Space Filling Curve (SFC)

in which cells are visited at increasing distance from 𝐶𝑀𝐺 (0)
(see Figure 1(c)), by relying on a function 𝑁𝑒𝑥𝑡 (). During the

visit, we look for the cell corresponding to the query with the

minimum cardinality that satisfies coverage-based constraints

𝐶𝐶 . In particular, let 𝑆𝑝𝑎𝑐𝑒 be the set containing all the CMG

cell indexes. We initialize𝑚𝑖𝑛 with the index of the more distant

query from 𝑄 , corresponding to cell (𝑛 − 1, ..., 𝑛 − 1). Notice that
in 𝑄𝑚𝑖𝑛

each selection condition contains the maximum value

for the selection attribute, thus all conditions are always satisfied

in 𝐼 and 𝑄𝑚𝑖𝑛 (𝐼 ) returns all the input tuples. As a consequence,
if𝑄𝑚𝑖𝑛 (𝐼 ) does not satisfy𝐶𝐶 (line 7), no coverage rewriting can

be generated and a void result is returned. Otherwise, we navi-

gate the space one cell after the other according to the SFC (line

10). For each visited cell with index 𝑎, coverage-based constraints

𝐶𝐶 are checked over𝑄𝑎 (𝐼 ) through predicate𝐶ℎ𝑒𝑐𝑘 (𝑄𝑎 (𝐼 ),𝐶𝐶).
If they are satisfied (𝐶ℎ𝑒𝑐𝑘 (𝑄𝑎 (𝐼 ),𝐶𝐶) is true) (line 11) or they
are not satisfied but the cardinality of 𝑄𝑎 (𝐼 ) is higher than the

current minimum cardinality (line 16), we remove 𝑢𝑟 (𝑎) from
𝑆𝑝𝑎𝑐𝑒 (lines 12 and 17), since all cells in 𝑢𝑟 (𝑎) correspond to

queries with higher cardinalities with respect to the currently

identified minimum. When constraints are satisfied, the index of

the currently minimum query is updated accordingly (line 13).

Algorithm 1 CRBase

1: function CRBase(𝑄,𝐶𝐶, 𝐼 )

2: Input𝑄 : a sensitive selectionmonotone query;𝐶𝐶 : a set of coverage-

based constraints; 𝐼 : a database instance

3: Output𝑚𝑖𝑛: index of a coverage-based rewriting of𝑄 with respect

to𝐶𝐶 and 𝐼

4: 𝑆𝑝𝑎𝑐𝑒 = {all the cell indexes in the CMG}
5: 𝑚𝑖𝑛 = (𝑛 − 1, ...., 𝑛 − 1)
6: 𝑎 = (0, ..., 0)

7: if not Check(𝑄𝑚𝑖𝑛 (𝐼 ),𝐶𝐶) then return ⊥
8: else
9: while 𝑆𝑝𝑎𝑐𝑒 ≠ ∅ do
10: 𝑎 = Next(𝑎, 𝑆𝑝𝑎𝑐𝑒)
11: if Check(𝑄𝑎 (𝐼 ),𝐶𝐶) then
12: 𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 \ ur(𝑎)
13: if |𝑄𝑎 (𝐼 ) | < |𝑄𝑚𝑖𝑛 (𝐼 ) | then𝑚𝑖𝑛 = 𝑎

14: end if
15: else
16: if |𝑄𝑚𝑖𝑛 (𝐼 ) | < |𝑄𝑎 (𝐼 ) | then
17: 𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 \ ur(𝑎)
18: end if
19: end if
20: end while
21: return𝑚𝑖𝑛

22: end if
23: end function

4.2 Adding Pruning
Algorithm𝐶𝑅𝐵𝑎𝑠𝑒 can be optimized, leading to algorithm𝐶𝑅𝐵𝑎𝑠𝑒𝑃

(𝐶𝑅𝐵𝑎𝑠𝑒 with Pruning), by adding some pruning rules. Such rules

generalize the pruning already applied by algorithm 𝐶𝑅𝐵𝑎𝑠𝑒 at

lines 12 and 16 with the aim of further reducing the space to be

visited and coping with the well known curse of dimensionality

problem. Each pruning rule generates two sets of cells:

a) Locking set (𝐿𝑆). For each 𝑎 ∈ 𝐿𝑆 , query 𝑄𝑎 (𝐼 ) satisfies
coverage constraints. Based on properties (a) and (b), all

the queries in 𝑢𝑟 (𝑎) can therefore be removed from 𝑆𝑝𝑎𝑐𝑒

since they satisfy coverage constraints but they are not

the closest to the initial query and their cardinality might

not be the minimum one. We denote with 𝐿𝑆∗ the set⋃
𝑎∈𝐿𝑆 𝑢𝑟 (𝑎).

b) No Solution set (𝑁𝑆). For each 𝑎 ∈ 𝑁𝑆 , query 𝑄𝑎 (𝐼 ) does
not satisfy coverage constraints. Based on properties (a)



(a) Data distribution (b) 𝐶𝑀𝐺𝑄,𝐶𝐶,𝐼 (c) SFC

Figure 1: Data representation

and (c), this means that all the queries in 𝑙𝑙 (𝑎) can be

removed from 𝑆𝑝𝑎𝑐𝑒 since they cannot satisfy coverage

constraints. We denote with 𝑁𝑆∗ the set
⋃

𝑎∈𝑁𝑆 𝑙𝑙 (𝑎).
We consider two pruning rules:

• Diagonal pruning. Using binary search, we look for the

cell (𝑙, ...., 𝑙), 𝑙 ∈ {0, ..., 𝑛− 1}, closest to (0, ...., 0) such that

𝑄 (𝑙,....,𝑙) (𝐼 ) satisfies coverage constraints. We add𝑄 (𝑙,....,𝑙)

into 𝐿𝑆 and𝑄 (𝑙−1,....,𝑙−1)
into 𝑁𝑆 . The number of cardinal-

ity estimations performed by diagonal pruning is𝑂 (log𝑛),
where 𝑛 is the number of bins.

• Dimensional pruning. For the sake of simplicity, we explain

dimensional pruning in a 2-dimensional space. The prun-

ing can however be easily extended to any d-dimensional

matrix. Suppose that the horizontal axis corresponds to the

selection attribute 𝑆1 and the vertical one to the selection

attribute 𝑆2. For each position 𝑖 , 𝑖 = 0, ..., 𝑛 − 1 in the hori-

zontal axis, we look for the first cell (𝑖, 𝑗), 𝑗 ∈ {0, ..., 𝑛− 1},
that satisfies coverage constraints. It is easy to show that

(𝑖, 𝑗) ∈ 𝐿𝑆 and (𝑖, 𝑧) ∈ 𝑁𝑆 , for all 𝑧 ≤ 𝑗 − 1. A similar

computation is then applied to the vertical axis.

Assuming to use binary search to locate the first cell sat-

isfying the constraints for each direction, the number of

cardinality estimations performed by dimensional pruning

is 𝑂 (𝑑𝑛 log𝑛), where 𝑛 is the number of bins and 𝑑 the

number of axis, i.e., the number of selection conditions in

the input query 𝑄 .

Figure 2 shows an example of the considered pruning rules, with

a single coverage constraint set to 𝑄 ↓𝑠𝑖≥ 7.

Pruning rules can be easily integrated in𝐶𝑅𝐵𝑎𝑠𝑒 algorithm as

follows:

• sets 𝐿𝑆 and 𝑁𝑆 are computed before line 7 according to

diagonal and dimensional pruning;

• at line 4, 𝑆𝑝𝑎𝑐𝑒 is initialized with all the cell indexes in the

CMG minus those that do not satisfy coverage constraints,

identified by the pruning phase. Thus, 𝑆𝑝𝑎𝑐𝑒 = { all the
cell indexes in the CMG } \ (𝐿𝑆∗ ∪ 𝑁𝑆∗).

4.3 Adding Iteration
𝐶𝑅𝐵𝑎𝑠𝑒𝑃 can be further optimized by iteratively increasing the

number of bins during the search up to a given maximum 𝑛 = 2
𝑚
.

The new algorithm is denoted by𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 (𝐶𝑅𝐵𝑎𝑠𝑒𝑃 with Itera-

tion). Each iteration, by increasing the number of bins, increases

the number of matrix cells to be visited for pruning and search.

As a consequence, each iteration increases the precision by which

we refine the query and we compute cardinalities. More precisely,

(a) Diagonal pruning (b) Dimensional pruning

Figure 2: Pruning in 2D with 𝐿𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑁𝑜𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 sets

at each iteration 𝑖 ≥ 1, the number of bins is set to 2
𝑖
and Algo-

rithm𝐶𝑅𝐵𝑎𝑠𝑒𝑃 is used to prune the space, navigate it, and update

index𝑚𝑖𝑛. Onlywhenwe reach themaximum precision i.e., when

𝑖 =𝑚 and the number of bins is equal to 𝑛, the computed𝑚𝑖𝑛 is

returned as result.

4.4 Cardinality Estimation
Our query refinement framework requires fast and accurate car-

dinality estimates for queries corresponding to visited cells of

the CMG. These estimates could be obtained from the cardinality

estimation component of the database system. However, such

estimates are often incorrect, especially for queries with multiple

joins and selection predicates. Since the accuracy of the proposed

coverage-based rewriting depends on the used cardinality esti-

mation approach, similarly to [12], we rely on sampling based

estimators for cardinality estimation. In order to avoid sampling

repeatedly for each visited cell, we compute an 𝜖-approximation

of the base tables and we rely on the approach in [13] for gener-

ating the sample of joined tables. We compute just one random

sample for each query at hand (uniformly, independently, and

without replacement). According to [13] such sample can be

reused for all structurally equivalent queries (i.e., queries con-

taining the same number of selection conditions and the same

number of joins).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
All experiments were conducted on a PC with an Intel Core i5-

8300H 2.30 GHz CPU and 16GB main memory, running Microsoft

Windows 10. All programs were coded in Python 3.8.
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Figure 3: Comparison of coverage rewriting algorithms

We considered two real datasets with different sizes, stored

in PostgreSQL: Adult dataset [11] and US Forbes Richest People
dataset.1 TheAdult dataset was originally extracted from the 1994

Census database and has been used in assessing fairness-aware

data management tecniques (see, e.g., [16]). It contains 48842

individuals that are described by six numerical attributes (age,
fnlwgt, education-num, capital-gain, capital-loss, hours-per-week)
and eight categorical attributes (workclass, education, marital-
status, occupation, relationship, race, sex, native-country). For our
experiments, we use sex as sensitive attribute; it presents an un-

balanced proportion of males (67%) and females (33%). For this

dataset, we generated a random sample with 9604 tuples, guar-

anteeing query cardinality estimation with 0.1% error and 99%

confidence. The sample is small enough to be stored in mem-

ory. The US Forbes Richest People dataset contains information

about the richest people in US from 2016 (about 400 individuals),

described by six numerical attributes (worthchange, age, realtime-
worth, realtimerank, timestamp, realtimeposition) and nine cate-

gorical attributes (name, lastname, uri, imageuri, source, industry,
gender, headquarters, state). For our experiments we use 𝑔𝑒𝑛𝑑𝑒𝑟

as sensitive attribute; it presents an unbalanced proportion of

males (87%) and females (13%).

To measure the performance of the algorithms, we consider

both the execution time and the number of query cardinality

estimations, corresponding to the number of visited cells. To

measure the accuracy of the algorithms, similarly to [12], given

an initial query 𝑄 over a database instance 𝐼 , rewritten into a

new query 𝑄 ′
, we compute the relaxation degree as the ratio

|𝑄 ′(𝐼 ) | − |𝑄 (𝐼 ) |
|𝑄 (𝐼 ) | .

We then performed four groups of experiments aiming at: (i)

comparing the three proposed algorithms; (ii) analyzing their

performance and accuracy with respect to the number of bins and

a single coverage constraint; (iii) analyzing their performance

while changing the reference dataset; (iv) analyzing their per-

formance and accuracy while changing the number of coverage

constraints. Those preliminary experimental results refer to selec-

tion queries, we leave to future work the experimental analysis

of join queries.

5.2 Experimental Results
Impact of pruning and iteration. In the first group of experiments,

we compare the three proposed algorithms to understand the

impact of pruning and iteration on performance and relaxation

degree. To this aim, we consider a query 𝑄4 with four selection

conditions, selecting individuals who are over 20 years-old, have

1https://www.forbes.com/forbes-400/#ec679fa7e2ff

education number equal or greater than 13, work more than 20

hours per week and have a capital gain higher than 5500:

Q4: SELECT * FROM adult_data
WHERE age > 20 AND education_num ≥ 13
AND hours_per_week > 20 AND capital_gain > 5500

Consider the coverage constraint 𝑄 ↓𝐹𝑒𝑚𝑎𝑙𝑒≥ 250. Query 𝑄

returns 1242 tuples (selectivity equal to 2.5%), out of which 200

are females (about 16%), thus the constraint is not satisfied.

Figure 3 shows the execution time (in seconds) of the three

algorithms by varying the number of bins 𝑛. As expected, the

number of visited cells increases (and, as a consequence, per-

formance decreases) while increasing 𝑛. 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 exhibits the

best performance, showing the benefits of relying on pruning

and iteration. On the other hand, all techniques return the same

coverage-based rewritten query, whose relaxation degree de-

creases while increasing the number of bins (see Figure 3 (c)).

Similar results have been obtained with other queries. There-

fore, in the following, we present experimental results only for

𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 . Additionally, since the number of visited cells and the

execution time are correlated, in the following we report only

execution time results.

Impact of the number of selection conditions. In the second group

of experiments, we analyze in more details execution time and re-

laxation degree achieved with 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 by varying the number

of bins 𝑛 and the threshold of the coverage constraint. The con-

sidered queries (𝑄2 and𝑄3 listed below and𝑄4 presented above)

contain a different number of selection conditions but all them

have a selectivity between 2-4% and the percentage of returned

females is about 16% of the result. In this way, we can analyze

𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 performance independently from differences in query

selectivity (similar results have been obtained with queries with

higher selectivities).

Q2: SELECT * FROM adult_data
WHERE hours_per_week > 20 AND
capital_gain > 5500

Q3: SELECT * FROM adult_data
WHERE age > 20 AND hours_per_week > 20
AND capital_gain > 5500

For each query, we consider a coverage constraint𝑄 ↓𝐹𝑒𝑚𝑎𝑙𝑒≥
𝑞𝑓 + 25%, where 𝑞𝑓 denotes the number of females returned by

the initial query. From Figure 4 (a), we observe that, by varying

the number of selection conditions, and therefore the dimen-

sionality of the CMG, execution time rapidly increases starting

from 32 bins. This is a well known problem, due to the curve of

dimensionality. From Figure 4 (b), we notice that, starting from

16 bins, we get a relaxation degree lower than 0.4. The relaxation
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Figure 4: 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 performance and accuracy, with re-
spect to the number of bins

(a) Pruning time (b) Search time

Figure 5: 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 pruning and search time, with respect
to the number of bins

(a) Execution time (b) Relaxation degree

Figure 6: 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 performance and accuracy, with re-
spect to coverage threshold

degree is almost stable starting from 32 bins. By combining to-

gether results shown in Figures 4 (a) and (b), we can consider a

number of bins equal to 32 a reasonable choice for getting a good

compromise between performance and accuracy. From Figure

5(a), we notice that the pruning time is quite low (lower than half

a second) even with 𝑑 = 4, thus it does not deeply suffer from the

curse of dimensionality while the search time does (Figure 5(b)).

As a final experiment, we analyze 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 performance by fix-

ing the number of bins to 32 and varying the coverage constraint,

setting the threshold to 𝑞𝑓 plus a given percentage (25%, 33%,

50%, 66%). From Figure 6(a), we observe that, by increasing the

female coverage threshold, the execution time increases (quite

rapidly for 𝑑 = 4 due to the curve of dimensionality problem)

since more cells are visited by the algorithm (the distance be-

tween the original query and the final one is higher). On the

other hand, the relaxation degree almost linearly increases (see

Figure 6(b)) with respect to the additional percentage of females

required by the coverage constraint since, by increasing females,

males increase as well.

(a) Execution time, 𝑑 = 2 (b) Execution time, 𝑑 = 3

Figure 7: Performance comparison between Adult and
Forbes datasets, with respect to the number of bins

(a) Execution time, 𝑑 = 2 (b) Execution time, 𝑑 = 3

Figure 8: Performance comparison between Adult and
Forbes datasets, with respect to coverage threshold

Impact of sampling. In our next experiment, we examine perfor-

mance when varying the dataset size. To this aim, we consider

the Forbes dataset. Since it is quite small (about 400 individuals),

we do not generate any sample and we execute queries directly

on the input dataset. Due to space constraints, we consider only

queries with two and three selection predicates, keeping query

selectivity in the range considered for the Adult dataset (about
3%):

Q2_f: SELECT * FROM forbes
WHERE realtimeworth > 10000 AND age < 65

Q3_f: SELECT * FROM forbes
WHERE realtimeworth > 10000 AND age < 65
AND age > 45

Figure 7 compares execution time of corresponding queries

executed over the Adult and Forbes datasets. As expected, the
dataset size influences the cardinality query estimation time and,

as a consequence, the total execution time. A similar result holds

while increasing the female threshold (Figure 8). In both cases,

differences in times are more evident for higher number of selec-

tion conditions (𝑑 = 3).

Impact of the number of coverage constraints. In order to analyze

the impact of the number of coverage constraints, we consider

query 𝑄2 and the following sets of coverage constraints:

𝐶𝐶1 = 𝑄2 ↓𝐹𝑒𝑚𝑎𝑙𝑒 ≥ 456

𝐶𝐶2 = 𝑄2 ↓𝐹𝑒𝑚𝑎𝑙𝑒 ≥ 456 AND𝑄2 ↓𝑀𝑎𝑙𝑒 ≥ 1800

𝐶𝐶3 = 𝑄2 ↓𝐹𝑒𝑚𝑎𝑙𝑒 ≥ 456 AND𝑄2 ↓𝑀𝑎𝑙𝑒 ≥ 2400

𝐶𝐶1 is the constraint we considered in the previous experiments.

𝐶𝐶2 specifies an additional coverage constraint on males, which

is however satisfied by the coverage-based rewriting generated

when considering𝐶𝐶1. Thus, we expect that the solution returned

with 𝐶𝐶1 is the same than that returned with 𝐶𝐶2. On the other

hand, with 𝐶𝐶3, we expect a different rewriting for increasing

the number of males, as required by the constraint.
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Figure 9: 𝐶𝑅𝐵𝑎𝑠𝑒𝑃𝐼 Performance and accuracy, with re-
spect to different coverage constraints

Figure 9(a) shows execution time of query 𝑄2 with respect

to the considered coverage thresholds. When considering 𝐶𝐶2,

the execution time slightly increases since, for each visited cell,

one more query cardinality estimation is needed. However, since,

by construction, when 𝐶𝐶1 is satisfied 𝐶𝐶2 is satisfied as well,

the number of visited cells in the two cases coincides. On the

other hand, when considering 𝐶𝐶3 more cells are visited and, as

a consequence, the execution time increases as well. From Figure

9(b) we see that, as expected, the relaxation degrees for 𝐶𝐶1 and

𝐶𝐶2 coincide since in both cases the returned relaxed queries

coincide. Relaxation is higher for 𝐶𝐶3 since a higher coverage

threshold is considered.

6 CONCLUDING REMARKS
In this paper, we have presented a preliminary approach for

coverage-based rewriting of SQL queries, suitable for address-

ing non-discrimination in early data processing stages. The pro-

posed techniques revise and extend existing query refinement

approaches, defined for addressing the empty or few answer

problem, to take care of coverage issues, without the need of any

user interaction. Experimental results show that the proposed

approach is effective and efficient. Future works include: (i) fur-

ther optimizations of the 𝐶𝑅𝐵𝐴𝑠𝑒𝑃𝐼 algorithm to cope with the

curve of dimensionality issue, by exploiting CMG sparsity and

additional heuristics; (ii) considering more than one sensitive

attribute and automating the identification of the sensitive at-

tribute to analyze first; (iii) dealing with categorical attributes in

the selection conditions and more complex fairness constraints;

(iv) taking into account data summaries of the input dataset,

thus making the rewriting reusable to datasets characterized by

the same synopses; (v) data preparation is an iterative process,

coverage-based rewriting can be considered as a new relational

operation to take into account during the whole query processing

steps, including query optimization.
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