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ABSTRACT

Schema matching is the process of capturing correspondence
between attributes of different datasets and it is one of the most
important prerequisite steps for analyzing heterogeneous data
collections. State-of-the-art schema matching algorithms that use
simple schema- or instance-based similarity measures struggle
with finding matches beyond the trivial cases. Semantics-based al-
gorithms require the use of domain-specific knowledge encoded
in a knowledge graph or an ontology. As a result, schema match-
ing still remains a largely manual process, which is performed by
few domain experts. In this paper we present the Relational Em-
beddings MAtcher, or REMA, for short. REMA is a novel schema
matching approach which captures semantic similarity of at-
tributes using relational embeddings: a technique which embeds
database rows, columns and schema information into multidi-
mensional vectors that can reveal semantic similarity. This paper
aims at communicating our latest findings, and at demonstrating
REMA’s potential with a preliminary experimental evaluation.

1 INTRODUCTION

Modern companies struggle with the integration of the plethora
of datasets they have in their possession. Such data is typically
stored across multiple systems using a variety of diverse schemata
and data formats. Traditionally, data integration has been a mostly
manual task with limited tooling support. However, due to the
sheer size and heterogeneity of current data collections, automat-
ing schema matching is key to querying and analyzing large data
collections. Early approaches towards automated data integra-
tion focused on schema matching, i.e. the process of capturing
correspondence between different relational tables.

Most of the existing matching methods rely on syntactic infor-
mation [20], i.e. the symbolic representation of data as found in
a database without considering their context, limiting the quality
of the discovered matches. Moreover, methods that use external
knowledge such as thesauri and ontologies [9, 16] require en-
coding domain knowledge, while others that incorporate human
help for refining results [21] may incur high personnel costs
limiting their scalability.

In this paper, we present a semantic schema matching tech-
nique named REMA which relies on relational embeddings, an
idea inspired by word embeddings which can capture semantic
similarity of words, leveraging their context (i.e., words used in
a certain way and in the same context in different documents).
Similar to word embeddings, relational embeddings leverage con-
textual information extracted from relational tables to enable the
discovery of semantically related columns.
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Figure 1: The rREmMA pipeline: Tables are encoded into a
graph. A Node Embedding is trained on random walks.
These embeddings can be used to find matching columns.

To create embeddings from relational data, REMA takes the
approach depicted in Figure 1. The first step is to transform rela-
tional data into a heterogeneous graph which encodes i) schema
information and its relation to cell values, and ii) relationships
between cell values of the same row. This graph is then used as
input for generating a set of random walks ! (Step 2). Those walks
are then used for training graph embeddings (Step 3) in order to
map table cells into multidimensional vectors. Those vectors can
then be used to calculate similarities between cells or columns of
the original tables and can be leveraged for generating schema
matches (Step 4).

The main advantage of REMA is that it enables semantic match-
ing of columns of data coming from different sources, without
being concerned about the concepts they represent and without
the need for external knowledge (e.g., ontologies, thesauri). This
paper reports on our latest findings and evaluates REMA on a
series of datasets to demonstrate its ability to capture accurate
relationships between columns of different relational tables.

2 RELATED WORK

Schema matching is a well studied problem [20]. Given a set
of datasets and their (relational) schemata, schema matching is

!rEMA’s walks are reminiscent of documents in the word embeddings literature.



the problem of discovering potential correspondences between
attributes of different relations. For instance, given customer
datasets from several departments, schema matching might dis-
cover that the attribute "tel" and "p_nr" both refer to a customer’s
phone number. Note that two matching attributes can signify
that the two corresponding tables can be either joined or unioned.
For the most part, schema matching is performed by comparing
attribute definitions in the schemata (e.g., similarity between
attribute names and types) and/or by comparing the distribu-
tion/values found in the relation’s instances.

Data Tamer [21] allows each ingested attribute to be matched
against a collection of existing attributes by making use of a
variety of similarity measures and algorithms called experts. The
Data Civilizer system [5] uses a linkage graph in order to support
data discovery, while Aurum [9] builds knowledge graphs, where
different datasets are correlated with respect to their content or
schema. All of these methods rely on direct syntactic similarity
computation (e.g. Jaccard Similarity, value distribution) between
pairs of column signatures [1] . In [16], a matching algorithm is
proposed that is based on name similarity of schema elements
and also explores the structural properties of XML datasets. In
short, methods based on syntactic measures do not perform well
when the format of the relevant elements differs, and fail to detect
semantic similarities.

In an attempt to avoid considering only syntax of data or
schema elements, the authors in [22] propose a matching al-
gorithm based on clustering of column values, whereas in [6]
matching is performed with respect to a corpus of existing schema
mappings, which serve as training samples for different training
modules called base learners. [10] tries to build relationships be-
tween relations and columns of different databases with respect
to a given ontology, by making use of both semantics and syntax;
yet they ignore data instances. Matching approaches that use
external knowledge [10, 16], such as domain-specific ontologies,
dictionaries, thesauri or pre-trained word embeddings on natural
language corpora, cannot be used when such knowledge is not
available for the considered datasets.

REMA is a method to incorporate schema information and data
instances and to use graph embeddings to capture relationships
between data elements with respect to their semantics and the
context they share. Essentially, it provides an automated domain-
agnostic schema matching approach, relying only on the infor-
mation conveyed from the input datasets, without the need for
external knowledge. Preliminary work in a similar spirit of using
embeddings for data integration has come to our attention [3]
succeeding [15] where the REMA pipeline was first introduced.

3 THE REMA PIPELINE
REMA consists of the following four stages as shown in Figure 1:

1. Encoding Relational Data to a Graph. Relational data from
several tables go through a transformation stage. REMA creates a
non-directed graph with all data elements (rows, columns, values)
as nodes, and with edges connecting them such that the input
tables are reflected.

2. Processing the Graph. Next, we process the graph to create
random-walks. These will allow for training node embeddings.

3. Training Embeddings. In this stage, we train vector repre-
sentations of graph nodes, commonly termed as node embeddings,
using existing sequence-based embeddings algorithms. These em-
beddings are constructed in such a way that relevant nodes have

similar vector representations, which is the core property of the
embedding to be exploited in the final step.

4. Capturing Matches. In the final stage, we use the embeddings
in order to calculate similarity between columns of different
relations. Since embeddings of similar data elements are close to
each other, these similarities help us capture matches between
them. REMA then outputs the matching likeliness for each pair of
attributes.

3.1 Encoding Relational Data to a Graph

As a first step, relational data is transformed into a non-directed
graph. This will allow for training node embeddings, which in
turn can represent similarity between data elements by con-
sidering their neighborhoods and connections. We present two
methods towards that end: i) the RC Graph, and ii) ARC Graph.

RC Graph. Consider a relation R, and its set of m attributes
{A1,...,Am}. For each tuple ¢ contained in the instance of R we
want to create a connected component of a graph. An alternative
would be to create nodes representing each data value and edges
between adjacent ones for each tuple. However, that would relate
only data elements that are next to each other, whereas we would
like to relate them on a per-tuple basis. Another approach is
to create a clique for each relational tuple in the input, i.e. for
each individual attribute value we create a node and connect it
through an edge with all other values in the same tuple. That
would provide full context for relational data elements. However,
constructing a clique for each row will end up being prohibitively
costly with respect to storage as a very dense graph is created.
Thus, we propose the Row-Cell (RC) Graph: a row node with a
unique identifier for each record in the relation is created and
connected with each corresponding attribute value in the tuple;
these row nodes act like hubs for relating attribute values of a
single row. The RC graph is light-weight and incorporates only
row information on how values are related to each other.

ARC Graph. While similar to the RC Graph, the ARC graph also
considers attribute names from the schemata. Specifically, we
create nodes for each attribute and connect them with edges to
their corresponding cell values. The resulting Attribute-Row-Cell
(ARC) Graph then incorporates also information about cell values
that belong to the same column. Therefore, we are able to encode
more contextual information from the relational datasets to the
graph structure; however, this way incurs higher storage costs.

Remarks and Node Merging,. In our graph transformation pro-
cess, each cell value is represented as a node. In cases we en-
counter the same cell value in several tuples, we don’t create
a new node but rather we use the existing one (thus creating
connections between rows and attributes). Intuitively, these are
the bridging nodes for different records and relational tables.
However, sometimes the same conceptual value is encoded
in slightly different ways: for example, two movie databases
may store director names in different formats (e.g., Todd Phillips
and Phillips, T.). In such scenarios, we need to identify similar-
ity between semantically equivalent cell values and merge their
corresponding nodes in the graph. A simple way to do so is by uti-
lizing a string-based similarity (e.g. Levenshtein distance), and by
dictating that nodes of cell values that have a score above a spe-
cific threshold, qualify for merging. However, more sophisticated
merging heuristics need to be explored in our future work.



3.2 Processing the Graph

In order to train neural networks to produce vector representa-
tions for the graph nodes, we need to construct training samples
that provide some contextual information; a way to do so is by
traversing the graph. Such techniques are popular in the area of
graph embeddings, where the idea is to represent graph nodes as
n-dimensional vectors (node embeddings) while preserving struc-
tural properties of the graph. Consequently, based on [12, 19],
we propose for each node in the graph to perform a specified
number of random walks of a given length, to explore diverse
neighborhoods. In this fashion, each such random walk will rep-
resent a sequence of graph nodes and will provide a different
context for each of them.

In addition, there has been a lot of research work [7, 11] on
how to proceed with node embeddings when the graph is hetero-
geneous, i.e., a graph that contains nodes from multiple domains.
There, techniques depend on meta-paths, which are essentially
random walks with a specific sequence of node types. In our case,
an ARC graph can be considered as heterogeneous, containing
nodes of three types: i) row id nodes, ii) attribute name nodes,
and iii) cell value nodes. However, instead of using meta-paths,
we adopt the JUST [14] strategy for constructing random walks
in heterogeneous graphs, without having to pre-define the node
type sequences. Specifically, in [14] the authors showed that
simply controlling the probability of staying in the same node
domain or not while randomly walking in the graph gives same
or even better results than sophisticated meta-paths [7, 11] or
other state-of-the-art node embedding methods [12, 19].

3.3 Training Embeddings

The idea of creating similar representations for words that appear
in the same context has its roots in the distributional hypoth-
esis [13], which states that such words tend to have a similar
meaning. The recent progress made in neural networks facili-
tated the introduction of distributed representations called word
embeddings, which relate words to vectors of a given dimensional-
ity. Towards this direction, numerous word embedding methods
have been proposed in the literature, with the most popular ones
being Word2Vec [17], GloVe [18], and fastText [2] which even
produces character embeddings, making it possible to deal with
out-of-vocabulary words.

In [8], the authors introduce two approaches for composing
distributed representations of relational tuples. The simplest one
suggests that a tuple embedding is a concatenation of the embed-
dings of its attribute instances. They then propose using Recur-
rent Neural Networks (RNNs) with Long Short Term Memory
(LSTM) in order to produce tuple embeddings out of single word
ones, by taking into consideration the relationship and order
between different attribute values inside a tuple. The authors
also propose a method for handling unknown words and two
alternatives for learning embeddings when the data domain is too
technical. We avoid these issues by presenting a general frame-
work for producing relational embeddings, which only leverages
contextual information derived from the datasets.

Training Embeddings in REMA. After fabricating our train-
ing samples using the methods described previously, we train
neural networks to produce relational vector representations that
capture context and semantics. Towards this direction, we feed
the tokenized sequences of relational data elements in a skip-
gram model, such as Word2Vec [17], to receive node embeddings,
which essentially are the embeddings of the initial relational

data elements. When tuning the parameters of these methods,
we need to pay attention to the window size around each word,
which determines in what extent we take into consideration the
surroundings to output the word embedding. In our case, we
won’t need a large window size, since we create a lot of different
contexts for individual data elements, using the random walks
for creating the documents; thus, a smaller window size will
guarantee accurate and more distinct vector representations.

3.4 Capturing Matches

The trained embeddings allow for the discovery of matches be-
tween columns of different relational tables because the vector
representations of cell values capture the similarities of their
contexts inside their relation.

However, we need to devise a method that discovers a rela-
tionship between two columns. Hence, we introduce a simple
order-based algorithm. Initially all pairwise column similarities
between the two relational tables are calculated. To do so, we
derive the vector representation of each column as the mean of all
their corresponding cell value embeddings. Then, the similarity
between two columns is the result of the cosine similarity of their
respective vectors. Then, starting from the pair with the highest
similarity we materialize the match between the corresponding
columns if and only if both of them are still unmatched. As an ex-
tension, we could only materialize matches that have a similarity
score of at least the median one among all pairwise-similarities,
so that we don’t have in our final result matches of columns with
low similarity. Thus, we don’t produce a match for each column,
which is most of the times preferable for schema matching.

4 EXPERIMENTAL EVALUATION

In this section we first discuss the characteristics of our exper-
imental setup, including the dataset setup, REMA variants and
the baseline we used to compare our method. Then, we show
accuracy results for each dataset and discuss any interesting
observations that derive from the experimental evaluation.

4.1 Experimental Setup

Datasets. We use four different real-world datasets taken from
the open-sourced Magellan Data Repository [4]. Specifically,
these are (together with their properties): i) Dataset1: IMDB
(7437 rows, 9 columns)-Rotten Tomatoes (9497 rows, 9 columns),
ii) Dataset2: IMDB (10031 rows, 6 columns)-The Movies Data-
base (8967 rows, 6 columns), iii) Dataset3: Scholar (2616 rows, 5
columns)-DBLP (64263 rows, 5 columns), and iv) Dataset4: Yelp
(6407 rows, 7 columns)-Yellow Pages (7390 rows, 8 columns).

REMA variants and baseline. We briefly describe all of our
method’s variations and the baseline we use to compare against:
i) REMAARC yses the ARC graph to produce training data, where
for each node we initiate a specific number of simple random
walks of a given length, ii) REMA?I?gC;zDegree initiates simple
random walks on an ARC graph only for nodes that have a
degree higher than the average node degree of the graph, iii)
REMA/UST yses again the ARC graph, but applies the JUST
[14] random walks, iv) REMALevenshtein pecemples REMAARC,
but uses the Levenshtein distance to merge similar nodes in the
ARC graph, and v) JACCARDZLevenshtein jq the haseline that we
use for comparison, and represents a purely-syntactic matcher.
It computes all pairwise column similarities by using Jaccard
Similarity, where two elements are considered the same if their
Levenshtein distance is above a given threshold. We don’t include



Table 1: Accuracy results

‘ ‘ REMAARC H REMAARC H REMA]UST H REMALEUanhtein H JACCARDLevenshtein ‘
HighDegree
\ | Pr|Re|FM||Pr |Re |FM |[Pr |Re|FM|Pr |Re |FM |[Pr |Re |FM |
Dataset1 | .83 | .71 | .77 || 83 71 77 83 | .71 | .77 || .86 .86 .86 .86 .86 .86
Dataset2 | 1 831911 .83 91 1 1 1 1 1 1 1 1 1
Dataset3 | 80 | 1 .89 || .80 1 .89 80 |1 89 |11 1 1 1 .80 .89
Dataset4 | .83 | .86 | .84 || .83 .86 .84 1 86 | 1 1 1 1 1 1 1

any REMA variant using the RC graph, since we found out that the
results were of considerably lower quality than the other ones.

Parameter tuning. For each of the above variants we initiate
10 random walks of length 100 per node, while we train 128-
dimensional embeddings, using a window size of 10 and the
skip-gram model. For the methods using Levenshtein distance,
we set the similarity threshold to 0.75.

4.2 Accuracy Results

We evaluate all REMA variants on each dataset and compute the
accuracy scores for all attribute pair matches. We use the thresh-
old ordered-based matching algorithm described in Section 3.5, to
compute precision, recall and F-measure based on ground truth
about the expected matches. In Table 1 we summarize the accu-
racy scores for each dataset for each used variants. Generally,
we spot that for all of the tested methods we get high accuracy,
based on all three metrics. However, this is something that we
were expecting, since the input consists of datasets that share
a lot of common characteristics, and thus are quite easy from a
schema-matching perspective.

The REMA and baseline approaches which make use of the
Levenshtein distance are almost on par and give the best results
for every dataset. First, this shows that even a simple syntactic-
based matcher could work very well, given that the input con-
sists of data formatted in the same or very similar way. Yet,
REMALevenshtein performs marginally better and verifies the in-
tuition of the general framework, while also the power of merging
similar nodes during the graph construction phase. Furthermore,
a very promising result is that in Dataset3 it was able to cap-
ture a match between the columns of the two datasets that were
representing IDs, even if they were formatted in a completely
different way. This showcases the power of exploiting contextual
information through our proposed method and that it could lead
to finding mactches that are only human-understandable.

Interestingly, the HighDegree variant of REMA4RC produces
identical results with the one that generates random walks for
all nodes in the graph. This is quite encouraging, since it incurs
shorter graph processing and embedding training times. Finally,
we observe that the JUST variant gives most of the times better
results than the ARC variants which use simple random walks,
confirming that regulating walks for heterogeneous graphs (like
ARC) could improve accuracy of the embeddings.

5 CONCLUSIONS & FUTURE DIRECTIONS

In this paper we introduced REMA, a novel Schema Matching
method powered by relational graph-based embeddings. We
showed several variants of REMA and evaluated theit accuracy on
real-world datasets. The results are encouraging and prove the
potential of the method, and also indicate the advantages and
limitations of each variant.

However, REMA is an ongoing project. Specifically, we plan to
study more semantically aware node-merging techniques, such as
using pre-trained embeddings based on natural language corpora
for overcoming some value-transformation issues. In addition,
we will address storage and scalability issues when dealing with
large datasets like those found in enterprise applications. Finally,
we want to use the relational embeddings for capturing also
semantic relationships between columns beyond pure match-
ing correspondence. This would lead to a whole new type of
matching, one that is more close to human-understandability.
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