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ABSTRACT
In this paper we introduce the concept of Data Virtual Machines
(DVM), a graph-based conceptual model of the data infrastructure
of an organization, much like the traditional Entity-Relationship
Model (ER). However, while ER uses a top-down approach, in
which real-world entities and their relationships are depicted and
utilized in the production of a relational representation, DVMs are
based on a bottom up approach, mapping the data infrastructure
of an organization to a graph-based model. With the term “data
infrastructure” we refer to not only data persistently stored in
data management systems adhering to some data model, but
also of generic data processing tasks that produce an output
useful in decision making. For example, a python program that
“does something” and computes for each customer her probability
to churn is an essential component of the organization’s data
landscape and has to be made available to the user, e.g. a data
scientist, in an easy to understand and intuitive to use manner,
the same way the age or gender of a customer are made. In fact,
a DVM depicts only associations between attributes (nodes). An
association is given by some computation on the underlying data
that relates values of these attributes. In this respect, is model-
agnostic. However, a DVM can be quite helpful in a variety of
crucial tasks carried out by statisticians and data engineers.
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1 INTRODUCTION
Modern organizations collect, store and analyze a wealth of data
from different sources and applications, used in a variety of data
analysis projects, such as traditional BI, data exploration, data
mining, etc. to provide a competitive advantage to the business.
This data has to be integrated to provide the data scientist with a
“holistic” view of the enterprise’s data infrastructure. The term
data infrastructure encompasses much more than data persis-
tently stored in data management systems. It also involves pro-
cesses that can be useful during analysis, such as a Python pro-
gram that computes the social influence of each customer.

In a recent project at a major telecom provider, we had to
predict churn in the presence of structured and unstructured
data residing at different systems, relational and non-relational.
For this project a predictive model had to be designed and imple-
mented taking into account the many possible variables (features)
characterizing the customer (demographic, interactions with call
center, emails, social data, etc.) The goal was to equip the data
scientist with a simple tool that would allow her to choose and
experiment in an ad-hoc manner with multiple tabular views
of customer-related data. We wanted to create a “virtual data
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desktop”, where schema designers (IT people) could rapidly map
customer’s attributes, and data scientists could simply define
(possibly in a polyglot manner) transformations over attributes
and combine them into dataframes. The evaluation of dataframes
should be efficient and based on a solid theoretical framework.

Data integration can be seen as constructing a data warehouse,
or creating a virtual database [6]. It is worth mentioning that
defining global views over heterogeneous data sources is not
a big data-era issue and has been extensively discussed in the
past (e.g. [1]). While data warehousing was the way to go in
the past – mainly due to the dominance of relational systems
in data management – there are well-thought arguments to re-
consider a virtual database approach, a rapidly emerging trend
in the business world as data virtualization [9]. There are needs
to accommodate data regulations; manage schema in an agile
manner; integrate rapidly (parts of) data sources; perform ad hoc
data preparation without the rigidity of data warehouses. All
these requirements can be served well with a virtual approach.
The focus of this era is on “schematic flexibility/versatility” rather
than ”querying performance”. Similar arguments can be found in
[10], proposing a data virtualization approach and in Polystores
[7].

In this paper we discuss our vision for the creation of a data
virtual machine, as a graph-based conceptual model which is
built bottom-up. The high level goals of this work are:
Support for end-to-end processing This is a well-known re-
search mandate for the data analysis pipeline [8], stating the need
for the “development of multiple tools, each solving some piece
of the raw-data-to-knowledge puzzle, which can be seamlessly
integrated and be easy to use for both lay and expert users.” Seam-
less integration requires a high-level conceptual layer where data,
processes and models can be easily mapped and manipulated.
Coping with diversity in the data management landscape:
This is another well-known research mandate [4], [8]. Multiple
big data systems and analysis platforms need to coexist, and query
support that span such systems necessitates that platforms are
integrated and federated. While data warehousing is the de facto
approach, it is rigid for a rapidly changing data environment.
Redefining data infrastructure: An organization’s data infras-
tructure includes data stored persistently (possibly adhering to
different data models) but also programs that produce output
useful in the analysis phase. Both data and programs should be
treated as first class citizens and both should be mapped in a
high-level conceptual model.
Polyglotism: A data scientist can choose from a range of func-
tions/methods in different programming languages to perform a
specific task (e.g. extraction of sentiment, scoring, aggregation,
etc.) She should be enabled to use these in the same query and
the query evaluation engine should handle them efficiently.
Visual Schema Management and Query Formulation Data
scientists do not necessarily understand relational modeling or
know SQL, which both could become quite complex for large



Figure 1: DVM-modeling vs traditional ER-modeling

schemas. They want to see visualizations that they can under-
stand and explore, and they need to visually define transfor-
mations over attributes (variables); they need to navigate the
schema to choose inputs for learning algorithms; and they want
to easily extend the schema using wizards. Such needs lead to the
requirement of a model that natively supports visual exploration
and schema management and is amenable to the development of
graphical query languages. Graph-based models are amenable to
GUI implementations – more than other models.
Shareable: The model or parts of it must be easily available to
third parties within or outside the enterprise, since the value of
data explodes when the latter can be linked with other data [8].
Crawlable: Feature selection is a well-known process in statis-
tics. The data scientist selects and places attributes in a dataframe.
We need an automated way to generate such attributes related to
specific entities. For this, we need a model that supports crawl-
ing, e.g. starting from an entity, an algorithm collects or defines
relevant attributes. The web is an example of a crawlable model.

2 DATA VIRTUAL MACHINES
A Data Virtual Machine describes entities and their attributes in
a graphical way, much like the traditional Entity-Relationship
Model (ER). A conceptual model, like the ER is simple to under-
stand, succinct, and depicts entities at a higher level. However,
developing a conceptual model as a DVM is the reverse process
of the one followed in a traditional ER design: while ER uses
a top-down approach, DVM uses a bottom up approach, from
existing data – stored in model-specific implementations – back
to a conceptual model1. Figure 1 shows DVM- vs ER-modeling.

In the past there has been some little interest in the creation
of bottom-up approaches for the construction of a RDF graph
from the data. Some of these focus on the creation of RDF views
on top of relational data, e.g. [12]. In this case, there is already
a user-defined mapping between the relational schema and a
target ontology, which is employed for the creation of a represen-
tation of relational schema concepts in terms of RDF classes and
properties. The work in [11] also considers the same problem, i.e.
given a relational database schema and its integrity constraints,
a mapping to an OWL ontology is produced, which, provides the
basis for generating RDF instances. Such works are orthogonal
to our vision, as they assume that the starting point is a given
relational schema, and the goal is to translate this schema into
RDF (via the employment of ontologies). The notion of DVM that
we discuss focuses on, first, creating an integrated conceptual
model that can accommodate various data models, and, second,
produce the conceptual schema based on the processing of the
data, rather than the data itself.

The key idea in a DVM is to make it easy to add an entity or
an attribute to an entity from a variety of data sources (relational

1We note that the conceptual model that the DVM follows is not the ER model,
but an ER-like model, i.e. a model based on notions of entities and attributes. As
such, it can also be characterized as an RDF-like model or a network-like model.
For simplicity, in this paper, we make references to the ER model only

Figure 2: A customer entity with several attributes

databases, flat files, excel files, NoSQL, etc.) For instance, for a
customer entity, examples of attributes include his age, gender
and income, but also his emails, images, locations and transac-
tions. An attribute of an entity could have one or more values
– for example, the age of a customer is a single value, but the
emails of a customer can be many – in ER theory these are called
multi-valued attributes. In addition, attributes can be derived. A
derived attribute is an attribute where its value is produced by
some computational process, i.e. there exists a process that maps
one or more values to the entity. In a DVM, since we map existing
data to entities, we can only have derived attributes. For exam-
ple, the query “SELECT custID, age FROM Customers” can be
used to bind an age to the customer entity (using the primary key
of the entity, custID). The computational process that “defines”
the attribute (in this case, the SQL statement) accompanies, as
semantics, the edge connecting the entity and the attribute. In
this way, one can semantically represent any data processing task
onto the conceptual model. Examples involve the SQL statement
mentioned above, but also a MongoDB query, a Cypher query,
programs that read from a flat or an excel file, even programs
that assign a churn probability to a customer. The only require-
ment is that the data process maps one or more values to an
entity, i.e. to have a two-column (id, value) output. An important
observation to make is that this computation can be intra- or
inter-organization. Figure 2 shows additional attributes for the
customer entity (for simplicity we draw attributes with a solid
line rather than a dashed line, as in traditional ER design). Let
us assume that all entities have a primary key (a quite realistic
assumption in most real-life implementations), so an entity (rec-
tangle) can be represented by its primary key, which is also an
attribute. In Figure 3, the customer entity is represented by the
custID attribute. The transactions of a customer (consisting of
transIDs) is another attribute (multi-valued) of the entity cus-
tomer, but at the same time is an entity itself, with its own set of
attributes, which means that there is no need for relationships,
as in the traditional ER theory. This is also shown in Figure 3.

Finally, let us consider once again the query "SELECT custID,
age FROM Customers”. While this query maps an age to a custID,
it also maps one or more custIDs to a specific age value. In other
words, a data processing task with an output {(u,v) : u ∈ U ,v ∈

V } (multi-set semantics) provides two mappings, one from U
to V and one from V to U . This means that edges in a DVM
graph are bidirectional (Figure 3). In that respect, all nodes in this
graph are equal, i.e. there is no hierarchy, and all connections
are symmetrical, i.e. there are no primary keys. However, one
can consider a node with degree > 1 as a “primary” key, shown
in different color. A data virtual machine is as a graph-based
arrangement of data processing tasks with output a pair of values,
namely mappings between two attribute domains.

Definition 2.1 (Key-list Structure). A key-list structure K is a
set of (key, list) pairs,K = {(k, Lk )}, where Lk is a list of elements



Figure 3: A simple DVM example

Figure 4: Key-list structures to represent edges of DVMs

or the special value null and ∀(k1, Lk1), (k2, Lk2) ∈ K , k1 , k2.
Both keys and elements of the lists are strings. □

Definition 2.2 (Data Virtual Machines). AData Virtual Machine
(DVM) is a (multi)graph that is constructed as follows:

• Assume n attributes A1,A2, . . . ,An drawn from domains
D1, D2, . . . ,Dn respectively. Each attribute becomes a
node in the graph.

• Assume one or more data processing tasks (DPT), where
each DPT P has as output a multiset S = {(u,v) : u ∈

Di ,v ∈ D j }. Based on S , one can define two key-list struc-
tures, denoted as KLi j (S) and KLji (S) as:
K = {k : (k,v) ∈ S} (a set),
∀k ∈ K, Lk = [v : (k,v) ∈ S], (a list),
KLi j (S) = {(k, Lk ) : k ∈ K}

KLji (S) is similarly defined, treating as key the second
constituent of the value pairs of S . For P we define two
edges Ai → Aj and Aj → Ai , each labeled with KLi j (S)
and KLji (S) respectively. □

Example 2.3. Assume the SQL query "SELECT custID, transID
FROM Customers that maps transactions to customers and vice
versa. The attributes, edges and the respective key-list structures
are shown in Figure 4. □

The next section discussed that the concept of DVM is an
appropriate high-level model for a big data environment.

3 CHALLENGES AND OPPORTUNITIES
DVMs allow the agile construction of graph-based schemas of
existing data within an organization. We discuss below how
DVMs contribute to the high level goals as set in Section 1

3.1 Model-agnostic data Sharing and
Exchange

Any computation that produces as output a collection of pairs
(programs, queries, web services), can be represented in a data
virtual machine as an edge between two nodes. In real-world
environments people need to share parts of spreadsheets, flat
files, json documents or relations, and usually specific columns
of these. This involves some excel formulas, db columns, or flat

Figure 5: Visual representation of a dataframe query

files fields. In most cases this is done manually, by exporting to
a csv and moving the file around. There is no principled way
to describe formally these in an intermediate representation.
DVMs can become the medium for data sharing in a standardized,
collaborative, distributed manner. For example, a data engineer
can select a pair of columns in an excel file and represent them as
nodes in the DVM, via some wizard that generates the necessary
computation. The data scientist can then use these within a data
model. This is very similar to what ETL tools/Visualization tools
do, when the output of the ETL task is binary (i.e. two columns).

3.2 Visual Query Formulation - Dataframes
What kind of queries can we have on top of DVMs? There is
a large number of research papers on visual query formulation
over ERs, dating back from the 80s, that are relevant here. But, let
us consider what data scientists usually do, since this is the target
group of this work. They usually form dataframes in Python, R or
Spark. A dataframe is a table that is built incrementally, column-
by-column. The first column(s) is some kind of key (customer
ID, transaction ID, etc.) and the remaining ones are “attached” to
the dataframe via a left-outer join on the key, denoting related
“attributes”. These columns may come from different data sources
and can be transformed before being “glued” to the dataframe.
A dataframe provides a tabular representation of an entity and
usually serves as input to ML algorithms. We have extensively
discussed this class of queries (termed as multi-feature queries,
not dataframes), both in terms of syntax (by proposing SQL ex-
tensions [2]) and evaluation (by proposing a relational operator
relying in parallel processing and in-memory evaluation tech-
niques [3]). It is important to facilitate this process in a simple
and intuitive, visual, manner.

One can easily pick and transform attributes (possibly along
a path), to form a dataframe over a DVM. For example, using
the DVM of Figure 2, one may want to form a dataframe using
the custID as key (1st column) and her age, gender, the average
sentiment of her comments containing the keyword “google”, the
count of her friends and the total amount of her transactions on
May 2019, as additional columns. Graphically, the user selects a
node as the key of the dataframe and one or more of that node’s
descendants as the additional columns. Aggregation is used to
reduce multi-valued nodes to a single value. Figure 5 shows a
visual representation of this query. The research questions focus
on (i) what kind of dataframe queries one can express on top of a
DVM, (ii) visual interfaces, and (iii) how can a system efficiently
evaluate these queries. Regarding (i), there exists a well-defined
grammar that specifies what is allowed and what is not (omitted
here). In terms of efficient evaluation, a dataframe query is a tree
rooted at a node of DVM. Recall from Section 2 that edges in a
DVM correspond to key-list structures. One can define a set of
operators having as input and output key-list structures, forming
thus an algebra over key-list structures. For example, a filtering



operator could get a key-list structure and a condition θ and filter
the list of each key based on this expression, producing a new
key-list structure. Another operator could get as input a key-list
structure and a function and apply it on each member of each
list (mapping). A dataframing operator gets two or more key-list
structures and join them on the key, unioning the matching keys’
lists. As a result, dataframe queries can be expressed, optimized
and evaluated within an algebraic framework.

3.3 Polyglot Data Preparation
The dataframe example of Section 3.2 involves a function writ-
ten in some programming language (Python) to compute the
sentiment of each comment. For a different attribute transfor-
mation in the same query, we can use a function in R. Finally,
a user-defined aggregate function can be in another program-
ming language. The query evaluation engine should support this
kind of polyglotism within the algebraic framework. For example,
while key-list structures could materialize within a single key-
value system, the set of operators manipulating these structures
could be implemented (redundantly) in different programming
languages (i.e. all operators could be implemented both in R and
Python and the query engine selects the PL-specific version of
the operator(s) to apply, depending on the used function).

3.4 Accommodating Data Regulations
The EU General Data Protection Regulation (GDPR) driven by
privacy concerns dictates that the data generated by the activity
of an individual using a service can be deleted or exploited by
the individual. Thus, one can ask the service owner to hand in
all of her data. For example, a user could request from Facebook,
Google or Wal-Mart for her activity data. One question is in
what format these data will be handed to her, and another, how
the user will create her data portfolio, i.e how she will repre-
sent and integrate these data, i.e. in which model: Relational?
Semi-structured? Graph-based? Some sort of self-service data
integration is necessary. The DVM model-agnostic exchange and
integration capability can naturally serve this cause. The last
question is on what the user can do with these data. Can she
give them to a credit bureau to provide a specific evaluation on
her? People already discuss micro-evaluation services on specific
datasets. Also, she could just sell them. For this, the data model
(or part of it) has to be shareable, e.g. available by a link. DVM
seems as a good candidate to model, represent and share personal
data. It is a graph-based conceptual model, focused on entities
and attributes. Given a single entity, people easily understand
the concept of an attribute: my age, my emails, my transactions,
etc. A conceptual model also makes visualization easier and thus
appropriate for some kind of self-service data integration.

3.5 Data Virtualization
Data virtualization is a relatively new business trend [5]. Com-
panies like Denodo, Oracle, SAS and others already offer rele-
vant products. Data virtualization is closely related to mediators
and virtual databases, if not a reinvention of these. According
to Wikipedia, “data virtualization is any approach to data man-
agement that allows an application to retrieve and manipulate
data without requiring technical details about the data, such as
how it is formatted at source, or where it is physically located,
and can provide a single customer view (or single view of any
other entity) of the overall data. Data virtualization may also
be considered as an alternative to ETL and data warehousing.

It is inherently aimed at producing quick and timely insights
from multiple sources without having to embark on a major data
project with extensive ETL and data storage.” Existing such plat-
forms, usually implement a relational model. A DVM provides
a virtual layer where the data engineer can easily map data and
processes related to an entity. In this respect, it can be considered
as a data virtualization platform.

3.6 Model-specific Database Instantiations
A data virtual machine is a conceptual model. While in a tra-
ditional database design the data model is predefined and de-
termines storage models, in a conceptual design one can cre-
ate database instances in different data models (e.g. relational,
semi-structured, multi-dimensional, etc.) – and possibly use this
model’s query language to run queries on top of the instance. For
example, one can define a collection of JSON documents rooted
on CustID for an application (containing customer’s transactions
within the document), but another user can define a collection of
JSON documents rooted on TransID. Recall the research ques-
tion posed in Section 3.4, regarding the delivering format of an
individual’s data under GDPR compliance. Using a DVM’s ap-
proach, the service owner can instantiate a database containing
the individual’s data in the preferred data model of the user.

4 CONCLUSIONS
We introduce a graph-based model to depict data and data pro-
cessing tasks of the data infrastructure of an organization at a
conceptual layer. We argue that this abstraction is useful in a
plethora of analytics tasks performed by analysts and data en-
gineers alike. We are currently developing the operators of the
algebra over key-list structures in Python. Dataframe queries are
translated to an algebraic expression and a simple (unoptimized)
plan is generated. The system that handles key-list structures is
Redis. Neo4j is used for DVMs. We are developing a tool called
DataMingler that allows the management of data sources and
the respective DVM, and query formulation in a visual manner.
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